On homotopy invariants of finite degree

S. S. Podkorytov

Abstract

We prove that homotopy invariants of finite degree distinguish homotopy
classes of maps of a connected compact CW-complex to a nilpotent con-
nected CW-complex with finitely generated homotopy groups.

§ 1. Introduction

N = {0,1,...}. Space means “pointed topological space”. CW-complexes are
also pointed (the basepoint being a vertex). Map means “basepoint preserving
continuous map”. Homotopies, the notation [X,Y], etc. are to be understood
in the pointed sense.

Invariants of finite degree. Let X and Y be spaces, V' be an abelian group,
and f: [X,Y] — V be a function (a homotopy invariant). Let us define a number
Deg f € N U {oo}, the degree of f. Given a map a: X — Y and a number
r € N, we have the map a": X" — Y (the Cartesian power), which induces the
homomorphism Cy(a”): Co(X") — Co(Y") between the groups of (unreduced)
zero-dimensional chains with the coefficients in Z. Let the inequality Deg f < r
be equivalent to the existence of a homomorphism : Hom(Co(X"),Co(Y™)) —
V such that f([a]) = I(Co(a”)) for all maps a: X — Y. As one easily sees,
Deg f is well defined by this condition. Finite-degree invariants are those of
finite degree.

Main results.

1.1. Theorem. Let X be a connected compact CW-complex, Y be a nilpotent
connected CW-complex with finitely generated homotopy groups, and uy,us €
[X,Y] be distinct classes. Then, for some prime p, there exists a finite-degree
invariant f: [X,Y] — Z, such that f(u1) # f(us2).

Related facts were known for certain cases where [X, Y] is an abelian group
[10, 11]. Theorem 1.1 follows (see § 11) from a result of Bousfield-Kan and
Theorem 1.2.

We call a group p-finite (for a prime p) if it is finite and its order is a power
of p.

1.2. Theorem. Let p be a prime, X be a compact CW-complex, and Y be a
connected CW-complex with p-finite homotopy groups. Then every invariant
[ X, Y] = Z, has finite degree.



Probably, Theorem 1.2 can be deduced from Shipley’s convergence theorem
[12], which we do not use. We use an (approximate) simplicial model of Y that
admits a harmonic (see § 6) embedding in a simplicial Z,-module.

Non-nilpotent examples. The following examples show the importance of
the nilpotency assumption in Theorem 1.1. We consider finite-degree invariants
on m,(Y) =[S",Y].

1.3. Let Y be a space with m (Y') perfect. Then, for any abelian group V', any
finite-degree invariant f: m(Y) — V is constant.

This follows from Lemmas 12.2 and 3.6. O

1.4. Take n > 1. Let Y be a space such that m,(Y) = Z* and an element
g € m(Y) induces an order 6 automorphism on m,(Y). Then, for any abelian
group V', any finite-degree invariant f: m,(Y) — V is constant.

This follows from Lemmas 12.2 and 12.3 and claim 3.7. O

An example: maps S"1 x S™ — S{q) (cf. [1, Example 4.6]). Take an
even n > 0. Let c: S"7! x " — S$2"~! be a map of degree 1. Put i =
[id] € m,(S™), j = i*i € map_1(S™) (the Whitehead square), and u(q) =
(qj)olc] € [S"t x 85m,8"], g € Z. Let I: S™ — Sg be the rationalization. Put
u(q) = [Jou(q) € [S"~! x.S™, Sg]. The classes u(q), ¢ € Z, are pairwise distinct;
moreover, the classes u(q), ¢ € Z, are pairwise distinct (the proof is omitted).

Is it true that, under the assumptions of Theorem 1.1, there must exist an
r € N such that the elements of [X, Y] are distinguished by invariants of degree
at most 7?7 No, as the following claim shows.

1.5. Let V be an abelian group and f: [S"~1 x S, S™] — V be an invariant of
degree at most v € N. Then f(u(q)) = f(u(0)) whenever r!|q.

The following claim shows the importance of the assumption of Theorem 1.1
that Y has finitely generated homotopy groups.

1.6. Let V be an abelian group and f: [S"~1 x 8", Sgl — V' be an invariant of
finite degree. Then f(u(q)) = f(u(0)), ¢ € Z.

The following claim shows that, under the assumptions of Theorem 1.1,
finite-degree invariants taking values in Q may not distinguish rationally distinct
homotopy classes.

1.7. Let f: [S"1xS5", S"] — Q be an invariant of finite degree. Then f(u(q)) =
f(u(0)), ¢ € Z.

Elusive elements of Ho(Y X). The space of maps X — Y is denoted YX. An
invariant f: [X,Y] — V gives rise to the homomorphism T f: Hy(YX) = V,
|u] — f(u) (here |u| denotes the basic element corresponding to wu). Is it
true that, under the assumptions of Theorem 1.1, for any non-zero element w €
Ho(YX) there exist an abelian group V' and a finite-degree invariant f: [X,Y] —
V such that T f(w) # 0? No, as the following claim shows.



1.8. Taken > 1. LetY be a space and uy,us € m,(Y) be elements of coprime
finite orders. Put w = |uj +ua| — |u1] — |u2| + |0]. Let V be an abelian group
and f: 7, (Y) = V be an invariant of finite degree. Then * f(w) = 0.

