On homology of map spaces

S. S. Podkorytov

Abstract

Following an idea of Bendersky–Gitler, we construct an isomorphism between Anderson's and Arone's complexes modelling the chain complex of a map space. This allows us to apply Shipley's convergence theorem to Arone's model. As a corollary, we reduce the problem of homotopy equivalence for certain "toy" spaces to a problem in homological algebra.

A space is a pointed simplicial set. A map is a basepoint-preserving simplicial map. Chains, homology etc. are reduced with coefficients in a commutative ring R.

Fix spaces X and Y. We are interested in the homology of Y^X , the space of maps $X \to Y$.

0.A. Arone's approach. Let Ω be the category whose objects are the sets $\langle s \rangle = \{1, \ldots, s\}, s > 0$, and whose morphisms are surjective functions. Let Ω° denote the dual category. For $n \in \mathbb{Z}$, let us define a functor $M_n(X): \Omega^{\circ} \to R$ -Mod. Set $M_n(X)(\langle s \rangle) = C_n(X^{\wedge s})$, where $X^{\wedge s}$ is the sth smash power. For a morphism $h: \langle t \rangle \to \langle s \rangle$, set $M_n(X)(h) = C_n(h^{\sharp}): C_n(X^{\wedge s}) \to C_n(X^{\wedge t})$, where the map $h^{\sharp}: X^{\wedge s} \to X^{\wedge t}$ is given by $h^{\sharp}(x_1 \dots x_s) = x_{h(1)} \dots x_{h(t)}$ for $x_1, \dots, x_s \in X_n, n \geq 0$. Here the simplex $x_1 \dots x_s \in (X^{\wedge s})_n$ is the image of the simplex $(x_1, \dots, x_s) \in (X^s)_n$ under the projection.

0.1. Lemma. The functors $M_n(X)$ are projective objects of the abelian category of functors $\Omega^{\circ} \to R$ -Mod.

Proof is given in 1.B.

The boundary operators $\partial: C_n(X^{\wedge s}) \to C_{n-1}(X^{\wedge s})$ form a functor morphism $\partial: M_n(X) \to M_{n-1}(X)$. Thus $M_*(X)$ is a chain complex of functors.

0.2. Corollary. If a map $e: X \to Y$ is a weak equivalence, then the induced chain homomorphism $M_*(e): M_*(X) \to M_*(Y)$ is a chain homotopy equivalence.

We have the (unbounded) chain complex of R-modules

$$G_*(X,Y) = \text{Hom}_*(M_*(X), M_*(Y))$$

and a chain homomorphism

$$\lambda_*(X,Y)\colon C_*(Y^X)\to G_*(X,Y),$$

see 2.C, 2.D. A natural filtration of $G_*(X, Y)$ yields the Arone spectral sequence

$$H_{t-s}(\operatorname{Hom}_{\Sigma_s} * (C_*(X^{(s)}), C_*(Y^{\wedge s}))) = {}^1E_t^s \Rightarrow H_{t-s}(G_*(X, Y)), \qquad (*)$$

where $X^{(s)} = X^{\wedge s}/(\text{fat diagonal})$ [4], [1]. [6, Theorem 9.2] ensures conditional convergence. If Y is $(\dim X)$ -connected, then the convergence is strong and $\lambda_*(X,Y)$ is a quasi-isomorphism, see [4] for the precise statement. (A similar result was obtained in [11, Ch. III, § 5].) We wish to get free of the connectivity assumption.

0.B. Main results. Here we suppose $R = \mathbf{Z}/\ell$, ℓ a prime. We call $Y \ell$ -toy if $\pi_0(Y)$ is finite and $\pi_n(Y, y)$ is a finite ℓ -group for all $y \in Y_0$ and n > 0.

0.3. Theorem. Suppose that X is essentially compact¹ and Y is fibrant and ℓ -toy. Then $\lambda_*(X, Y)$ is a quasi-isomorphism.

This follows from Theorems 0.5 and 0.6 below, see § 4 for details. Under the assumptions of the theorem, the convergence of (*) is strong by [6, Theorem 7.1].

0.4. Corollary. Suppose that X and Y are essentially compact and ℓ -toy. Suppose that the complexes $M_*(X)$ and $M_*(Y)$ are chain homotopy equivalent. Then X and Y are weakly equivalent.

