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Abstract

We prove that homotopy invariants of finite degree distinguish homotopy
classes of maps of a connected compact CW-complex to a nilpotent con-
nected CW-complex with finitely generated homotopy groups.

§ 1. Introduction

N = {0, 1, . . . }. Space means “pointed topological space”. CW-complexes are
also pointed (the basepoint being a vertex). Map means “basepoint preserving
continuous map”. Homotopies, the notation [X,Y ], etc. are to be understood
in the pointed sense.

Invariants of finite degree. Let X and Y be spaces, V be an abelian group,
and f : [X,Y ] → V be a function (a homotopy invariant). Let us define a number
Deg f ∈ N ∪ {∞}, the degree of f . Given a map a : X → Y and a number
r ∈ N, we have the map ar : Xr → Y r (the Cartesian power), which induces the
homomorphism C0(a

r) : C0(X
r) → C0(Y

r) between the groups of (unreduced)
zero-dimensional chains with the coefficients in Z. Let the inequality Deg f 6 r
be equivalent to the existence of a homomorphism l : Hom(C0(X

r), C0(Y
r)) →

V such that f([a]) = l(C0(a
r)) for all maps a : X → Y . As one easily sees,

Deg f is well defined by this condition. Finite-degree invariants are those of
finite degree.

Main results.

1.1. Theorem. Let X be a connected compact CW-complex, Y be a nilpotent
connected CW-complex with finitely generated homotopy groups, and u1, u2 ∈
[X,Y ] be distinct classes. Then, for some prime p, there exists a finite-degree
invariant f : [X,Y ] → Zp such that f(u1) ̸= f(u2).

Related facts were known for certain cases where [X,Y ] is an abelian group
[10, 11]. Theorem 1.1 follows (see § 11) from a result of Bousfield–Kan and
Theorem 1.2.

We call a group p-finite (for a prime p) if it is finite and its order is a power
of p.

1.2. Theorem. Let p be a prime, X be a compact CW-complex, and Y be a
connected CW-complex with p-finite homotopy groups. Then every invariant
f : [X,Y ] → Zp has finite degree.
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Probably, Theorem 1.2 can be deduced from Shipley’s convergence theorem
[12], which we do not use. We use an (approximate) simplicial model of Y that
admits a harmonic (see § 6) embedding in a simplicial Zp-module.

Non-nilpotent examples. The following examples show the importance of
the nilpotency assumption in Theorem 1.1. We consider finite-degree invariants
on πn(Y ) = [Sn, Y ].

1.3. Let Y be a space with π1(Y ) perfect. Then, for any abelian group V , any
finite-degree invariant f : π1(Y ) → V is constant.

This follows from Lemmas 12.2 and 3.6.

1.4. Take n > 1. Let Y be a space such that πn(Y ) ∼= Z2 and an element
g ∈ π1(Y ) induces an order 6 automorphism on πn(Y ). Then, for any abelian
group V , any finite-degree invariant f : πn(Y ) → V is constant.

This follows from Lemmas 12.2 and 12.3 and claim 3.7.

An example: maps Sn−1 × Sn → Sn
(Q) (cf. [1, Example 4.6]). Take an

even n > 0. Let c : Sn−1 × Sn → S2n−1 be a map of degree 1. Put i =
[id] ∈ πn(S

n), j = i ∗ i ∈ π2n−1(S
n) (the Whitehead square), and u(q) =

(qj) ◦ [c] ∈ [Sn−1 × Sn, Sn], q ∈ Z. Let l : Sn → Sn
Q be the rationalization. Put

ū(q) = [l]◦u(q) ∈ [Sn−1×Sn, Sn
Q]. The classes u(q), q ∈ Z, are pairwise distinct;

moreover, the classes ū(q), q ∈ Z, are pairwise distinct (the proof is omitted).
Is it true that, under the assumptions of Theorem 1.1, there must exist an

r ∈ N such that the elements of [X,Y ] are distinguished by invariants of degree
at most r? No, as the following claim shows.

1.5. Let V be an abelian group and f : [Sn−1 × Sn, Sn] → V be an invariant of
degree at most r ∈ N. Then f(u(q)) = f(u(0)) whenever r! | q.

The following claim shows the importance of the assumption of Theorem 1.1
that Y has finitely generated homotopy groups.

1.6. Let V be an abelian group and f : [Sn−1 × Sn, Sn
Q] → V be an invariant of

finite degree. Then f(ū(q)) = f(ū(0)), q ∈ Z.

The following claim shows that, under the assumptions of Theorem 1.1,
finite-degree invariants taking values in Qmay not distinguish rationally distinct
homotopy classes.

1.7. Let f : [Sn−1×Sn, Sn] → Q be an invariant of finite degree. Then f(u(q)) =
f(u(0)), q ∈ Z.

Elusive elements of H0(Y
X). The space of mapsX → Y is denoted Y X . An

invariant f : [X,Y ] → V gives rise to the homomorphism +f : H0(Y
X) → V ,

⌊u⌋ 7→ f(u) (here ⌊u⌋ denotes the basic element corresponding to u). Is it
true that, under the assumptions of Theorem 1.1, for any non-zero element w ∈
H0(Y

X) there exist an abelian group V and a finite-degree invariant f : [X,Y ] →
V such that +f(w) ̸= 0? No, as the following claim shows.
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1.8. Take n > 1. Let Y be a space and u1, u2 ∈ πn(Y ) be elements of coprime
finite orders. Put w = ⌊u1 +u2⌋− ⌊u1⌋− ⌊u2⌋+ ⌊0⌋. Let V be an abelian group
and f : πn(Y ) → V be an invariant of finite degree. Then +f(w) = 0.

This follows from Lemmas 12.2 and 3.8.

If the group πn(Y ) is torsion and divisible, then the same is true for any
elements u1, u2 ∈ πn(Y ) (this follows from Lemmas 12.2 and 3.9). In this case,
πn(Y ) cannot be finitely generated (without being zero). In return, Y can be
p-local, e. g. Y = K(P, n) (the Eilenberg–MacLane space) for P = Z[1/p]/Z.

§ 2. Preliminaries

We say crew for “pointed set” and archism for “basepoint preserving function”.
We use the standard model structure on the category of simplicial crews (and
archisms) [7, Corollary 3.6.6]. The words fibration, cofibration, etc. refer to it. A
fibring simplicial archism is a fibration. An isotypical simplicial archism, or an
isotypy, is a weak equivalence. Isotypic simplicial crews are weakly equivalent
ones.

An abelian group is a crew (the basepoint being 0); a simplicial abelian
group is a simplicial crew.

We call a simplicial crew T compact if it is generated by a finite number of
simplices, and gradual if the crews Tq, q ∈ N, are finite.

For simplicial crews K and T , we have a simplicial crew TK , the function
object (denoted hom∗(K,T ) in [2, Ch. VIII, 4.8]). A simplicial archism f : K →
L induces a simplicial archism T f : TL → TK , etc. We use this notation in the
topological case as well.