This follows from Lemmas 12.2 and 3.8. O

If the group 7,(Y) is torsion and divisible, then the same is true for any
elements uy, us € 7, (Y") (this follows from Lemmas 12.2 and 3.9). In this case,
7, (Y) cannot be finitely generated (without being zero). In return, Y can be
p-local, e. g. Y = K(P,n) (the Eilenberg-MacLane space) for P = Z[1/p]/Z.

§ 2. Preliminaries

We say crew for “pointed set” and archism for “basepoint preserving function”.
We use the standard model structure on the category of simplicial crews (and
archisms) [7, Corollary 3.6.6]. The words fibration, cofibration, etc. refer to it. A
fibring simplicial archism is a fibration. An isotypical simplicial archism, or an
isotypy, is a weak equivalence. Isotypic simplicial crews are weakly equivalent
ones.

An abelian group is a crew (the basepoint being 0); a simplicial abelian
group is a simplicial crew.

We call a simplicial crew T compact if it is generated by a finite number of
simplices, and gradual if the crews Ty, ¢ € N, are finite.

For simplicial crews K and T, we have a simplicial crew TX, the function
object (denoted hom, (K, T) in [2, Ch. VIII, 4.8]). A simplicial archism f: K —
L induces a simplicial archism T : T* — TX etc. We use this notation in the
topological case as well.

The sign ~ denotes the homotopy relation; the sign ~ denotes the homotopy
equivalence of spaces.

Main homomorphisms. By default, chains and homology have coefficients
in a commutative ring R; Hom = Homg. (In § 1, we had R = Z implicitly.)
For spaces X and Y, define R-homomorphisms

Yhr: Co(Y™) = Hom(Co(X"),Co(Y")),  la] = Co(a),
r € N. We have the projection R-homomorphism
yv: Co(Y™) = Ho(YY).
For simplicial crews K and T', define R-homomorphisms
T Co(T™) = Homg(Cu(K"),Cu(T7)),  [b] = CL(b7),

r € N. Here |b] is the basic chain corresponding to a simplex b € (TX),

i. e. a simplicial archism b: K — T; b": K" — T" is the Cartesian power;

Cy(b): Co(K") — C(T7) is the induced R-homomorphism of graded R-modules
of chains; Hom denotes the R-module of grading-preserving R-homomorphisms.

We have the projection R-homomorphism

I%I/I C()(TK) — H()(TK)



8§ 3. Group algebras and gentle functions

Let R|G] denote the group R-algebra of a group G. An element g € G has the
corresponding basic element |g| € R|G|. The augmentation ideal |R|G| C
R|G] is the kernel of the R-homomorphism R|G| — R, |g] — 1. The ideal
TRIG]® (s > 0) is R-generated by elements of the form (1— |g1])...(1— [gs])-

Let V be an abelian group. A function f: G — V gives rise to the homo-
morphism ' f: Z|G| — V, |g]| — f(g). We call f r-gentle if T f|1Z|G]"+* =0,
and gentle (or polynomial) if it is r-gentle for some r € N [9, Ch. V].

Let p be a prime.

3.1. Lemma. LetU be a finite Z,-module of dimension m. ThenZ,|U |®P~m+1 =
0. O

3.2. Corollary. LetU andV be Z,-modules. If U is finite, then every function
f:U =V is gentle. O

3.3. Lemma [4, Proposition 1.2]. Let U, V, and W be abelian groups, f: U —
V' be an r-gentle function, and g: V. — W be an s-gentle one (r,s € N). Then
the function go f: U — W is rs-gentle.

This follows from [9, Ch. V, Theorem 2.1]. O

A function f: U — V between abelian groups induces the R-homomorphism
frR:RIUJ = RIV], [u] = [f(u)].

3.4. Corollary. Let U and V be abelian groups and f: U — V be an r-gentle
(r € N) function. Then, for any s € N, the R-homomorphism fr maps the
ideal |R|U|™** to the ideal TR|V |5 +1. O

3.5. Lemma. Let I be a set. For each i € I, let U; and V; be abelian groups
and f;: U; = V; be an r-gentle (r € N) function. The the function

H fi H Ui — H Vi
i€l i€l i€l
is r-gentle. O

The following claims are used only in discussion of the examples of § 1, not
in the proof of the main results.

3.6. Lemma. Let G be a perfect group and V' be an abelian group. Then any
gentle function f: G — V is constant.

This follows from [9, Ch. III, Corollary 1.3]. O

3.7. Let U be an abelian group isomorphic to Z%, J: U — U be an automor-
phism of order 6, V' be an abelian group, and f: U — V be a gentle function.
Suppose that the function Zx U — V, (t,u) — f(J'u —u), is gentle. Then f is
constant.



The proof is omitted. O

3.8. Lemma. Let U and V be abelian groups, f: U — V be a gentle function,
and uy,us € U be elements of coprime finite orders. Then f(uy +u2) — f(ug) —

f(uz2) + f(0) =0. O

3.9. Lemma. Let U be a divisible torsion abelian group, and V be an abelian
group. Then every gentle function f: U — V is I-gentle. O

3.10. Lemma. Let G and H be groups. Then the ideal |R|G x H|® (s > 1) is
R-generated by elements of the form (1 —|a1])... (1= |as—q])(1—[b1])... (1 —
|bg]), where 0 < q¢<s,a € GXx1CGxH, andb, €1 xHCGxH. O

3.11. Lemma. A function F': Z — Q is r-gentle (r € N) if and only if it is
given by a polynomial of degree at most r. [
§ 4. Keys of a commutative square

Let F be a commutative ring. Consider the diagram of simplicial E-modules
and F-homomorphisms

where the square is commutative: f' o g’ = f” o g”’. We call the quadruple
(s',8",t',t") a key of this square if we have (—s',s"”) o (—f', ") + (¢',¢") o
(t',t") = id in the diagram

(73 7s//) (t,7tll)
The pair (¢/,¢"”) is called a half-key in this case.