The proof is given in § 5. There seems to be no easy/functorial way to extract $\pi_1(X)$ or the ring structure of $H^*(X)$ from $M_*(X)$. The corollary has an algebraic analogue [9].

0.C. Anderson's approach. For a pointed set S, the space Y^S is defined to be the fibre of the projection

$$\prod_{s\in S}Y\to Y$$

corresponding to s = * (this agrees with our convention that maps preserve basepoints).

We have an (unbounded) chain complex $D_*(X, Y)$ with

$$D_n(X,Y) = \prod_{q-p=n} C_q(Y^{X_p})$$

and a chain homomorphism

$$\mu_*(X,Y)\colon C_*(Y^X)\to D_*(X,Y),$$

¹A space is *compact* (or *finite*) if it is generated by a finite number of simplices. *Essentially compact* means weakly equivalent to a compact space.

see 2.F, 2.G for details. A natural filtration of $D_*(X, Y)$ yields the Anderson spectral sequence

$$H_q(Y^{X_p}) = {}^1E_q^p \Rightarrow H_{q-p}(D_*(X,Y)).$$

If Y is $(\dim X)$ -connected, then $\mu_*(X, Y)$ is a quasi-isomorphism, see [2] and [7, 4.2] for precise statements. Shipley got rid of the connectivity assumption [10].

0.5. Theorem. Suppose that $R = \mathbf{Z}/\ell$, ℓ a prime. Suppose that X is compact and Y is fibrant and ℓ -toy. Then $\mu_*(X, Y)$ is a quasi-isomorphism.

This is a special case of Shipley's strong convergence theorem, see \S 3 for details.

0.D. Comparing $G_*(X,Y)$ and $D_*(X,Y)$. We construct a chain homomorphism

$$\epsilon_*(X,Y) \colon D_*(X,Y) \to G_*(X,Y)$$

such that the diagram

is commutative, see 2.H.

0.6. Theorem. Suppose that X is gradual². Then $\epsilon_*(X, Y)$ is an isomorphism.

Proof is given in 2.I.

Remark. In some cases, the ${}^{2}E$ term of the Anderson spectral sequence [5, Theorem 7.1 (2)] and the ${}^{1}E$ term of the Arone spectral sequence differ in the grading only. This suggested relation of the two approaches [1, footnote 1] and motivated this work. Our construction of $\epsilon_{*}(X, Y)$ follows the line of [5, § 6].

Acknoledgement. I am grateful to S. Betley, V. A. Vassiliev and M. Yu. Zva-gel'skiĭ for useful discussions.

²A space X is gradual (or finite type) if the sets X_n , $n \ge 0$, are finite.

1. Preliminaries

1.A. Notation. For a pointed set S, we put $S^{\times} = S \setminus \{*\}$.

 Δ^p_+ is the standard *p*-simplex with an added basepoint. Let $\iota_p \in (\Delta^p_+)_p$ be the fundamental simplex.

For $x \in X_n$, $[x] \in C_n(X)$ is the chain consisting of the single simplex x with the coefficient 1.

Given functors $F, F': \Omega^{\circ} \to R$ -Mod, a functor morphism $T: F \to F'$ consists of homomorphisms ${}^{s}T: F(\langle s \rangle) \to F'(\langle s \rangle)$.

1.B. Proof of Lemma 0.1 (cf. [3, § 2]). Fix a linear order on X_n^{\times} . Introduce the set

$$I = \prod_{s>0} \{ (x_1 \dots, x_s) \mid x_1 \dots, x_s \in X_n^{\times}, \ x_1 < \dots < x_s \}.$$

For $i = (x_1 \dots, x_s) \in I$, put |i| = s and $e_i = [x_1 \dots x_s] \in C_n(X^{\wedge s}) = M_n(X)(\langle s \rangle)$. The elements e_i form a basis of $M_n(X)$ in the following sense. For any functor $F \colon \Omega^{\circ} \to R$ -Mod and elements $a_i \in F(\langle |i| \rangle)$, $i \in I$, there exists a unique functor morphism $T \colon M_n(X) \to F$ such that $|i|T(e_i) = a_i$ for all $i \in I$. Therefore, for a functor epimorphism $\tilde{F} \to F$, any functor morphism $M_n(X) \to F$ lifts to \tilde{F} .

