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Abstract

Following an idea of Bendersky–Gitler, we construct an isomorphism be-
tween Anderson’s and Arone’s complexes modelling the chain complex
of a map space. This allows us to apply Shipley’s convergence theorem
to Arone’s model. As a corollary, we reduce the problem of homotopy
equivalence for certain “toy” spaces to a problem in homological algebra.

A space is a pointed simplicial set. A map is a basepoint-preserving simplicial
map. Chains, homology etc. are reduced with coefficients in a commutative ring
R.

Fix spaces X and Y . We are interested in the homology of Y X , the space
of maps X → Y .

0.A. Arone’s approach. Let Ω be the category whose objects are the sets
〈s〉 = {1, . . . , s}, s > 0, and whose morphisms are surjective functions. Let Ω◦

denote the dual category. For n ∈ Z, let us define a functor Mn(X) : Ω◦ →
R-Mod. Set Mn(X)(〈s〉) = Cn(X∧s), where X∧s is the sth smash power. For
a morphism h : 〈t〉 → 〈s〉, set Mn(X)(h) = Cn(h]) : Cn(X∧s) → Cn(X∧t),
where the map h] : X∧s → X∧t is given by h](x1 . . . xs) = xh(1) . . . xh(t) for
x1, . . . , xs ∈ Xn, n > 0. Here the simplex x1 . . . xs ∈ (X∧s)n is the image of the
simplex (x1, . . . , xs) ∈ (Xs)n under the projection.

0.1. Lemma. The functors Mn(X) are projective objects of the abelian cate-
gory of functors Ω◦ → R-Mod.

Proof is given in 1.B.
The boundary operators ∂ : Cn(X∧s) → Cn−1(X∧s) form a functor mor-

phism ∂ : Mn(X) → Mn−1(X). Thus M∗(X) is a chain complex of functors.

0.2. Corollary. If a map e : X → Y is a weak equivalence, then the induced
chain homomorphism M∗(e) : M∗(X) → M∗(Y ) is a chain homotopy equiva-
lence.

We have the (unbounded) chain complex of R-modules

G∗(X, Y ) = Hom∗(M∗(X),M∗(Y ))
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and a chain homomorphism

λ∗(X,Y ) : C∗(Y X) → G∗(X, Y ),

see 2.C, 2.D. A natural filtration of G∗(X,Y ) yields the Arone spectral sequence

Ht−s(HomΣs ∗(C∗(X
(s)), C∗(Y ∧s))) = 1Es

t ⇒ Ht−s(G∗(X, Y )), (∗)

where X(s) = X∧s/(fat diagonal) [4], [1]. [6, Theorem 9.2] ensures conditional
convergence. If Y is (dim X)-connected, then the convergence is strong and
λ∗(X,Y ) is a quasi-isomorphism, see [4] for the precise statement. (A similar
result was obtained in [11, Ch. III, § 5].) We wish to get free of the connectivity
assumption.

0.B. Main results. Here we suppose R = Z/`, ` a prime. We call Y `-toy if
π0(Y ) is finite and πn(Y, y) is a finite `-group for all y ∈ Y0 and n > 0.

0.3. Theorem. Suppose that X is essentially compact1 and Y is fibrant and
`-toy. Then λ∗(X, Y ) is a quasi-isomorphism.

This follows from Theorems 0.5 and 0.6 below, see § 4 for details. Under the
assumptions of the theorem, the convergence of (∗) is strong by [6, Theorem
7.1].

0.4. Corollary. Suppose that X and Y are essentially compact and `-toy. Sup-
pose that the complexes M∗(X) and M∗(Y ) are chain homotopy equivalent.
Then X and Y are weakly equivalent.

The proof is given in § 5. There seems to be no easy/functorial way to
extract π1(X) or the ring structure of H∗(X) from M∗(X). The corollary has
an algebraic analogue [9].