4.1. Lemma. Let
t/
/”"N\
v’ W

g/
\Lf/ g//l} g

f/

U%Vﬂ

be a commutative square of simplicial E-modules and E-homomorphisms with a
half-key, T be a simplicial crew, and k': T — V' and k" : T — V" be simplicial



archisms such that f' ok’ = f"” o k”. Consider the simplicial archism | =
okl +t"ok": T —W. Then g’ ol =k and g" ol =k".

O

By a sector of a simplicial E-homomorphism /: W — W we mean a simpli-
cial E-homomorphism s: W — W such that h o s = id.

4.2. Lemma. Consider a commutative diagram of simplicial E-modules and

E-homomorphisms
U v w
kb
U \% W

Suppose that its rows are split exact and h has a sector. Then the left-hand
square has a key.

0

p q

0 0.

Proof. Let (k,1) and (k,I) (see the diagram below) be splittings:
pok =id, logq=1id, kop+qgol=id,
pok=id, logG=id, kop+gol=id,
and s be a sector: hos=id. Put r = osoland k=k+ro (ko f—gok).
Then (0,k,k,r) is a key.

k
0 e N B 0
wa ' l A hl"s
P / q /
0 U 1% w 0
\___/ \_'__/
k l

O

4.3. Lemma. Let L and M be simplicial crews, j: L — M be an isotypical
cofibration, and Q be a fibrant simplicial crew. Then Q7: QM — QT is an
isotypical fibration. O



4.4. Lemma. Let Q and R be simplicial crews, c: Q — R be a fibration, and
N be a simplicial crew isotypic to a point. Then ¢ : QN — RN is an isotypical
fibration. O

4.5. Lemma. Suppose that E is a field. Let V and W be simplicial E-modules
and f: W — V be an isotypical fibring simplicial E-homomorphism. Then f
has a sector. O

4.6. Lemma. Suppose that E is a field. Let L and M be simplicial crews,
j: L = M be an isotypical cofibration, Q@ and R be simplicial E-modules, and
c: @ — R be a fibring simplicial E-homomorphism. Then the commutative
square

Q¥ qu

P —

has a key.
Proof. Consider the (strictly) cofibration sequence

L J M k N.

Since j is isotypical, the simplicial crew N is isotypic to a point. We have the
following diagram of simplicial F-modules and E-homomorphisms:

Q7 Q*

0 Q* QM QN 0
ch icl\l lCN
0 Rl % pu_ R pN 0.

We show that the rows are split exact. Consider the upper row. Obviously, it is
exact in the middle and the right-hand terms. @ is fibrant since it is a simplicial
abelian group. By Lemma 4.3, 7 is an isotypical fibration. By Lemma 4.5, Q7
has a sector. Therefore, the upper row is split exact. The same is true for the
lower row. By Lemma 4.4, ¢V is an isotypical fibration. By Lemma 4.5, ¢V has
a sector. By Lemma 4.2, the desired key exists. O

8 5. Quasi-simplicial archisms

A quasi-simplicial archism f: K --» L between simplicial crews K and L is a
sequence of archisms f,: K, — L4, ¢ € N. Let §Ar(K, L) denote the crew of
quasi-simplicial archisms and sAr(K, L) denote the subcrew of simplicial ones.

A quasi-simplicial archism f: U --+ V between simplicial abelian groups is
r-gentle if the archisms f,: U, — V, are r-gentle.



Let T be a simplicial crew. For m,q € N, let [m|q] be the set of non-strictly
increasing functions [m] — [g] (where [¢] = {0, ..., q}) and consider the archism

We call T' m-soluble if, for any g, the archism T(m, q) is injective.
Let p be a prime.

5.1. Lemma. Let T be a gradual simplicial crew, U be a gradual simplicial
Z,-module, R be an m-soluble (m € N) simplicial Z,-module, d: T — U be a
cofibration, and k: T — R be a simplicial archism. Then, for some r € N, there
exists an r-gentle quasi-simplicial archism w: U --+ R such that wod = k.

d T k

- —7

w

U

Proof. Since d,,: T,, — U, is injective, there exists an archism v: U,, — R,,
such that v o d,, = k;,. By Corollary 3.2, v is r-gentle for some r € N. Take
q € N. We have the commutative diagram

d k
U, : T, 2 R,
U("%Q)i iT(WMZ) iR(m,q)
glmid i B pimla),
plmlal

By Lemma 3.5, the archism v[™4 is r-gentle. Since the Z,-homomorphism

R(m, q) is injective, there exists a Z,-homomorphism f: RanM — R, such that
foR(m,q) =id. Consider the r-gentle archism

m|q]

U(m,q) ylmld ol Rlmld U

U)q : Uq —_— > Rq.
Using the diagram, we get wy o d, = kq. O

5.2. Lemma. Let M be a simplicial crew, U and V be simplicial abeliam
groups, and t: U --» V be an r-gentle (r € N) quasi-simplicial archism. Then
the archism ty: SAr(M,U) — SAr(M,V), f—to f, is r-gentle.