2. Main constructions

2.A. Diagonal complexes. A bicomplex \underline{W}^*_* (of *R*-modules) has differentials $d': \underline{W}^{p-1}_q \to \underline{W}^p_q$ and $d'': \underline{W}^p_q \to \underline{W}^p_{q-1}$, which commute: d''d' = d'd''. The diagonal (or complete total) chain complex diag_{*} $\underline{W}^*_* = W_*$ of \underline{W}^*_* has

$$W_n = \prod_{q-p=n} \underline{W}_q^p.$$

For $w \in W_n$, we have $w = (w_q^p)_{q-p=n}$, where $w_q^p \in \underline{W}_q^p$. The differential $\partial: W_n \to W_{n-1}$ is defined by

$$(\partial w)_q^p = d''(w_{q+1}^p) - (-1)^n d'(w_q^{p-1}), \quad q-p = n-1.$$

2.B. The complex $\operatorname{Hom}_*(U_*, V_*)$. Given chain complexes U_* and V_* in some R-linear category, we define the bicomplex $\operatorname{Hom}_*^*(U_*, V_*)$ with $\operatorname{Hom}_q^p(U_*, V_*) = \operatorname{Hom}(U_p, V_q)$ and the differentials induced by those of U_* and V_* . We have

$$\operatorname{Hom}_*(U_*, V_*) = \operatorname{diag}_* \operatorname{\underline{Hom}}^*_*(U_*, V_*).$$

2.C. The complex $G_*(X,Y)$. We put

$$\underline{G}_*^*(X,Y) = \underline{\mathrm{Hom}}_*^*(M_*(X), M_*(Y)), \quad G_*(X,Y) = \mathrm{Hom}_*(M_*(X), M_*(Y)).$$

2.D. Construction of $\lambda_*(X,Y)$. For s > 0, let ${}^s\eta \colon Y^X \wedge X^{\wedge s} \to Y^{\wedge s}$ be the evaluation map. For s > 0 and $p, q \in \mathbb{Z}$, we have the homomorphism $C_q({}^s\eta) \colon C_q(Y^X \wedge X^{\wedge s}) \to C_q(Y^{\wedge s})$ and define the homomorphism

$$^{s}\lambda_{q}^{p}\colon C_{q-p}(Y^{X})\to \operatorname{Hom}(C_{p}(X^{\wedge s}),C_{q}(Y^{\wedge s}))$$

by

$${}^s\lambda^p_q(z)(u)=C_q({}^s\eta)(z\times u),\quad u\in C_p(X^{\wedge s}),\quad z\in C_{q-p}(Y^X).$$

The homomorphisms ${}^{s}\lambda_{a}^{p}$ form the promised chain homomorphism $\lambda_{*}(X,Y)$.

2.E. The complex $D_*(V)$. For a cosimplicial space V, we have the bicomplex $\underline{D}^*_*(V)$ with $\underline{D}^p_q(V) = C_q(V^p)$ and the following differentials. The differential $d': C_q(V^{p-1}) \to C_q(V^p)$ is defined by

$$d' = \sum_{i=0}^{p} (-1)^{i} C_{q}(\delta^{i}),$$

where $\delta^i : V^{p-1} \to V^p$ are the coface maps. The differential $d'' : C_q(Y^{X_p}) \to C_{q-1}(Y^{X_p})$ is the ordinary boundary operator. We put $D_*(V) = \operatorname{diag}_* \underline{D}^*_*(V)$.

2.F. The complex $D_*(X, Y)$. Consider the cosimplicial space V = hom(X, Y) with $V^p = Y^{X_p}$ [8, Ch. X, 2.2 (ii)]. We put

$$\underline{D}^*_*(X,Y) = \underline{D}^*_*(V), \quad D_*(X,Y) = D_*(V).$$

2.G. Construction of $\mu_*(X, Y)$. For $x \in X_p$, we have the composite map

$$\theta^{x} \colon Y^{X} \wedge \Delta^{p}_{+} \xrightarrow{\operatorname{id} \wedge \overline{x}} Y^{X} \wedge X \xrightarrow{\eta} Y,$$

where $\overline{x}: \Delta^p_+ \to X$ is the characteristic map of the simplex x and η is the evaluation map. Combining θ^x over all $x \in X_p$, we get a map

$$\theta^p \colon Y^X \wedge \Delta^p_+ \to Y^{X_p}$$

For $p \ge 0$ and $q \in \mathbf{Z}$, we have the homomorphism $C_q(\theta^p) \colon C_q(Y^X \wedge \Delta^p_+) \to C_q(Y^{X_p})$ and introduce the homomorphism

$$\mu_q^p \colon C_{q-p}(Y^X) \to C_q(Y^{X_p}), \quad \mu_q^p(z) = C_q(\theta^p)(z \times [\iota_p]).$$

The homomorphisms μ_q^p form the promised chain homomorphism $\mu_*(X, Y)$.