The sign ∼ denotes the homotopy relation; the sign ≃ denotes the homotopy
equivalence of spaces.

Main homomorphisms. By default, chains and homology have coefficients
in a commutative ring R; Hom = HomR. (In § 1, we had R = Z implicitly.)

For spaces X and Y , define R-homomorphisms

X
Y µr : C0(Y

X) → Hom(C0(X
r), C0(Y

r)), ⌊a⌋ 7→ C0(a
r),

r ∈ N. We have the projection R-homomorphism

X
Y ν : C0(Y

X) → H0(Y
X).

For simplicial crews K and T , define R-homomorphisms

K
Tµr : C0(T

K) → Hom0(C∗(K
r), C∗(T

r)), ⌊b⌋ 7→ C∗(b
r),

r ∈ N. Here ⌊b⌋ is the basic chain corresponding to a simplex b ∈ (TK)0,
i. e. a simplicial archism b : K → T ; br : Kr → T r is the Cartesian power;
C∗(b

r) : C∗(K
r) → C∗(T

r) is the inducedR-homomorphism of gradedR-modules
of chains; Hom0 denotes theR-module of grading-preservingR-homomorphisms.
We have the projection R-homomorphism

K
T ν : C0(T

K) → H0(T
K).
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§ 3. Group algebras and gentle functions

Let R⌊G⌋ denote the group R-algebra of a group G. An element g ∈ G has the
corresponding basic element ⌊g⌋ ∈ R⌊G⌋. The augmentation ideal ⌉R⌊G⌋ ⊆
R⌊G⌋ is the kernel of the R-homomorphism R⌊G⌋ → R, ⌊g⌋ 7→ 1. The ideal
⌉R⌊G⌋s (s > 0) is R-generated by elements of the form (1−⌊g1⌋) . . . (1−⌊gs⌋).

Let V be an abelian group. A function f : G → V gives rise to the homo-
morphism +f : Z⌊G⌋ → V , ⌊g⌋ 7→ f(g). We call f r-gentle if +f | ⌉Z⌊G⌋r+1 = 0,
and gentle (or polynomial) if it is r-gentle for some r ∈ N [9, Ch. V].

Let p be a prime.

3.1. Lemma. Let U be a finite Zp-module of dimension m. Then ⌉Zp⌊U⌋(p−1)m+1 =
0.

3.2. Corollary. Let U and V be Zp-modules. If U is finite, then every function
f : U → V is gentle.

3.3. Lemma [4, Proposition 1.2]. Let U , V , and W be abelian groups, f : U →
V be an r-gentle function, and g : V → W be an s-gentle one (r, s ∈ N). Then
the function g ◦ f : U → W is rs-gentle.

This follows from [9, Ch. V, Theorem 2.1].

A function f : U → V between abelian groups induces the R-homomorphism
fR : R⌊U⌋ → R⌊V ⌋, ⌊u⌋ 7→ ⌊f(u)⌋.

3.4. Corollary. Let U and V be abelian groups and f : U → V be an r-gentle
(r ∈ N) function. Then, for any s ∈ N, the R-homomorphism fR maps the
ideal ⌉R⌊U⌋rs+1 to the ideal ⌉R⌊V ⌋s+1.

3.5. Lemma. Let I be a set. For each i ∈ I, let Ui and Vi be abelian groups
and fi : Ui → Vi be an r-gentle (r ∈ N) function. The the function∏

i∈I

fi :
∏
i∈I

Ui →
∏
i∈I

Vi

is r-gentle.

The following claims are used only in discussion of the examples of § 1, not
in the proof of the main results.

3.6. Lemma. Let G be a perfect group and V be an abelian group. Then any
gentle function f : G → V is constant.

This follows from [9, Ch. III, Corollary 1.3].

3.7. Let U be an abelian group isomorphic to Z2, J : U → U be an automor-
phism of order 6, V be an abelian group, and f : U → V be a gentle function.
Suppose that the function Z×U → V , (t, u) 7→ f(J tu−u), is gentle. Then f is
constant.
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The proof is omitted.

3.8. Lemma. Let U and V be abelian groups, f : U → V be a gentle function,
and u1, u2 ∈ U be elements of coprime finite orders. Then f(u1 +u2)− f(u1)−
f(u2) + f(0) = 0.

3.9. Lemma. Let U be a divisible torsion abelian group, and V be an abelian
group. Then every gentle function f : U → V is 1-gentle.

3.10. Lemma. Let G and H be groups. Then the ideal ⌉R⌊G×H⌋s (s > 1) is
R-generated by elements of the form (1−⌊a1⌋) . . . (1−⌊as−q⌋)(1−⌊b1⌋) . . . (1−
⌊bq⌋), where 0 6 q 6 s, at ∈ G× 1 ⊆ G×H, and bt ∈ 1×H ⊆ G×H.

3.11. Lemma. A function F : Z → Q is r-gentle (r ∈ N) if and only if it is
given by a polynomial of degree at most r.

§ 4. Keys of a commutative square

Let E be a commutative ring. Consider the diagram of simplicial E-modules
and E-homomorphisms

V ′

f ′

��

t′

))
W

g′
oo

g′′

��
U

s′

EE

s′′

44 V
′′,

f ′′
oo

t′′

YY

where the square is commutative: f ′ ◦ g′ = f ′′ ◦ g′′. We call the quadruple
(s′, s′′, t′, t′′) a key of this square if we have (−s′, s′′) ◦ (−f ′, f ′′) + (g′, g′′) ◦
(t′, t′′) = id in the diagram

U

(−s′,s′′)

22 V
′ ⊕ V ′′(−f ′,f ′′)oo

(t′,t′′)

44 W.
(g′,g′′)oo

The pair (t′, t′′) is called a half-key in this case.

4.1. Lemma. Let

V ′

f ′

��

t′

))
W

g′
oo

g′′

��
U V ′′f ′′

oo

t′′

YY

be a commutative square of simplicial E-modules and E-homomorphisms with a
half-key, T be a simplicial crew, and k′ : T → V ′ and k′′ : T → V ′′ be simplicial
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archisms such that f ′ ◦ k′ = f ′′ ◦ k′′. Consider the simplicial archism l =
t′ ◦ k′ + t′′ ◦ k′′ : T → W . Then g′ ◦ l = k′ and g′′ ◦ l = k′′.

V ′

f ′

��

t′

**
W

g′
oo

g′′

��

T

k′

``AAAAAAAA

k′′
  A

AA
AA

AA
A

l

>>}}}}}}}}

U V ′′f ′′
oo

t′′

UU

By a sector of a simplicial E-homomorphism h : W̃ → W we mean a simpli-
cial E-homomorphism s : W → W̃ such that h ◦ s = id.