Proof. This follows from Lemma 3.5 because of the commutative diagram

ty

SAr(M,U) SAr(M,V)
geN,keM
gEN, l~ceMX g€EN, keMX
where M = M, \ {basepoint}. O



5.3. Lemma. Let M and T be simplicial crews, U and R be simplicial Z,,-
modules, d: T — U and k: T — R be simplicial archisms, andw: U --+ R be an
r-gentle (r € N) quasi-simplicial archism such that wod = k. Then there exists

an r-gentle quasi-simplicial archism z: UM —-s RM such that z o d™ = kM.
M T v kT pM
-~ - _ - i I _ -7
Proof. Take ¢ € N. We have the commutative diagram
(dM), (kM)
] |
SAT(AY A M, U) o SAr(AY A M, R),

where the Z,-homomorphism i: (UM), = sAr(A% A M,U) — sAr(A%L A M,U)
is the inclusion and j is analogous. By Lemma 5.2, the archism wy is r-gentle.
There is a Z,-homomorphism f: 3Ar(AY AM, R) — (RM), such that foj = id.
Consider the r-gentle archism

2yt (UM)y — SAX(AL A M,U) —%=5Ar(A% A M, R) —L= (RM),.
Using the diagram, we get 2z, o (d™), = (kM),. O

§ 6. Harmonic cofibrations

Let T be a simplicial crew and U be a simplicial abelian group. A cofibration
d: T — U is called r-harmonic (r € N) if, for any compact simplicial crews L
and M and any isotypical cofibration j: L — M, there exist a simplicial archism
x: TP — TM and an r-gentle quasi-simplicial archism y: UY --» UM such that
dMox =yodl and T7 oz = id.

x

7L T ™

TI
dL \L ldlw

vt Y% _pM
-~ _ _ _ =7
Y
A cofibration is harmonic if it is r-harmonic for some r» € N.
By the height of a 0-connected space Y we mean the supremum of those

g € N for which 74(Y) # 1 (the supremum of the empty set is 0).

6.1. Lemma. Let p be a prime and Y be a connected CW-complex of finite
height with p-finite homotopy groups. Then there exist a gradual simplicial crew
T with |T| ~Y, a gradual simplicial Z,,-module U, and a harmonic cofibration
d: T—U.



Proof. (Induction along the Postnikov decomposition of Y with fibres of the
form K(Z,,q).) Let n be the height of Y. If n = 0, then Y is contractible,
we put T = U = 0 and that is all. Otherwise, choose an order p element
e € m,(Y) fixed by the canonical action of 71 (Y"). Its existence follows from
the well-known congruence |Fixg X| = |X| (mod p) for an action of a p-finite
group G on a finite set X (cf. the remark in [2, Ch. II, Example 5.2(iv)]). We
attach cells to Y to get a map Y — Y inducing isomorphisms on Tqy ¢ # N,
and an epimorphism with the kernel generated by e on m,. The space Y is
homotopy equivalent to the homotopy fibre of some map Y — K(Z,,n + 1) [6,
Lemma 4.70].

We assume (as an induction hypothesis) that there are gradual simplicial
crew T with |T'| ~ Y, gradual simplicial Z,-module U, and r-harmonic (r > 1)
cofibration d: T — U.

Let R be a gradual (n+1)-soluble simplicial Z,-module with |R| ~ KC(Z,,, n+
1), @ be a gradual simplicial Z,-module isotypic to a point, and ¢: @ — R be
a fibring simplicial Z,-homomorphism (see [3]). There is a Cartesian square of
simplicial crews and archisms

T h Q
f l
T k R,

where |T| ~ Y. Put U = U x Q. Let Z,-homomorphisms a: U — U and
b: U — @ be the projections. Let d: T'— U be the simplicial archism given by
the conditions aod = do f and bod = h. Obviously, d is a cofibration.

By Lemma 5.1, for some s > 1 there is an s-gentle quasi-simplicial archism
w: U --» R such that wod = k.

We show that d is rs-harmonic. Take compact simplicial crews L and M and
an isotypical cofibration j: L — M. We need a simplicial archism z: T* — TM
and an rs-gentle quasi-simplicial archism y: UY --» UM such that dM oz =
yodl and T7 o x = id. Since d is r-harmonic, there are a simplicial archism
z: Tt — TM and an r-gentle quasi-simplicial archism g: U% --» UM such that
dM oz =god" and T7 o T = id.

We have the commutative square of simplicial Z,-modules and Z,-homomorphisms
with a half-key

W
Qr Q QM

QJ
CL i CJVI \L E) t//
R? /
RE RM

(the half-key exists by Lemma 4.6). We have the simplicial archism

u=toht +t" okMozo fl. Tt 5 QM.

10



We have ¢l ohl =kl o fl =kl oT7 oz o fl' = R 0o kM oz o fL'. Therefore,
by Lemma 4.1, Q7 ou = h™ and ¢™ ou = kM oz o fF.
Define the desired = by the conditions fM o2z = Z o f¥ and hM oz = u:

M
T™ h QM
N
™ TL M
zc;V

M kM RM

This is possible because the square is Cartesian and the conditions are com-
patible: kM oz o fX = ¢™ ou. We have 77 o 2 = id because fX o T/ ox =
TiofMogx=TioZzofl=flandhloTiox=Q  chMox = Q7 ou = h.