0.C. Anderson’s approach. For a pointed set S, the space Y S is defined to
be the fibre of the projection ∏

s∈S

Y → Y

corresponding to s = ∗ (this agrees with our convention that maps preserve
basepoints).

We have an (unbounded) chain complex D∗(X, Y ) with

Dn(X,Y ) =
∏

q−p=n

Cq(Y Xp)

and a chain homomorphism

µ∗(X, Y ) : C∗(Y X) → D∗(X, Y ),

1A space is compact (or finite) if it is generated by a finite number of simplices. Essentially
compact means weakly equivalent to a compact space.
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see 2.F, 2.G for details. A natural filtration of D∗(X, Y ) yields the Anderson
spectral sequence

Hq(Y Xp) = 1Ep
q ⇒ Hq−p(D∗(X,Y )).

If Y is (dim X)-connected, then µ∗(X, Y ) is a quasi-isomorphism, see [2] and [7,
4.2] for precise statements. Shipley got rid of the connectivity assumption [10].

0.5. Theorem. Suppose that R = Z/`, ` a prime. Suppose that X is compact
and Y is fibrant and `-toy. Then µ∗(X,Y ) is a quasi-isomorphism.

This is a special case of Shipley’s strong convergence theorem, see § 3 for
details.

0.D. Comparing G∗(X, Y ) and D∗(X, Y ). We construct a chain homomor-
phism

ε∗(X, Y ) : D∗(X, Y ) → G∗(X, Y )

such that the diagram

D∗(X,Y )

ε∗(X,Y )

²²

C∗(Y X)

µ∗(X,Y )
66lllllllllllll

λ∗(X,Y ) ((RRRRRRRRRRRRR

G∗(X, Y )

is commutative, see 2.H.

0.6. Theorem. Suppose that X is gradual2. Then ε∗(X, Y ) is an isomorphism.

Proof is given in 2.I.

Remark. In some cases, the 2E term of the Anderson spectral sequence [5,
Theorem 7.1 (2)] and the 1E term of the Arone spectral sequence differ in the
grading only. This suggested relation of the two approaches [1, footnote 1] and
motivated this work. Our construction of ε∗(X,Y ) follows the line of [5, § 6].

Acknoledgement. I am grateful to S. Betley, V. A. Vassiliev and M. Yu. Zva-
gel′skĭı for useful discussions.

2A space X is gradual (or finite type) if the sets Xn, n > 0, are finite.
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1. Preliminaries

1.A. Notation. For a pointed set S, we put S× = S \ {∗}.
∆p

+ is the standard p-simplex with an added basepoint. Let ιp ∈ (∆p
+)p be

the fundamental simplex.
For x ∈ Xn, [x] ∈ Cn(X) is the chain consisting of the single simplex x with

the coefficient 1.
Given functors F, F ′ : Ω◦ → R-Mod, a functor morphism T : F → F ′ consists

of homomorphisms sT : F (〈s〉) → F ′(〈s〉).
1.B. Proof of Lemma 0.1 (cf. [3, § 2]). Fix a linear order on X×

n . Introduce
the set

I =
∐
s>0

{(x1 . . . , xs) | x1 . . . , xs ∈ X×
n , x1 < . . . < xs}.

For i = (x1 . . . , xs) ∈ I, put |i| = s and ei = [x1 . . . xs] ∈ Cn(X∧s) =
Mn(X)(〈s〉). The elements ei form a basis of Mn(X) in the following sense.
For any functor F : Ω◦ → R-Mod and elements ai ∈ F (〈|i|〉), i ∈ I, there ex-
ists a unique functor morphism T : Mn(X) → F such that |i|T (ei) = ai for all
i ∈ I. Therefore, for a functor epimorphism F̃ → F , any functor morphism
Mn(X) → F lifts to F̃ .