4.2. Lemma. Consider a commutative diagram of simplicial E-modules and
E-homomorphisms

0 Ũoo

f

��

Ṽ
p̃oo

g

��

W̃
q̃oo

h

��

0oo

0 Uoo V
poo W

qoo 0.oo

Suppose that its rows are split exact and h has a sector. Then the left-hand
square has a key.

Proof. Let (k, l) and (k̃, l̃) (see the diagram below) be splittings:

p ◦ k = id, l ◦ q = id, k ◦ p+ q ◦ l = id,

p̃ ◦ k̃ = id, l̃ ◦ q̃ = id, k̃ ◦ p̃+ q̃ ◦ l̃ = id,

and s be a sector: h ◦ s = id. Put r = q̃ ◦ s ◦ l and k̂ = k̃ + r ◦ (k ◦ f − g ◦ k̃).
Then (0, k, k̂, r) is a key.

0 Ũoo

f

��
k̃

55

k̂

%%
Ṽ

p̃oo

g

��
l̃

55 W̃
q̃oo

h

��

0oo

0 Uoo

k

55

0

EE

V
poo

l

55

r

YY

W
qoo

s

YY

0oo

4.3. Lemma. Let L and M be simplicial crews, j : L → M be an isotypical
cofibration, and Q be a fibrant simplicial crew. Then Qj : QM → QL is an
isotypical fibration.
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4.4. Lemma. Let Q and R be simplicial crews, c : Q → R be a fibration, and
N be a simplicial crew isotypic to a point. Then cN : QN → RN is an isotypical
fibration.

4.5. Lemma. Suppose that E is a field. Let V and W be simplicial E-modules
and f : W → V be an isotypical fibring simplicial E-homomorphism. Then f
has a sector.

4.6. Lemma. Suppose that E is a field. Let L and M be simplicial crews,
j : L → M be an isotypical cofibration, Q and R be simplicial E-modules, and
c : Q → R be a fibring simplicial E-homomorphism. Then the commutative
square

QL

cL

��

QMQj

oo

cM

��
RL RMRj

oo

has a key.

Proof. Consider the (strictly) cofibration sequence

L
j // M

k // N.

Since j is isotypical, the simplicial crew N is isotypic to a point. We have the
following diagram of simplicial E-modules and E-homomorphisms:

0 QLoo

cL

��

QMQj

oo

cM

��

QNQk

oo

cN

��

0oo

0 RLoo RMRj
oo RNRk

oo 0.oo

We show that the rows are split exact. Consider the upper row. Obviously, it is
exact in the middle and the right-hand terms. Q is fibrant since it is a simplicial
abelian group. By Lemma 4.3, Qj is an isotypical fibration. By Lemma 4.5, Qj

has a sector. Therefore, the upper row is split exact. The same is true for the
lower row. By Lemma 4.4, cN is an isotypical fibration. By Lemma 4.5, cN has
a sector. By Lemma 4.2, the desired key exists.

§ 5. Quasi-simplicial archisms

A quasi-simplicial archism f : K 99K L between simplicial crews K and L is a
sequence of archisms fq : Kq → Lq, q ∈ N. Let s̃Ar(K,L) denote the crew of
quasi-simplicial archisms and sAr(K,L) denote the subcrew of simplicial ones.

A quasi-simplicial archism f : U 99K V between simplicial abelian groups is
r-gentle if the archisms fq : Uq → Vq are r-gentle.
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Let T be a simplicial crew. For m, q ∈ N, let [m|q] be the set of non-strictly
increasing functions [m] → [q] (where [q] = {0, . . . , q}) and consider the archism

T (m, q) = (T (h))h∈[m|q] : Tq → T [m|q]
m .

We call T m-soluble if, for any q, the archism T (m, q) is injective.
Let p be a prime.

5.1. Lemma. Let T be a gradual simplicial crew, U be a gradual simplicial
Zp-module, R be an m-soluble (m ∈ N) simplicial Zp-module, d : T → U be a
cofibration, and k : T → R be a simplicial archism. Then, for some r ∈ N, there
exists an r-gentle quasi-simplicial archism w : U 99K R such that w ◦ d = k.

U

w

44V Y \ _ b e hT
doo k // R

Proof. Since dm : Tm → Um is injective, there exists an archism v : Um → Rm

such that v ◦ dm = km. By Corollary 3.2, v is r-gentle for some r ∈ N. Take
q ∈ N. We have the commutative diagram

Uq

U(m,q)

��

Tq

dqoo kq //

T (m,q)

��

Rq

R(m,q)

��
U

[m|q]
m

v[m|q]

33T
[m|q]
m

d[m|q]
moo k[m|q]

m // R[m|q]
m .

By Lemma 3.5, the archism v[m|q] is r-gentle. Since the Zp-homomorphism

R(m, q) is injective, there exists a Zp-homomorphism f : R
[m|q]
m → Rq such that

f ◦R(m, q) = id. Consider the r-gentle archism

wq : Uq

U(m,q) // U [m|q]
m

v[m|q]
// R[m|q]

m
f // Rq.

Using the diagram, we get wq ◦ dq = kq.

5.2. Lemma. Let M be a simplicial crew, U and V be simplicial abeliam
groups, and t : U 99K V be an r-gentle (r ∈ N) quasi-simplicial archism. Then
the archism t# : s̃Ar(M,U) → s̃Ar(M,V ), f 7→ t ◦ f , is r-gentle.

Proof. This follows from Lemma 3.5 because of the commutative diagram

s̃Ar(M,U)
t# // s̃Ar(M,V )

∏
q∈N,k∈M×

q

Uq

∏
q∈N,k∈M

×
q

tq

// ∏
q∈N,k∈M×

q

Vq,

where M×
q = Mq \ {basepoint}.
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5.3. Lemma. Let M and T be simplicial crews, U and R be simplicial Zp-
modules, d : T → U and k : T → R be simplicial archisms, and w : U 99K R be an
r-gentle (r ∈ N) quasi-simplicial archism such that w ◦ d = k. Then there exists
an r-gentle quasi-simplicial archism z : UM 99K RM such that z ◦ dM = kM .

UM

z
44W X Z [ \ ^ _ ` b c d f gTMdM

oo kM
// RM

Proof. Take q ∈ N. We have the commutative diagram

(UM )q

i

��

(TM )q
(dM )qoo (kM )q // (RM )q

j

��
s̃Ar(∆q

+ ∧M,U)
w# // s̃Ar(∆q

+ ∧M,R),

where the Zp-homomorphism i : (UM )q = sAr(∆q
+ ∧M,U) → s̃Ar(∆q

+ ∧M,U)
is the inclusion and j is analogous. By Lemma 5.2, the archism w# is r-gentle.
There is a Zp-homomorphism f : s̃Ar(∆q

+∧M,R) → (RM )q such that f ◦j = id.
Consider the r-gentle archism

zq : (U
M )q

i // s̃Ar(∆q
+ ∧M,U)

w# // s̃Ar(∆q
+ ∧M,R)

f // (RM )q.