By Lemma 5.3, there is an s-gentle quasi-simplicial archism z: UM --» RM
such that z o d™ = kM. We have the quasi-simplicial archism

v=tobt +t"ozogoal: UL --» QM.

By Lemma 3.3, it is rs-gentle.

Define the desired y by the conditions a™ oy = g o a” and bM oy = v:
N NY v 7
N 7/
N 7/
aM UL
goa® -
Ve
~
oM

This is possible because (a™,b™): UM — UM x QM is an isomorphism. Ob-
viously, y is rs-gentle. We have d™ oz = y o d because a™ o dM oz =
dMo fMog =dMozofl =godlofl =goalodl = a™oyodl and
bModMox = WMox =u =t ohP +t"okMozofl =t ohl +t"ozod™ozo fl =
t'ohl +t"ozogod o ff =t oblodt +t"ozogoar odl =vod? = bMoyodl.

11



(The straight arrows of this diagram form a commutative subdiagram.) O

§ 7. Two filtrations of the module Cy(U¥)

7.1. Lemma. Let U;, i € I, be a finite collection of abelian groups. Put

u,=Qu., JcI,
icJ

and U =Uj. Let py: U — Uy be the projections. Then for any r € N

() ker(ps)r CIR[UJ™.
JCI:|J|<r

in the R-algebra R|U].

Proof. Let s;: Uy — U be the canonical embeddings. Put gy = sjopy;: U — U.
We assume |I| > r (otherwise, the assertion is trivial). For u € U, we have (cf.

12



[5, Lemma 5.5))

W= > (M ) -

JCI:|J|<r

=3 (X M) =

JCI MCI:MDJ,|M|>r

= Y (X DM g ) -

MCI:|M|>r JCM

= Y J]Uew]-1) eRUJ.

MCI:|M|>ri€M

It follows that for w € R|U| we have

we S (M arw) e Rl

JCI:|J|<r

If

we (] ker(ps)z,
JCI:|J|<r

then, using that ker(p;)r = ker(q;)r, we get w € TR|U| L. O

For a simplicial abelian group V, the module Cy(V) = R|Vp| has the filtra-
tion CJ*(V) = JR|Vo)*, s € N.

7.2. Corollary. Let K be a compact simplicial crew, E be a field, U be a sim-
plicial E-module, and r € N be a number. Consider the R-homomorphism

Co(UX) —— Homo(C.(K"), C.(U)).
Then ker £, € O (UK).

Proof. Take an element B € ker £ p,.. We show that B € C&HI(UK).

There is n € N such that the simplicial crew K is generated by a finite
collection of n-simplices: ¢g; € K,, ¢ € I. We have the EF-homomorphism
h: (UX)y — UL b~ (b(gi))ier- It is injective. Therefore, there is an E-
homomorphism f: UL — (UX)y such that foh = id. It suffices to show
that hr(B) € TR|UL|™!. Indeed, then B = fr(hg(B)) € TR|(UK)o|" ! =
cyHHuE).

For J C I, let p;: UL — U/ be the projection. Take J C I with |J| < 7.
By Lemma 7.1, it suffices to verify that (p;)z(hgr(B)) = 0.

Choose a function ¢: J — {1,...,7} and a simplex k = (k1,...,k,) € K],
such that ky;) = g;, + € J. We have the E-homomorphism Ut:Ur — U/, the

13



R-homomorphism (Ul)r: C,(U") = R|U"| — R|U,;|, and the commutative
diagram

hr

RL(U")o] R(Uy)
fgwl J/(pmz
Homo(C.(K™), Cu(U7)) 2 H=0WD) _ o sy
Since ¥ u.(B) = 0, we get (ps)r(hr(B)) = 0. O

§ 8. Simplicial approximation

8.1. Lemma. Let K be a compact simplicial crew, W be a simplicial crew,
and f: |K| — |W| be a map. Then there exist a compact simplicial crew L, an
isotypy e: L — K, and a simplicial archism g: L — W such that f o|e| ~ |g|.

See [8, Corollary 4.8]. O

For simplicial crews L and T, the geometrical realization |?|: (T*)o — |T|I*!
induces an R-homomorphism ||?||: Ho(T*) — Ho(|T|'*1).

8.2. Lemma. Let K be a compact simplicial crew, T be a simplicial crew,
and r € N be a number. Then, for any A € ker ‘II;I““ there exist a compact
simplicial crew L, an isotypy e: L — K, and an element B € ker %ur such that

Hy(IT|N)(Hv(A)) = |5v(B)]:

T
%lir %‘V
Homo(C\ (L"), C, (T7)) Co(TT) Ho(T")
B
J{II?I
Ho(|T[1*)
THo(ITe')
K| A IK|

v
[T|

Hom(Coy (|K|"), Co(|T|")) = Co(|T|1K1) — s Ho(|T|I51).

Proof. We have
A = Z (O Lazj s
i=1

where m € N, v; € R, and a; € |T|/¥l. For z € |K|, define an equivalence
(relation) c(x) on the set I = {1,...,m}: c(z) = {(4,7) : ai(z) = a;(z) }. Put
E={c(z):z€|K|}.