2.H. Construction of $\epsilon_*(X,Y)$. A simplex $v \in (Y^{X_p})_q$ is a basepointpreserving function $v: X_p \to Y_q$. For s > 0 and $p,q \ge 0$, we define the homomorphism

$${}^{s}\epsilon_{q}^{p}\colon C_{q}(Y^{X_{p}})\to \operatorname{Hom}(C_{p}(X^{\wedge s}),C_{q}(Y^{\wedge s}))$$

by

$${}^{s}\epsilon_{q}^{p}([v])([x_{1}\ldots x_{s}]) = [v(x_{1})\ldots v(x_{s})], \quad x_{1},\ldots,x_{s}\in X_{p}, \quad v\in (Y^{X_{p}})_{q}.$$

The homomorphisms ${}^{s}\epsilon^{p}_{q}$ form a homomorphism of bicomplexes

$$\underline{\epsilon}^*_*(X,Y): \underline{D}^*_*(X,Y) \to \underline{G}^*_*(X,Y)$$

and thus the promised chain homomorphism $\epsilon_*(X, Y)$.

Remark. The bicomplexes $\underline{D}^*_*(X,Y)$ and $\underline{G}^*_*(X,Y)$ are in fact cosimplicial simplicial R-modules. (To see this, recall that, for every space Z, $C_*(Z)$ is in fact a simplicial R-module and thus $M_*(Z)$ is a simplicial functor.) The homomorphism $\underline{\epsilon}^*(X, Y)$ preserves this structure.

One easily verifies that $\epsilon_*(X, Y) \circ \mu_*(X, Y) = \lambda_*(X, Y)$.

2.1. Proof of Theorem 0.6. Take $p, q \ge 0$. It suffices to prove that the homomorphism

$$\epsilon_q^p = ({}^s \epsilon_q^p)_{s>0} \colon C_q(Y^{X_p}) \to \operatorname{Hom}(M_p(X), M_q(Y))$$

is an isomorphism. We construct a homomorphism

$$\xi_q^p \colon \operatorname{Hom}(M_p(X), M_q(Y)) \to C_q(Y^{X_p})$$

and leave to the reader to verify that $\xi_q^p \circ \epsilon_q^p$ and $\epsilon_q^p \circ \xi_q^p$ are the identities. Fix a linear order on X_p^{\times} . Suppose we are given sets $E, F \subseteq X_p^{\times}$ such that $E \supseteq F \neq \emptyset$. We have $E = \{x_1, \ldots, x_s\}$ for some $x_1 < \ldots < x_s$. Put $\kappa_E = x_1 \ldots x_s \in (X^{\wedge s})_p$. For $y_1, \ldots, y_s \in Y_q$, define the function $\phi_E^F(y_1, \ldots, y_s) \colon X_p \to X$. Y_q by the rules

$$x_t \mapsto y_t$$
 for $t = 1, \ldots, s$ such that $x_t \in F_t$

 $x \mapsto *$ for all other $x \in X_p$.

We have the homomorphism $\Phi_E^F \colon C_q(Y^{\wedge s}) \to C_q(Y^{X_p})$ with $\Phi_E^F([y_1 \dots y_s]) = [\phi_E^F(y_1, \dots, y_s)]$ for $y_1, \dots, y_s \in Y_q^{\times}$. Define the homomorphism

$$\psi_E^F \colon \operatorname{Hom}_{\Sigma_s}(C_p(X^{\wedge s}), C_q(Y^{\wedge s})) \to C_q(Y^{X_p})$$

by $\psi_E^F(t) = \Phi_E^F(t([\kappa_E]))$. (One may note that ψ_E^F does not depend on the order on X_p^{\times} .) For a functor morphism $T \colon M_p(X) \to M_q(Y)$, we set

$$\xi_q^p(T) = \sum_{E, F \subseteq X_p^\times : E \supseteq F \neq \varnothing} (-1)^{|E| - |F|} \psi_E^F(|E|T).$$