2. Main constructions

2.A. Diagonal complexes. A bicomplex W ∗
∗ (of R-modules) has differentials

d′ : W p−1
q → W p

q and d′′ : W p
q → W p

q−1, which commute: d′′d′ = d′d′′. The
diagonal (or complete total) chain complex diag∗W ∗

∗ = W∗ of W ∗
∗ has

Wn =
∏

q−p=n

W p
q .

For w ∈ Wn, we have w = (wp
q )q−p=n, where wp

q ∈ W p
q . The differential

∂ : Wn → Wn−1 is defined by

(∂w)p
q = d′′(wp

q+1)− (−1)nd′(wp−1
q ), q − p = n− 1.

2.B. The complex Hom∗(U∗, V∗). Given chain complexes U∗ and V∗ in some
R-linear category, we define the bicomplex Hom∗

∗(U∗, V∗) with Homp
q(U∗, V∗) =

Hom(Up, Vq) and the differentials induced by those of U∗ and V∗. We have

Hom∗(U∗, V∗) = diag∗Hom∗
∗(U∗, V∗).

2.C. The complex G∗(X,Y ). We put

G∗∗(X,Y ) = Hom∗
∗(M∗(X),M∗(Y )), G∗(X,Y ) = Hom∗(M∗(X),M∗(Y )).
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2.D. Construction of λ∗(X, Y ). For s > 0, let sη : Y X ∧ X∧s → Y ∧s be
the evaluation map. For s > 0 and p, q ∈ Z, we have the homomorphism
Cq(sη) : Cq(Y X ∧X∧s) → Cq(Y ∧s) and define the homomorphism

sλp
q : Cq−p(Y X) → Hom(Cp(X∧s), Cq(Y ∧s))

by
sλp

q(z)(u) = Cq(sη)(z × u), u ∈ Cp(X∧s), z ∈ Cq−p(Y X).

The homomorphisms sλp
q form the promised chain homomorphism λ∗(X, Y ).

2.E. The complex D∗(V ). For a cosimplicial space V , we have the bicomplex
D∗
∗(V ) with Dp

q(V ) = Cq(V p) and the following differentials. The differential
d′ : Cq(V p−1) → Cq(V p) is defined by

d′ =
p∑

i=0

(−1)iCq(δi),

where δi : V p−1 → V p are the coface maps. The differential d′′ : Cq(Y Xp) →
Cq−1(Y Xp) is the ordinary boundary operator. We put D∗(V ) = diag∗D∗

∗(V ).

2.F. The complex D∗(X,Y ). Consider the cosimplicial space V = hom(X,Y )
with V p = Y Xp [8, Ch. X, 2.2 (ii)]. We put

D∗
∗(X,Y ) = D∗

∗(V ), D∗(X,Y ) = D∗(V ).

2.G. Construction of µ∗(X, Y ). For x ∈ Xp, we have the composite map

θx : Y X ∧∆p
+

id∧x // Y X ∧X
η // Y,

where x : ∆p
+ → X is the characteristic map of the simplex x and η is the

evaluation map. Combining θx over all x ∈ Xp, we get a map

θp : Y X ∧∆p
+ → Y Xp .

For p > 0 and q ∈ Z, we have the homomorphism Cq(θp) : Cq(Y X ∧ ∆p
+) →

Cq(Y Xp) and introduce the homomorphism

µp
q : Cq−p(Y X) → Cq(Y Xp), µp

q(z) = Cq(θp)(z × [ιp]).

The homomorphisms µp
q form the promised chain homomorphism µ∗(X,Y ).

2.H. Construction of ε∗(X, Y ). A simplex v ∈ (Y Xp)q is a basepoint-
preserving function v : Xp → Yq. For s > 0 and p, q > 0, we define the ho-
momorphism

sεp
q : Cq(Y Xp) → Hom(Cp(X∧s), Cq(Y ∧s))

by

sεp
q([v])([x1 . . . xs]) = [v(x1) . . . v(xs)], x1, . . . , xs ∈ Xp, v ∈ (Y Xp)q.
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The homomorphisms sεp
q form a homomorphism of bicomplexes

ε∗∗(X,Y ) : D∗
∗(X, Y ) → G∗∗(X, Y )

and thus the promised chain homomorphism ε∗(X, Y ).