Using the diagram, we get zq ◦ (dM )q = (kM )q.

§ 6. Harmonic cofibrations

Let T be a simplicial crew and U be a simplicial abelian group. A cofibration
d : T → U is called r-harmonic (r ∈ N) if, for any compact simplicial crews L
and M and any isotypical cofibration j : L → M , there exist a simplicial archism
x : TL → TM and an r-gentle quasi-simplicial archism y : UL 99K UM such that
dM ◦ x = y ◦ dL and T j ◦ x = id.

TL

x
**

dL

��

TM

T j

oo

dM

��
UL

y

44X [ _ c f UMUj
oo

A cofibration is harmonic if it is r-harmonic for some r ∈ N.
By the height of a 0-connected space Y we mean the supremum of those

q ∈ N for which πq(Y ) ̸= 1 (the supremum of the empty set is 0).

6.1. Lemma. Let p be a prime and Y be a connected CW-complex of finite
height with p-finite homotopy groups. Then there exist a gradual simplicial crew
T with |T | ≃ Y , a gradual simplicial Zp-module U , and a harmonic cofibration
d : T → U .
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Proof. (Induction along the Postnikov decomposition of Y with fibres of the
form K(Zp, q).) Let n be the height of Y . If n = 0, then Y is contractible,
we put T = U = 0 and that is all. Otherwise, choose an order p element
e ∈ πn(Y ) fixed by the canonical action of π1(Y ). Its existence follows from
the well-known congruence |FixG X| ≡ |X| (mod p) for an action of a p-finite
group G on a finite set X (cf. the remark in [2, Ch. II, Example 5.2(iv)]). We
attach cells to Y to get a map Y → Ȳ inducing isomorphisms on πq, q ̸= n,
and an epimorphism with the kernel generated by e on πn. The space Y is
homotopy equivalent to the homotopy fibre of some map Ȳ → K(Zp, n+ 1) [6,
Lemma 4.70].

We assume (as an induction hypothesis) that there are gradual simplicial
crew T̄ with |T̄ | ≃ Ȳ , gradual simplicial Zp-module Ū , and r-harmonic (r > 1)
cofibration d̄ : T̄ → Ū .

Let R be a gradual (n+1)-soluble simplicial Zp-module with |R| ≃ K(Zp, n+
1), Q be a gradual simplicial Zp-module isotypic to a point, and c : Q → R be
a fibring simplicial Zp-homomorphism (see [3]). There is a Cartesian square of
simplicial crews and archisms

T
h //

f

��

Q

c

��
T̄

k // R,

where |T | ≃ Y . Put U = Ū × Q. Let Zp-homomorphisms a : U → Ū and
b : U → Q be the projections. Let d : T → U be the simplicial archism given by
the conditions a ◦ d = d̄ ◦ f and b ◦ d = h. Obviously, d is a cofibration.

By Lemma 5.1, for some s > 1 there is an s-gentle quasi-simplicial archism
w : Ū 99K R such that w ◦ d̄ = k.

We show that d is rs-harmonic. Take compact simplicial crews L and M and
an isotypical cofibration j : L → M . We need a simplicial archism x : TL → TM

and an rs-gentle quasi-simplicial archism y : UL 99K UM such that dM ◦ x =
y ◦ dL and T j ◦ x = id. Since d̄ is r-harmonic, there are a simplicial archism
x̄ : T̄L → T̄M and an r-gentle quasi-simplicial archism ȳ : ŪL 99K ŪM such that
d̄M ◦ x̄ = ȳ ◦ d̄L and T̄ j ◦ x̄ = id.

We have the commutative square of simplicial Zp-modules and Zp-homomorphisms
with a half-key

QL

t′

**

cL

��

QM

Qj

oo

cM

��
RL RMRj

oo

t′′

XX

(the half-key exists by Lemma 4.6). We have the simplicial archism

u = t′ ◦ hL + t′′ ◦ kM ◦ x̄ ◦ fL : TL → QM .
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We have cL ◦ hL = kL ◦ fL = kL ◦ T̄ j ◦ x̄ ◦ fL = Rj ◦ kM ◦ x̄ ◦ fL. Therefore,
by Lemma 4.1, Qj ◦ u = hL and cM ◦ u = kM ◦ x̄ ◦ fL.

Define the desired x by the conditions fM ◦ x = x̄ ◦ fL and hM ◦ x = u:

TM hM
//

fM

��

QM

cM

��

TL

x

aaCCCCCCCC
u

==zzzzzzzz

x̄◦fL

}}{{
{{
{{
{{

T̄M kM
// RM .

This is possible because the square is Cartesian and the conditions are com-
patible: kM ◦ x̄ ◦ fL = cM ◦ u. We have T j ◦ x = id because fL ◦ T j ◦ x =
T̄ j ◦ fM ◦ x = T̄ j ◦ x̄ ◦ fL = fL and hL ◦ T j ◦ x = Qj ◦ hM ◦ x = Qj ◦ u = hL.

By Lemma 5.3, there is an s-gentle quasi-simplicial archism z : ŪM 99K RM

such that z ◦ d̄M = kM . We have the quasi-simplicial archism

v = t′ ◦ bL + t′′ ◦ z ◦ ȳ ◦ aL : UL 99K QM .

By Lemma 3.3, it is rs-gentle.
Define the desired y by the conditions aM ◦ y = ȳ ◦ aL and bM ◦ y = v:

UM bM //

aM

��

QM

UL

y
bbD
D
D
D

v
=={

{
{

{

ȳ◦aL

||y
y
y
y

ŪM .

This is possible because (aM , bM ) : UM → ŪM × QM is an isomorphism. Ob-
viously, y is rs-gentle. We have dM ◦ x = y ◦ dL because aM ◦ dM ◦ x =
d̄M ◦ fM ◦ x = d̄M ◦ x̄ ◦ fL = ȳ ◦ d̄L ◦ fL = ȳ ◦ aL ◦ dL = aM ◦ y ◦ dL and
bM ◦dM ◦x = hM ◦x = u = t′◦hL+t′′◦kM ◦x̄◦fL = t′◦hL+t′′◦z◦ d̄M ◦x̄◦fL =
t′ ◦hL+ t′′ ◦z ◦ ȳ ◦ d̄L ◦fL = t′ ◦bL ◦dL+ t′′ ◦z ◦ ȳ ◦aL ◦dL = v ◦dL = bM ◦y ◦dL.
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UL

aL

��

y

%%

2
5
9
>
B

G
J

bL //
v

!!

f e d c b a ` _ ^ ] \ [ Z Y X W V U T R Q P O M L
K
I
H
G
E

QL

cL

��

t′

��

TL

dL

jjUUUUUUUUUUUUUUUUUUUUUU

fL

��

x

%%

hL

44jjjjjjjjjjjjjjjjjjjjjj
u

((
UM

Uj

^^>>>>>>>>>>>>>>>>>>

aM

��

bM // QM

Qj

^^>>>>>>>>>>>>>>>>>>

cM

��

ŪL

ȳ

%%

2
6
:
>
C

G
K

TM

T j

^^==================
dM

jjTTTTTTTTTTTTTTTTTTTTT

fM

��

hM

44iiiiiiiiiiiiiiiiiiiii
RL

T̄L

d̄L
jjUUUUUUUUUUUUUUUUUUUUUU

x̄

%%

kL

44iiiiiiiiiiiiiiiiiiiiii

ŪM

Ūj

__>>>>>>>>>>>>>>>>>>

z

<<E
G
I J

N
Q

U X \ _ b f i
m

p
t u

w
y
RM

t′′

SS

Rj

__>>>>>>>>>>>>>>>>>>

T̄M

T̄ j

__>>>>>>>>>>>>>>>>>>

d̄MjjUUUUUUUUUUUUUUUUUUUUU

kM

44iiiiiiiiiiiiiiiiiiiii

(The straight arrows of this diagram form a commutative subdiagram.)