We call an equivalence on I neutral if

Zm:O

ieJ

14



for all its classes J C I. We show that for any hq,...,h, € E the equivalence
h = hiN...Nh, is neutral. For each s = 1,...,r, there is a point z; € | K| such
that hs = c(xs). Put © = (z1,...,2,) € |K|". In Co(|T|"), we have

r K
> wilaj(@)] = ue(4) = 0.
iel
It follows that h is neutral because

aj(x) = aj(x) <= (i,5) € h

fori,5 € I.
For each equivalence h on I, there is the corresponding simplicial subcrew
V(h) CT™ (the diagonal):

V(h)q:{(tl,...,tm) GT[;nZti:tj for all (Z,]) Gh}

Put
w=JVvmcrm
heE
We have the maps a = (a1,...,an): |K| = |T|™ and @ = d"'oa: |K| —

|T™|, where d: |T™| — |T|™ is the canonical bijective map. For z € |K]|, we
have a(xz) € |V(c(x))|. Therefore ima C |[W|. Using Lemma 8.1, we find a
compact simplicial crew L, an isotypy e: L — K, and a simplicial archism
b= (b1,...,bm): L — T™ such that imb C W and ao |e|] ~ |b]. Put

B = i (% |_le .
i=1

We have a;ole| ~ |b;|. Therefore Ho(|T[1¥l)(\7|(4)) = [|£v(B)||. We show that
Spr(B) =0. For k = (ki1,...,k;) € K} (q € N), we have

Kar(B) (k) = Y vilbr ().

Take s = 1,...,r. Since imb C W, there is hy € E such that b(ks) € V(hs).
Therefore, the function i — b;(ks) is subordinate to (i. e. constant on the classes
of) the equivalence hs. Since b} (k) = (b;j(k1),...,bi(k)), the function ¢ — bl (k)
is subordinate to the equivalence h = hy N ... N h,. Since h is neutral, we get
T (B)([k]) = 0. =

§ 9. The inclusion ker igur C ker )151/ for large r

9.1. Lemma. Let X,Y, X, and Y be spaces. Suppose that X ~ X andY ~Y.
Then, for any r € N, we have

ker‘igﬂr - keri(/y <= ker‘éﬂr - keréy.

15



Proof. There are homotopy euivalences k: X — X and h: Y — Y. We have
the commutative diagram of R-modules and R-homomorphisms:

Hom(Co(X7), Co (V7)) vhr

l Co(h*) Ho(h*)

Hom(Cy(X"), Co(Y")) = Co(YX)

where the vertical arrows are induced by k and h. Since Hy(h*) is an isomor-
phism, we get the implication =-. The implication < is analogous. O

Let p be a prime. Assume R = Z,,.

9.2. Let X be a compact CW-complex and Y be a connected CW-complex of
finite height with p-finite homotopy groups. Then, for any sufficiently large
r € N, we have ker 3 p, C ker v in the diagram

X
Hom(Co(X7), Co(YT)) = Co(VX) Ho(YX).
Proof. By Lemma 6.1, for some s € N, there are a gradual simplicial crew T'
with |T| =Y, a gradual simplicial Z,-module U, and an s-harmonic cofibration
d: T — U. We have X ~ |K]| for some compact simplicial crew K. Obviously,
(UK)g is a finite Z,-module. By Lemma 3.1, C(])HI(UK) = 0 for some t € N.

Take r > st. We show that ker ||I;}u,« C ker lf;}u in the diagram

| K| K|,
|| Hr IT|

Hom(Co(|K|"), Co(|T|")) Co(|T|Kl) ————— Ho(IT|I¥)).
This will suffice by Lemma 9.1.

Take an element A € ker ‘IIT{}“T' We show that A € ker ||I;Iy. By Lemma 8.2,
there are a compact simplicial crew L, an isotypy e: L — K, and an element

B € ker kpu, such that Ho(|T|¥)(\71(A)) = [[f(B)||. Since |¢] is a homotopy

equivalence, Hy(|T|'°!) is an isomorphism. Therefore it suffices to show that
Lv(B) =o0.

Let a simplicial crew M be the (reduced) cylinder of e. We have the homo-
topy commutative diagram

K<~—°% L

NS

M

9

where ¢ and j are the canonical cofibrations. By the definition of a cylinder, i
is an isotypy. Since e is an isotypy, j is an isotypy too. Since d is s-harmonic,

16



there is the commutative diagram

T T T
T T3
dLl idM
UL v - UM

where x is a simplicial archism and y is an s-gentle quasi-simplicial archism. We
have the commutative diagram of Z,-homomorphisms:

Bs
Co(TH)

l ico(dL) icow”’) ico(df‘)
L

L B B i
Homy (C. (L7), C.(T7)) <2 Co(T) 2% g () 04

r C Co(U*
Homo (C, (L7), C, (UT)) <2 o) L2 ooy 90 o k),
B’ B By
where the vertical arrows are induced by the cofibration d; By,...,B) are

the images of B in the corresponding modules. Since Lpu,.(B) = 0, we have
Ly, (B") = 0. By Corollary 7.2, B’ € C’J)TH(UL). Since r > st and the archism
yo is s-gentle, we have, by Corollary 3.4, B} € C&HI(UM). Since (U)o is a
homomorphism, B) € C(])H'l(UK). We have C&Hl(UK) = 0. It follows that

B! = 0. Since d is a cofibration, Cy(d¥) is injective. Therefore By = 0.
We have the commutative diagram of Z,-homomorphisms