Remark. The bicomplexes D∗
∗(X,Y ) and G∗∗(X, Y ) are in fact cosimplicial sim-

plicial R-modules. (To see this, recall that, for every space Z, C∗(Z) is in fact
a simplicial R-module and thus M∗(Z) is a simplicial functor.) The homomor-
phism ε∗∗(X, Y ) preserves this structure.

One easily verifies that ε∗(X, Y ) ◦ µ∗(X, Y ) = λ∗(X,Y ).

2.I. Proof of Theorem 0.6. Take p, q > 0. It suffices to prove that the
homomorphism

εp
q = (sεp

q)s>0 : Cq(Y Xp) → Hom(Mp(X),Mq(Y ))

is an isomorphism. We construct a homomorphism

ξp
q : Hom(Mp(X),Mq(Y )) → Cq(Y Xp)

and leave to the reader to verify that ξp
q ◦ εp

q and εp
q ◦ ξp

q are the identities.
Fix a linear order on X×

p . Suppose we are given sets E, F ⊆ X×
p such that

E ⊇ F 6= ∅. We have E = {x1, . . . , xs} for some x1 < . . . < xs. Put κE =
x1 . . . xs ∈ (X∧s)p. For y1, . . . , ys ∈ Yq, define the function φF

E(y1, . . . , ys) : Xp →
Yq by the rules

xt 7→ yt for t = 1, . . . , s such that xt ∈ F ;

x 7→ ∗ for all other x ∈ Xp.

We have the homomorphism ΦF
E : Cq(Y ∧s) → Cq(Y Xp) with ΦF

E([y1 . . . ys]) =
[φF

E(y1, . . . , ys)] for y1, . . . , ys ∈ Y ×
q . Define the homomorphism

ψF
E : HomΣs(Cp(X∧s), Cq(Y ∧s)) → Cq(Y Xp)

by ψF
E(t) = ΦF

E(t([κE ])). (One may note that ψF
E does not depend on the order

on X×
p .) For a functor morphism T : Mp(X) → Mq(Y ), we set

ξp
q (T ) =

∑

E,F⊆X×
p :E⊇F 6=∅

(−1)|E|−|F |ψF
E(|E|T ).
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3. Anderson’s model

3.A. General cosimplicial case. We follow [7, § 2]. Let V be a cosimplicial
space. We have the (unbounded) chain complex D∗(V ) (see 2.E). There is the
chain homomorphism

µ∗(V ) : C∗(TotV ) → D∗(V )

formed by the homomorphisms

µp
q : Cq−p(TotV ) → Cq(V p)

that are defined in the following way. A simplex w ∈ (TotV )n is a sequence
(wp)p>0 of maps wp : ∆n

+ ∧ ∆p
+ → V p. For w ∈ (TotV )q−p, we have the

homomorphism Cq(wp) : Cq(∆
q−p
+ ∧∆p

+) → Cq(V p) and set

µp
q([w]) = Cq(wp)([ιq−p]× [ιp]).

3.1. Theorem. Suppose that R = Z/`, ` a prime, V is fibrant and the spaces
V p, p > 0, and Tot V are `-toy. Then µ∗(V ) is a quasi-isomorphism.

Proof. Apply Shipley’s strong convergence theorem [10, Theorem 6.1] and [7,
Lemma 2.3].