§ 7. Two filtrations of the module C0(U
K)

7.1. Lemma. Let Ui, i ∈ I, be a finite collection of abelian groups. Put

UJ =
⊕
i∈J

Ui, J ⊆ I,

and U = UI . Let pJ : U → UJ be the projections. Then for any r ∈ N∩
J⊆I : |J|6r

ker(pJ )R ⊆ ⌉R⌊U⌋r+1.

in the R-algebra R⌊U⌋.

Proof. Let sJ : UJ → U be the canonical embeddings. Put qJ = sJ ◦pJ : U → U .
We assume |I| > r (otherwise, the assertion is trivial). For u ∈ U , we have (cf.
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[5, Lemma 5.5])

⌊u⌋ −
∑

J⊆I : |J|6r

(−1)r−|J|
( |I| − |J | − 1

r − |J |
)
⌊qJ (u)⌋ =

=
∑
J⊆I

( ∑
M⊆I :M⊇J, |M |>r

(−1)|M |−|J|)⌊qJ (u)⌋ =
=

∑
M⊆I : |M |>r

( ∑
J⊆M

(−1)|M |−|J|⌊qJ (u)⌋
)
=

=
∑

M⊆I : |M |>r

∏
i∈M

(⌊q{i}(u)⌋ − 1) ∈ ⌉R⌊U⌋r+1.

It follows that for w ∈ R⌊U⌋ we have

w −
∑

J⊆I : |J|6r

(−1)r−|J|
( |I| − |J | − 1

r − |J |
)
(qJ)R(w) ∈ ⌉R⌊U⌋r+1.

If
w ∈

∩
J⊆I : |J|6r

ker(pJ)R,

then, using that ker(pJ )R = ker(qJ)R, we get w ∈ ⌉R⌊U⌋r+1.

For a simplicial abelian group V , the module C0(V ) = R⌊V0⌋ has the filtra-

tion C
⌉s
0 (V ) = ⌉R⌊V0⌋s, s ∈ N.

7.2. Corollary. Let K be a compact simplicial crew, E be a field, U be a sim-
plicial E-module, and r ∈ N be a number. Consider the R-homomorphism

C0(U
K)

K
Uµr // Hom0(C∗(K

r), C∗(U
r)).

Then kerKUµr ⊆ C
⌉r+1
0 (UK).

Proof. Take an element B ∈ kerKUµr. We show that B ∈ C
⌉r+1
0 (UK).

There is n ∈ N such that the simplicial crew K is generated by a finite
collection of n-simplices: gi ∈ Kn, i ∈ I. We have the E-homomorphism
h : (UK)0 → U I

n, b 7→ (b(gi))i∈I . It is injective. Therefore, there is an E-
homomorphism f : U I

n → (UK)0 such that f ◦ h = id. It suffices to show
that hR(B) ∈ ⌉R⌊U I

n⌋r+1. Indeed, then B = fR(hR(B)) ∈ ⌉R⌊(UK)0⌋r+1 =

C
⌉r+1
0 (UK).
For J ⊆ I, let pJ : U

I
n → UJ

n be the projection. Take J ⊆ I with |J | 6 r.
By Lemma 7.1, it suffices to verify that (pJ)R(hR(B)) = 0.

Choose a function t : J → {1, . . . , r} and a simplex k = (k1, . . . , kr) ∈ Kr
n

such that kt(i) = gi, i ∈ J . We have the E-homomorphism U t
n : U

r
n → UJ

n , the

13



R-homomorphism (U t
n)R : Cn(U

r) = R⌊Ur
n⌋ → R⌊UJ

n ⌋, and the commutative
diagram

R⌊(UK)0⌋
hR //

K
Uµr

��

R⌊U I
n⌋

(pJ )R

��
Hom0(C∗(K

r), C∗(U
r))

v 7→(Ut
n)R(v(⌊k⌋)) // R⌊UJ

n ⌋.

Since K
Uµr(B) = 0, we get (pJ )R(hR(B)) = 0.

§ 8. Simplicial approximation

8.1. Lemma. Let K be a compact simplicial crew, W be a simplicial crew,
and f : |K| → |W | be a map. Then there exist a compact simplicial crew L, an
isotypy e : L → K, and a simplicial archism g : L → W such that f ◦ |e| ∼ |g|.

See [8, Corollary 4.8].

For simplicial crews L and T , the geometrical realization |?| : (TL)0 → |T ||L|

induces an R-homomorphism ∥?∥ : H0(T
L) → H0(|T ||L|).

8.2. Lemma. Let K be a compact simplicial crew, T be a simplicial crew,

and r ∈ N be a number. Then, for any A ∈ ker
|K|
|T |µr, there exist a compact

simplicial crew L, an isotypy e : L → K, and an element B ∈ ker L
Tµr such that

H0(|T ||e|)(|K|
|T |ν(A)) = ∥LT ν(B)∥:

Hom0(C∗(L
r), C∗(T

r)) C0(T
L)

B

L
Tµroo

L
T ν // H0(T

L)

∥?∥
��

H0(|T ||L|)

Hom(C0(|K|r), C0(|T |r)) C0(|T ||K|)

A|K|
|T |µr

oo
|K|
|T |ν // H0(|T ||K|).

H0(|T ||e|)

OO

Proof. We have

A =

m∑
i=1

vi⌊ai⌋,

where m ∈ N, vi ∈ R, and ai ∈ |T ||K|. For x ∈ |K|, define an equivalence
(relation) c(x) on the set I = {1, . . . ,m}: c(x) = { (i, j) : ai(x) = aj(x) }. Put
E = { c(x) : x ∈ |K| }.

We call an equivalence on I neutral if∑
i∈J

vi = 0

14



for all its classes J ⊆ I. We show that for any h1, . . . , hr ∈ E the equivalence
h = h1 ∩ . . .∩hr is neutral. For each s = 1, . . . , r, there is a point xs ∈ |K| such
that hs = c(xs). Put x = (x1, . . . , xr) ∈ |K|r. In C0(|T |r), we have∑

i∈I

vi⌊ari (x)⌋ =
|K|
|T |µr(A) = 0.