B

L
Co(TF) - Co(T™) = Ho(T™)
B Co(T7) Ho(T7)
m / M /
Co(TM) r Ho(TM) Ho (T°)
By
Co(T?) X Im
Co(TK) r Ho(TK).
B>
Since By = 0, we get %V(B) =0. O

Consider the filtration of the complex C, (Y *) formed by the kernels of the
Z,-homomorphisms

q
ALAX

CL(YX) s (Y AEAY) Y Hom(Co((A% A X)), Co(Y™)),

where 7, are the obvious isomorphisms. Does this filtration converge?
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§ 10. Deducing Theorem 1.2 from claim 9.2

10.1. Lemma. Let X, Y, X, and Y be spaces, k: X — X and h: Y — Y be
maps, V' be an_abelian group, and f: [X,Y] — V be an invariant. Consider the
invariant f: [ X, Y] =V, @ f([h]o@o[k]). Then Deg f < Deg f.

Proof. Take r € N. The maps k and h induce a homomorphism
t: Hom(Co(X"), Co(Y™)) = Hom(Co(X"), Co(Y™)).

We have t(Cy(a")) = Co((hoaok)™), a € VX . Assume that Deg f < r. Thereis a
homomorphism /: Hom(Cy(X"),Co(Y")) — V such that f([a]) = {(Co(a")) for
all a € YX. Consider the homomorphism [ = lot: Hom(Co(X"),Co(Y")) = V.
For i € YX we have f([a]) = f([hodok]) = I(Co((hodok)")) = I(t(Co(ar))) =
I[(Cy(a")). Therefore Deg f < O

Proof of Theorem 1.2. (1) Case of Y of finite height. It suffices to show that
the “universal” invariant F: [X,Y] — Ho(Y*X;Z,), u > |u], has finite degree.
For r € N we have the commutative diagram

Homz(Co(X";2Z),Co(Y"; Z)) Co(YX:2Z)

| -

Ylh

Homz, (Co(X;Z,), Co(Y™;Z,)) < Co(YX;Z,) ——> Ho(Y™;Z,),

where m and m’ are the homomorphisms of reduction modulo p; the tilde over
p in the upper row means “over Z”. By claim 9.2, we have ker § 1, C ker $v for
sufficiently large . Then there is a Z,-homomorphism ¢: Homz,(Co(X";Z,),Co(Y";Z,)) —
Ho(Y*;Z,) such that t o ¥, = Fv. For a € Y, we have F([a]) = ($v o
m)(la]) = (tom o3 fiy)(la]) = (tom')(Co(a";Z)). Therefore Deg F' < r
(2) General case. There are a connected CW-complex Y of finite height with
p-finite homotopy groups and a (dim X + 1)-connected map h: Y — Y (Y is
obtained from Y by attaching cells of high dimensions). The induced function
hy: [X,Y] — [X,Y] is bijective. Consider the invariant f = f o hy XY =

Z,. By Lemma 10.1, Deg f < Deg f. By (1), Deg f < oo. O

§ 11. Deducing Theorem 1.1 from Theorem 1.2

11.1. Lemma [2, Ch. VI, Proposition 8.6]. Let X be a connected compact CW-
complex, Y be a nilpotent connected CW-complex with finitely generated homo-
topy groups, and uy,us € [X,Y] be distinct classes. Then, for some prime p,

there exist a connected CW-complex Y with p-finite homotopy groups and a map
h:Y =Y such that [h] ouy # [h] oug in [X,Y]. O

Proof of Theorem 1.1. By Lemma 11.1, for some prime p there are a con-
nected CW-complex Y with p-finite homotopy groups, and a map h: Y — Y
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1,2, are distinct. There is an invariant
tis). By Theorem 1.2, Deg f < oco. Con-
— Z,. By Lemma 10.1, Deg f < co. We
O

such that the classes @; = [h] o u;, i =

f:[X,Y] = Z, such that f(u;) #
sider the 1nvar1ant f=fohy: [X
(u

have f(uy) = f(u1) # f(us) = f

§ 12. Properties of finite-degree invariants

Put £ ={0,1} CZ. For e = (e1,...,e,) €EE™, put |e] =e1 + ... + ey.

Cosider a wedge of spaces W =Ty V...V T,. Let insz T, — W be the
inclusions. For e € &, put MV =m V...Vm,: W — W, where my: T}, — Ty
is: the identity if e, = 1, and the constant map otherwise.

12.1. Lemma. Let X and Y be spaces, V be an abelian group, f: [X, Y] =V
be an invariant of degree at most r € N, W =TV ...V T,41 be a wedge of
spaces, and k: X — W and h: W — 'Y be maps. Then

> (=DFf(ho MY o k]) = 0.

ecgrtl

Proof. Consider the invariant f: [W, W] — V, @ — f([h] o @ o [k]). We show

that B
> (=DEF(MY]) =o.

eegrtl

By Lemma 10.1, Deg f < 7, i. e. there is a homomorphism [ : Hom(Co(W™"), Co(W")) —

V such that f([a]) = 1(Co(a")) for all @ € WW (hereafter, R = Z). Therefore it
suffices to show that

Y (=nFe () =o.

ecErtl

Take a point w = (wq,...,w,) € W". There is s € {1,...,7 + 1} such that
{wy,...,w.}NTs C {babepomt} The pomt (M) (w) € WT does not depend
on the sth component of e. Since Co((M)")(|w]) = [(M?)"(w)], it follows

that
ST (D)) ([w)) = 0.

ecgrtl

O

Maps S™ — Y. In this subsection, we use multiplicative notation for homo-
topy groups.