3.B. Proof of Theorem 0.5. We have the cosimplicial space V = hom(X,Y )
and the canonical isomorphism Y X = TotV [8, Ch. X, 3.3 (i)]. The diagram

C∗(Y X)
µ∗(X,Y ) // D∗(X,Y )

C∗(TotV )
µ∗(V ) // D∗(V )

is commutative.
The cosimplicial space V is fibrant by [8, Ch. X, 4.7 (ii)]. The spaces V p

are `-toy since X is gradual and Y is `-toy. The spaces Y X and thus TotV are
`-toy since X is compact and Y is fibrant and `-toy. By Theorem 3.1, µ∗(V ) is
a quasi-isomorphism.

4. Arone’s model

4.A. Homotopy invariance.

4.1. Lemma. Let e : X ′ → X and f : Y → Y ′ be weak equivalences of spaces.
Suppose that Y and Y ′ are fibrant. Then λ∗(X, Y ) is a quasi-isomorphism if
and only if λ∗(X ′, Y ′) is.
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Proof. The maps e and f induce a map g : Y X → Y ′X′
. We have the commu-

tative diagram

C∗(Y X)
λ∗(X,Y ) //

C∗(g)

²²

G∗(X,Y )

G∗(e,f)

²²
C∗(Y ′X′

)
λ∗(X′,Y ′) // G∗(X ′, Y ′).

C∗(g) is a quasi-isomorphism since g is a weak equivalence. It follows from
Corollary 0.2 that G∗(e, f) is a quasi-isomorphism. The desired equivalence is
clear now.

4.B. Proof of Theorem 0.3. If X is compact, the assertion follows imme-
diately from Theorems 0.5 and 0.6. In general, X is weakly equivalent to a
compact space X◦. Using Lemma 4.1, we pass from λ∗(X◦, Y ) to λ∗(X, Y ).

5. Reconstructing X from M∗(X)

5.A. Composition of maps and homomorphisms.

5.1. Lemma. Let X, Y and Z be spaces and γ : ZY ∧ Y X → ZX be the com-
position map. Then the diagram of chain complexes and chain homomorphisms

C∗(ZY )⊗ C∗(Y X)
cross product //

λ∗(Y,Z)⊗λ∗(X,Y )

²²

C∗(ZY ∧ Y X)
C∗(γ) // C∗(ZX)

λ∗(X,Z)

²²
G∗(Y, Z)⊗G∗(X, Y )

composition // G∗(X, Z)

is commutative.

This follows from the associativity of the cross product.

5.B. Proof of Corollary 0.4. Corollary 0.2 allows us to assume X and Y
fibrant. Note that H0(G∗(X, Y )) = [M∗(X),M∗(Y )], the R-module of chain
homotopy classes. By Lemma 5.1, we have the commutative diagram

H0(XY )⊗H0(Y X)
cross product //

H0(λ∗(Y,X))⊗H0(λ∗(X,Y ))

²²

H0(XY ∧ Y X)
H0(γ) // H0(XX)

H0(λ∗(X,X))

²²
[M∗(Y ),M∗(X)]⊗ [M∗(X), M∗(Y )]

composition // [M∗(X),M∗(X)],

where γ : XY ∧Y X → XX is the composition map. We use the notation B⊗A 7→
B ◦ A for the upper line homomorphism H0(XY ) ⊗ H0(Y X) → H0(XX). By
Theorem 0.3, H0(λ∗(X, Y )), H0(λ∗(Y, X)) and H0(λ∗(X, X)) are isomorphisms.

8



Let f : M∗(X) → M∗(Y ) and g : M∗(Y ) → M∗(X) be mutually inverse chain
homotopy equivalences. We have [f ] = H0(λ∗(X, Y ))(A) for some A ∈ H0(Y X)
and [g] = H0(λ∗(Y, X))(B) for some B ∈ H0(XY ). By the diagram, B ◦ A = 1
in H0(XX). Thus there are maps a : X → Y and b : Y → X such that b ◦ a ∼
idX . Interchanging X and Y in this reasoning, we get maps a′ : X → Y and
b′ : Y → X such that a′ ◦ b′ ∼ idY . Since X and Y are `-toy, these four maps
are weak equivalences.
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