It follows that h is neutral because

ari (x) = arj(x) ⇐⇒ (i, j) ∈ h

for i, j ∈ I.
For each equivalence h on I, there is the corresponding simplicial subcrew

V (h) ⊆ Tm (the diagonal):

V (h)q = { (t1, . . . , tm) ∈ Tm
q : ti = tj for all (i, j) ∈ h }.

Put
W =

∪
h∈E

V (h) ⊆ Tm.

We have the maps a = (a1, . . . , am) : |K| → |T |m and ã = d−1 ◦ a : |K| →
|Tm|, where d : |Tm| → |T |m is the canonical bijective map. For x ∈ |K|, we
have ã(x) ∈ |V (c(x))|. Therefore im ã ⊆ |W |. Using Lemma 8.1, we find a
compact simplicial crew L, an isotypy e : L → K, and a simplicial archism
b = (b1, . . . , bm) : L → Tm such that im b ⊆ W and ã ◦ |e| ∼ |b|. Put

B =

m∑
i=1

vi⌊bi⌋.

We have ai ◦ |e| ∼ |bi|. Therefore H0(|T ||e|)(|K|
|T |ν(A)) = ∥LT ν(B)∥. We show that

K
Tµr(B) = 0. For k = (k1, . . . , kr) ∈ Kr

q (q ∈ N), we have

K
Tµr(B)(⌊k⌋) =

m∑
i=1

vi⌊bri (k)⌋.

Take s = 1, . . . , r. Since im b ⊆ W , there is hs ∈ E such that b(ks) ∈ V (hs).
Therefore, the function i 7→ bi(ks) is subordinate to (i. e. constant on the classes
of) the equivalence hs. Since b

r
i (k) = (bi(k1), . . . , bi(kr)), the function i 7→ bri (k)

is subordinate to the equivalence h = h1 ∩ . . . ∩ hr. Since h is neutral, we get
K
Tµr(B)(⌊k⌋) = 0.

§ 9. The inclusion kerX
Y µr ⊆ kerX

Y ν for large r

9.1. Lemma. Let X, Y , X̃, and Ỹ be spaces. Suppose that X ≃ X̃ and Y ≃ Ỹ .
Then, for any r ∈ N, we have

kerXY µr ⊆ kerXY ν ⇐⇒ ker X̃
Ỹ
µr ⊆ ker X̃

Ỹ
ν.
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Proof. There are homotopy euivalences k : X → X̃ and h : Ỹ → Y . We have
the commutative diagram of R-modules and R-homomorphisms:

Hom(C0(X̃
r), C0(Ỹ

r))

��

C0(Ỹ
X̃)

X̃
Ỹ
µroo

X̃
Ỹ
ν

//

C0(h
k)

��

H0(Ỹ
X̃)

H0(h
k)

��
Hom(C0(X

r), C0(Y
r)) C0(Y

X)
X
Y µroo

X
Y ν // H0(Y

X),

where the vertical arrows are induced by k and h. Since H0(h
k) is an isomor-

phism, we get the implication ⇒. The implication ⇐ is analogous.

Let p be a prime. Assume R = Zp.

9.2. Let X be a compact CW-complex and Y be a connected CW-complex of
finite height with p-finite homotopy groups. Then, for any sufficiently large
r ∈ N, we have kerXY µr ⊆ kerXY ν in the diagram

Hom(C0(X
r), C0(Y

r)) C0(Y
X)

X
Y µroo

X
Y ν // H0(Y

X).

Proof. By Lemma 6.1, for some s ∈ N, there are a gradual simplicial crew T
with |T | ≃ Y , a gradual simplicial Zp-module U , and an s-harmonic cofibration
d : T → U . We have X ≃ |K| for some compact simplicial crew K. Obviously,

(UK)0 is a finite Zp-module. By Lemma 3.1, C
⌉t+1
0 (UK) = 0 for some t ∈ N.

Take r > st. We show that ker
|K|
|T |µr ⊆ ker

|K|
|T |ν in the diagram

Hom(C0(|K|r), C0(|T |r)) C0(|T ||K|)

|K|
|T |µr

oo
|K|
|T |ν // H0(|T ||K|).

This will suffice by Lemma 9.1.

Take an element A ∈ ker
|K|
|T |µr. We show that A ∈ ker

|K|
|T |ν. By Lemma 8.2,

there are a compact simplicial crew L, an isotypy e : L → K, and an element

B ∈ ker L
Tµr such that H0(|T ||e|)(|K|

|T |ν(A)) = ∥LT ν(B)∥. Since |e| is a homotopy

equivalence, H0(|T ||e|) is an isomorphism. Therefore it suffices to show that
L
T ν(B) = 0.

Let a simplicial crew M be the (reduced) cylinder of e. We have the homo-
topy commutative diagram

K

i   B
BB

BB
BB

B L
eoo

j~~}}
}}
}}
}}

M,

where i and j are the canonical cofibrations. By the definition of a cylinder, i
is an isotypy. Since e is an isotypy, j is an isotypy too. Since d is s-harmonic,
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there is the commutative diagram

TL

id

**
x

//

dL

��

TM

T j

//

dM

��

TL

UL y //______ UM ,

where x is a simplicial archism and y is an s-gentle quasi-simplicial archism. We
have the commutative diagram of Zp-homomorphisms:

Hom0(C∗(L
r), C∗(T

r))

��

C0(T
L)

B
L
Tµroo C0(x) //

C0(d
L)

��

C0(T
M )

B1
C0(T

i) //

C0(d
M )

��

C0(T
K)

B2

C0(d
K)

��
Hom0(C∗(L

r), C∗(U
r)) C0(U

L)

B′

L
Uµroo C0(y) // C0(U

M )
B′

1

C0(U
i)// C0(U

K),
B′

2

where the vertical arrows are induced by the cofibration d; B1, . . . , B
′
2 are

the images of B in the corresponding modules. Since L
Tµr(B) = 0, we have

L
Uµr(B

′) = 0. By Corollary 7.2, B′ ∈ C
⌉r+1
0 (UL). Since r > st and the archism

y0 is s-gentle, we have, by Corollary 3.4, B′
1 ∈ C

⌉t+1
0 (UM ). Since (U i)0 is a

homomorphism, B′
2 ∈ C

⌉t+1
0 (UK). We have C

⌉t+1
0 (UK) = 0. It follows that

B′
2 = 0. Since d is a cofibration, C0(d

K) is injective. Therefore B2 = 0.
We have the commutative diagram of Zp-homomorphisms

C0(T
L)

B

id //

C0(x) %%KK
KK

KK
KK

K
C0(T

L)

B
L
T ν // H0(T

L)

C0(T
M )

B1

M
T ν //

C0(T
j)

99sssssssss

C0(T
i) %%KK
KK

KK
KK

K
H0(T

M )

H0(T
j)

99rrrrrrrrrr

H0(T
i) %%LL

LLL
LLL

LL

C0(T
K)

B2

K
T ν // H0(T

K).