12.2. Lemma. Letn > 1 be a number, Y be a space, V' be an abelian group,
and f: m,(Y) = V be an invariant of degree at most r € N. Then f is r-gentle.

Proof. Take elements u1, ..., u4+1 € 7,(Y). We show that ™ f((1—[u1])...(1—
|tur+1])) = 0. Put W =8"Vv...VvS" (r+ 1 summands). Let k: S — W be
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a map with [k] = [in{"]...[in,%,] in 7, (W), and h: W — Y be a map with

[hoin] = u, in m,(Y). By Lemma 12.1,

ST (=n)lelf(ho MY o k]) = 0.

ee€Ertl
This is what we need because [h o MY o k] = uf* ... u. ' in m,(Y). O
We denote the Whitehead product by the sign x*.

12.3. Lemma. Let m,n > 1 be numbers, Y be a space, and f: mpmin—1(Y) —
V' be an invariant of degree at most r € N. Then the function b: 7, (Y) X
(YY) =V, (u,v) — f(uxwv), is r-gentle.

Proof. Assume r > 0 (otherwise, the claim is trivial). Take elements u1,...,u, €
mm(Y)and vy, ..., vy € T (Y), where p,¢q > 0 and p+q = r+1. By Lemma 3.10,
it suffices to show that Yo((1 — [@1])... (1 — |@p))(1 — |91]) ... (1 — [94])) = 0,
where 4s = (us,1) € (V) x m(Y) and 05 = (1,v5) € mpn(Y) x mp(Y).
Put W =S8"VvV...v8™VS*V...V 8" (p times S™ and ¢ times S™). Let
k: Smtn=l — W be a map with [k] = ([in]"]... [inzv]) * ([inx_l] e [inf‘j_l])
in 7T,in_1(W) and h: W — Y be a map with [hoin’] = u, in 7,,(Y) for
s=1,...,pand [ho ingz_t] =v inm,(Y)fort=1,...,q. By Lemma 12.1,

S ()€l f(ho MY o k) =0,

ecgrtl
This is what we need because [h o MV o k] = (u$* ... uy ) (v"™ gt in
Tm4n—1(Y) and, consequently, f([hOMW ok]) = b( coeup? v g ) =
BASt ... GO LT, O

Maps S™~1 x §® — S?Q) In this subsection, we prove claims 1.5-1.7 and
use the objects defined in the corresponding subsection of § 1. For u € m,(Y)
and v € m,(Y), the class (u,v) € [SP V §9,Y] is defined in the obvious way.
Let z: S™ Vv §2n~1 — §" x §27~! be the canonical embedding of a wedge
in the product. Consider the map (pry,c): S?~1 x " — S" x §27~1 where
pry: S"71 x 8™ — S is the projection and c¢: S"~! x S™ — §2"~1 is the map
defined in § 1. There exists a (unique up to homotopy) map b: S"~! x S™ —
S v §2"~1 guch that zob ~ (pry, ¢). For p,q € Z, we have the homotopy classes

(]

w(p,q): SP L x g gy gt PR g

(wavy arrows present homotopy classes) and 9(p,q) = [I] o v(p,q) € [S"~! x
5™, Sg]. Obviously, v(0,q) = u(q) and ©(0,q) = u(q). We have v(p,q) = v(p,0)
u(p,0)

if p | ¢ (the proof is omitted) and ¥(p, q) = if p # 0 [1, Example 4.6].
Proof of 1.5. Take ¢ € Z. Put W = S" V...V S"V S§?"~1 (r times S™). Let
d: S v §?"~! — W be a map with [d] = ([in}"] + ...+ [in}'],[in)%},]). Put
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k=dob: S"1 x 8" — W. Let h: W — S™ be a map with [h] = (i,...,i,qj).
By Lemma 12.1,

> (=DFf(ho MY o k]) =0.

ecgrtl

Since [ho MYV o k] =v(e; + ...+ er,eT_Hq), we have

> DY (- v(le'],e"q)) = 0.

e/eg’r‘ //65
Assume r! | g. If ¢’ # (0,...,0), the inner sum vanishes because then |¢/| | ¢ and,
consequently, the class v(|e/|,e”q) does not depend on e”. We get f(v(0,0)) —
f(0(0,9)) =0, 1. e. f(u(q)) = f(u(0)). O
Proof of 1.6. Assume Deg f < r € N. Take ¢ € Z. As in the proof of 1.5, we
get

PCIDIC (€'l e"q)) = 0.

e'eEr €€
If e # (0,...,0), the class v(|¢/[,e”q) does not depend on e”. As in the proof
of 1.5, we get f(i(q)) = £(a(0)). O

Proof of 1.7. Assume Deg f < r € N. Consider the invariant f: ma,_ 1(S™) —
Q, @ — f(@o[d). By Lemma 10.1, Degf < r. By Lemma 12.2, f is gen-
tle. Consider the function F: Z — Q, g — f(u(g)). We have F(q) = f(qj).
Therefore F' is gentle, i. e., by Lemma 3.11, is given by a polynomial. By 1.5,
F(q) = F(0) if ! | q. It follows that F' is constant. O
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