H0(T
e)

OO

Since B2 = 0, we get L
T ν(B) = 0.

Consider the filtration of the complex C∗(Y
X) formed by the kernels of the

Zp-homomorphisms

Cq(Y
X)

iq // C0(Y
∆q

+∧X)

∆q
+∧X

Y µr // Hom(C0((∆
q
+ ∧X)r), C0(Y

r)),

where iq are the obvious isomorphisms. Does this filtration converge?
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§ 10. Deducing Theorem 1.2 from claim 9.2

10.1. Lemma. Let X, Y , X̃, and Ỹ be spaces, k : X → X̃ and h : Ỹ → Y be
maps, V be an abelian group, and f : [X,Y ] → V be an invariant. Consider the
invariant f̃ : [X̃, Ỹ ] → V , ũ 7→ f([h] ◦ ũ ◦ [k]). Then Deg f̃ 6 Deg f .

Proof. Take r ∈ N. The maps k and h induce a homomorphism

t : Hom(C0(X̃
r), C0(Ỹ

r)) → Hom(C0(X
r), C0(Y

r)).

We have t(C0(ã
r)) = C0((h◦ã◦k)r), ã ∈ Ỹ X̃ . Assume that Deg f 6 r. There is a

homomorphism l : Hom(C0(X
r), C0(Y

r)) → V such that f([a]) = l(C0(a
r)) for

all a ∈ Y X . Consider the homomorphism l̃ = l◦ t : Hom(C0(X̃
r), C0(Ỹ

r)) → V .

For ã ∈ Ỹ X̃ we have f̃([ã]) = f([h ◦ ã ◦ k]) = l(C0((h ◦ ã ◦k)r)) = l(t(C0(ã
r))) =

l̃(C0(ã
r)). Therefore Deg f̃ 6 r.

Proof of Theorem 1.2. (1) Case of Y of finite height. It suffices to show that
the “universal” invariant F : [X,Y ] → H0(Y

X ;Zp), u 7→ ⌊u⌋, has finite degree.
For r ∈ N we have the commutative diagram

HomZ(C0(X
r;Z), C0(Y

r;Z))

m′

��

C0(Y
X ;Z)

X
Y µ̃roo

m

��
HomZp(C0(X

r;Zp), C0(Y
r;Zp)) C0(Y

X ;Zp)
X
Y µroo

X
Y ν // H0(Y

X ;Zp),

where m and m′ are the homomorphisms of reduction modulo p; the tilde over
µ in the upper row means “over Z”. By claim 9.2, we have kerXY µr ⊆ kerXY ν for
sufficiently large r. Then there is a Zp-homomorphism t : HomZp(C0(X

r;Zp), C0(Y
r;Zp)) →

H0(Y
X ;Zp) such that t ◦ X

Y µr = X
Y ν. For a ∈ Y X , we have F ([a]) = (XY ν ◦

m)(⌊a⌋) = (t ◦m′ ◦ X
Y µ̃r)(⌊a⌋) = (t ◦m′)(C0(a

r;Z)). Therefore DegF 6 r.
(2) General case. There are a connected CW-complex Ȳ of finite height with

p-finite homotopy groups and a (dimX + 1)-connected map h : Y → Ȳ (Ȳ is
obtained from Y by attaching cells of high dimensions). The induced function
h# : [X,Y ] → [X, Ȳ ] is bijective. Consider the invariant f̄ = f ◦ h−1

# : [X, Ȳ ] →
Zp. By Lemma 10.1, Deg f 6 Deg f̄ . By (1), Deg f̄ < ∞.

§ 11. Deducing Theorem 1.1 from Theorem 1.2

11.1. Lemma [2, Ch. VI, Proposition 8.6]. Let X be a connected compact CW-
complex, Y be a nilpotent connected CW-complex with finitely generated homo-
topy groups, and u1, u2 ∈ [X,Y ] be distinct classes. Then, for some prime p,
there exist a connected CW-complex Ȳ with p-finite homotopy groups and a map
h : Y → Ȳ such that [h] ◦ u1 ̸= [h] ◦ u2 in [X, Ȳ ].

Proof of Theorem 1.1. By Lemma 11.1, for some prime p there are a con-
nected CW-complex Ȳ with p-finite homotopy groups, and a map h : Y → Ȳ
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such that the classes ūi = [h] ◦ ui, i = 1, 2, are distinct. There is an invariant
f̄ : [X, Ȳ ] → Zp such that f̄(ū1) ̸= f̄(ū2). By Theorem 1.2, Deg f̄ < ∞. Con-
sider the invariant f = f̄ ◦ h# : [X,Y ] → Zp. By Lemma 10.1, Deg f < ∞. We
have f(u1) = f̄(ū1) ̸= f̄(ū2) = f(u2).

§ 12. Properties of finite-degree invariants

Put E = {0, 1} ⊆ Z. For e = (e1, . . . , en) ∈ En, put |e| = e1 + . . .+ en.
Cosider a wedge of spaces W = T1 ∨ . . . ∨ Tn. Let inWk : Tk → W be the

inclusions. For e ∈ En, put MW
e = m1∨ . . .∨mn : W → W , where mk : Tk → Tk

is: the identity if ek = 1, and the constant map otherwise.

12.1. Lemma. Let X and Y be spaces, V be an abelian group, f : [X,Y ] → V
be an invariant of degree at most r ∈ N, W = T1 ∨ . . . ∨ Tr+1 be a wedge of
spaces, and k : X → W and h : W → Y be maps. Then∑

e∈Er+1

(−1)|e|f([h ◦MW
e ◦ k]) = 0.

Proof. Consider the invariant f̃ : [W,W ] → V , ũ 7→ f([h] ◦ ũ ◦ [k]). We show
that ∑

e∈Er+1

(−1)|e|f̃([MW
e ]) = 0.

By Lemma 10.1, Deg f̃ 6 r, i. e. there is a homomorphism l : Hom(C0(W
r), C0(W

r)) →
V such that f̃([ã]) = l(C0(ã

r)) for all ã ∈ WW (hereafter, R = Z). Therefore it
suffices to show that ∑

e∈Er+1

(−1)|e|C0((M
W
e )r) = 0.

Take a point w = (w1, . . . , wr) ∈ W r. There is s ∈ {1, . . . , r + 1} such that
{w1, . . . , wr} ∩ Ts ⊆ {basepoint}. The point (MW

e )r(w) ∈ W r does not depend
on the sth component of e. Since C0((M

W
e )r)(⌊w⌋) = ⌊(MW

e )r(w)⌋, it follows
that ∑

e∈Er+1

(−1)|e|C0((M
W
e )r)(⌊w⌋) = 0.

Maps Sn → Y . In this subsection, we use multiplicative notation for homo-
topy groups.

12.2. Lemma. Let n > 1 be a number, Y be a space, V be an abelian group,
and f : πn(Y ) → V be an invariant of degree at most r ∈ N. Then f is r-gentle.

Proof. Take elements u1, . . . , ur+1 ∈ πn(Y ). We show that +f((1−⌊u1⌋) . . . (1−
⌊ur+1⌋)) = 0. Put W = Sn ∨ . . . ∨ Sn (r + 1 summands). Let k : Sn → W be
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a map with [k] = [inW1 ] . . . [inWr+1] in πn(W ), and h : W → Y be a map with

[h ◦ inWs ] = us in πn(Y ). By Lemma 12.1,∑
e∈Er+1

(−1)|e|f([h ◦MW
e ◦ k]) = 0.

This is what we need because [h ◦MW
e ◦ k] = ue1

1 . . . u
er+1

r+1 in πn(Y ).

We denote the Whitehead product by the sign ∗.

12.3. Lemma. Let m,n > 1 be numbers, Y be a space, and f : πm+n−1(Y ) →
V be an invariant of degree at most r ∈ N. Then the function b : πm(Y ) ×
πn(Y ) → V , (u, v) 7→ f(u ∗ v), is r-gentle.

Proof. Assume r > 0 (otherwise, the claim is trivial). Take elements u1, . . . , up ∈
πm(Y ) and v1, . . . , vq ∈ πn(Y ), where p, q > 0 and p+q = r+1. By Lemma 3.10,
it suffices to show that +b((1− ⌊û1⌋) . . . (1− ⌊ûp⌋)(1− ⌊v̂1⌋) . . . (1− ⌊v̂q⌋)) = 0,
where ûs = (us, 1) ∈ πm(Y ) × πn(Y ) and v̂s = (1, vs) ∈ πm(Y ) × πn(Y ).
Put W = Sm ∨ . . . ∨ Sm ∨ Sn ∨ . . . ∨ Sn (p times Sm and q times Sn). Let
k : Sm+n−1 → W be a map with [k] = ([inW1 ] . . . [inWp ]) ∗ ([inWp+1] . . . [in

W
r+1])

in πm+n−1(W ) and h : W → Y be a map with [h ◦ inWs ] = us in πm(Y ) for
s = 1, . . . , p and [h ◦ inWp+t] = vt in πn(Y ) for t = 1, . . . , q. By Lemma 12.1,∑

e∈Er+1

(−1)|e|f([h ◦MW
e ◦ k]) = 0.

This is what we need because [h ◦MW
e ◦ k] = (ue1

1 . . . u
ep
p ) ∗ (vep+1

1 . . . v
er+1
q ) in

πm+n−1(Y ) and, consequently, f([h◦MW
e ◦k]) = b(ue1

1 . . . u
ep
p , v

ep+1

1 . . . v
er+1
q ) =

b(ûe1
1 . . . û

ep
p v̂

ep+1

1 . . . v̂
er+1
q ).

Maps Sn−1 × Sn → Sn
(Q). In this subsection, we prove claims 1.5–1.7 and

use the objects defined in the corresponding subsection of § 1. For u ∈ πp(Y )
and v ∈ πq(Y ), the class (u, v) ∈ [Sp ∨ Sq, Y ] is defined in the obvious way.

Let x : Sn ∨ S2n−1 → Sn × S2n−1 be the canonical embedding of a wedge
in the product. Consider the map (pr2, c) : S

n−1 × Sn → Sn × S2n−1, where
pr2 : S

n−1 × Sn → Sn is the projection and c : Sn−1 × Sn → S2n−1 is the map
defined in § 1. There exists a (unique up to homotopy) map b : Sn−1 × Sn →
Sn∨S2n−1 such that x◦b ∼ (pr2, c). For p, q ∈ Z, we have the homotopy classes

v(p, q) : Sn−1 × Sn
[b] ///o/o/o/o/o/o/o Sn ∨ S2n−1

(pi,qj) ///o/o/o/o/o/o/o Sn

(wavy arrows present homotopy classes) and v̄(p, q) = [l] ◦ v(p, q) ∈ [Sn−1 ×
Sn, Sn

Q]. Obviously, v(0, q) = u(q) and v̄(0, q) = ū(q). We have v(p, q) = v(p, 0)
if p | q (the proof is omitted) and v̄(p, q) = v̄(p, 0) if p ̸= 0 [1, Example 4.6].

Proof of 1.5. Take q ∈ Z. Put W = Sn ∨ . . . ∨ Sn ∨ S2n−1 (r times Sn). Let
d : Sn ∨ S2n−1 → W be a map with [d] = ([inW1 ] + . . . + [inWr ], [inWr+1]). Put
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k = d ◦ b : Sn−1 × Sn → W . Let h : W → Sn be a map with [h] = (i, . . . , i, qj).
By Lemma 12.1, ∑

e∈Er+1

(−1)|e|f([h ◦MW
e ◦ k]) = 0.

Since [h ◦MW
e ◦ k] = v(e1 + . . .+ er, er+1q), we have∑

e′∈Er

(−1)|e
′|
∑
e′′∈E

(−1)e
′′
f(v(|e′|, e′′q)) = 0.

Assume r! | q. If e′ ̸= (0, . . . , 0), the inner sum vanishes because then |e′| | q and,
consequently, the class v(|e′|, e′′q) does not depend on e′′. We get f(v(0, 0)) −
f(v(0, q)) = 0, i. e. f(u(q)) = f(u(0)).

Proof of 1.6. Assume Deg f 6 r ∈ N. Take q ∈ Z. As in the proof of 1.5, we
get ∑

e′∈Er

(−1)|e
′|
∑
e′′∈E

(−1)e
′′
f(v̄(|e′|, e′′q)) = 0.

If e′ ̸= (0, . . . , 0), the class v̄(|e′|, e′′q) does not depend on e′′. As in the proof
of 1.5, we get f(ū(q)) = f(ū(0)).

Proof of 1.7. Assume Deg f 6 r ∈ N. Consider the invariant f̃ : π2n−1(S
n) →

Q, ũ 7→ f(ũ ◦ [c]). By Lemma 10.1, Deg f̃ 6 r. By Lemma 12.2, f̃ is gen-
tle. Consider the function F : Z → Q, q 7→ f(u(q)). We have F (q) = f̃(qj).
Therefore F is gentle, i. e., by Lemma 3.11, is given by a polynomial. By 1.5,
F (q) = F (0) if r! | q. It follows that F is constant.

References

[1] M. Arkowitz, G. Lupton, On finiteness of subgroups of self-homotopy equiv-
alences, Contemp. Math. 181 (1995), 1–25.

[2] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localiza-
tions, Lect. Notes Math. 304, Springer-Verlag, 1972.

[3] A. Douady, Les complexes d’Eilenberg–MacLane, Séminaire H. Cartan 11
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