3. Anderson's model

3.A. General cosimplicial case. We follow [7, § 2]. Let V be a cosimplicial space. We have the (unbounded) chain complex $D_*(V)$ (see 2.E). There is the chain homomorphism

$$\mu_*(V) \colon C_*(\operatorname{Tot} V) \to D_*(V)$$

formed by the homomorphisms

$$\mu_q^p \colon C_{q-p}(\operatorname{Tot} V) \to C_q(V^p)$$

that are defined in the following way. A simplex $w \in (\text{Tot } V)_n$ is a sequence $(w^p)_{p \ge 0}$ of maps $w^p \colon \Delta^n_+ \wedge \Delta^p_+ \to V^p$. For $w \in (\text{Tot } V)_{q-p}$, we have the homomorphism $C_q(w^p) \colon C_q(\Delta^{q-p}_+ \wedge \Delta^p_+) \to C_q(V^p)$ and set

$$\mu_q^p([w]) = C_q(w^p)([\iota_{q-p}] \times [\iota_p]).$$

3.1. Theorem. Suppose that $R = \mathbf{Z}/\ell$, ℓ a prime, V is fibrant and the spaces V^p , $p \ge 0$, and Tot V are ℓ -toy. Then $\mu_*(V)$ is a quasi-isomorphism.

Proof. Apply Shipley's strong convergence theorem [10, Theorem 6.1] and [7, Lemma 2.3]. \Box

3.B. Proof of Theorem 0.5. We have the cosimplicial space V = hom(X, Y) and the canonical isomorphism $Y^X = Tot V$ [8, Ch. X, 3.3 (i)]. The diagram

is commutative.

The cosimplicial space V is fibrant by [8, Ch. X, 4.7 (ii)]. The spaces V^p are ℓ -toy since X is gradual and Y is ℓ -toy. The spaces Y^X and thus Tot V are ℓ -toy since X is compact and Y is fibrant and ℓ -toy. By Theorem 3.1, $\mu_*(V)$ is a quasi-isomorphism.

4. Arone's model

4.A. Homotopy invariance.

4.1. Lemma. Let $e: X' \to X$ and $f: Y \to Y'$ be weak equivalences of spaces. Suppose that Y and Y' are fibrant. Then $\lambda_*(X,Y)$ is a quasi-isomorphism if and only if $\lambda_*(X',Y')$ is. *Proof.* The maps e and f induce a map $g: Y^X \to Y'^{X'}$. We have the commutative diagram

 $C_*(g)$ is a quasi-isomorphism since g is a weak equivalence. It follows from Corollary 0.2 that $G_*(e, f)$ is a quasi-isomorphism. The desired equivalence is clear now.

4.B. Proof of Theorem 0.3. If X is compact, the assertion follows immediately from Theorems 0.5 and 0.6. In general, X is weakly equivalent to a compact space X° . Using Lemma 4.1, we pass from $\lambda_*(X^{\circ}, Y)$ to $\lambda_*(X, Y)$.

5. Reconstructing X from $M_*(X)$

5.A. Composition of maps and homomorphisms.

5.1. Lemma. Let X, Y and Z be spaces and $\gamma: Z^Y \wedge Y^X \to Z^X$ be the composition map. Then the diagram of chain complexes and chain homomorphisms

$$C_*(Z^Y) \otimes C_*(Y^X) \xrightarrow{\operatorname{cross product}} C_*(Z^Y \wedge Y^X) \xrightarrow{C_*(\gamma)} C_*(Z^X)$$
$$\downarrow^{\lambda_*(Y,Z) \otimes \lambda_*(X,Y)} \xrightarrow{\lambda_*(X,Z)} \downarrow^{\lambda_*(X,Z)}$$
$$G_*(Y,Z) \otimes G_*(X,Y) \xrightarrow{\operatorname{composition}} G_*(X,Z)$$

 $is \ commutative.$

This follows from the associativity of the cross product.

5.B. Proof of Corollary 0.4. Corollary 0.2 allows us to assume X and Y fibrant. Note that $H_0(G_*(X,Y)) = [M_*(X), M_*(Y)]$, the *R*-module of chain homotopy classes. By Lemma 5.1, we have the commutative diagram

$$H_{0}(X^{Y}) \otimes H_{0}(Y^{X}) \xrightarrow{\operatorname{cross product}} H_{0}(X^{Y} \wedge Y^{X}) \xrightarrow{H_{0}(\gamma)} H_{0}(X^{X})$$

$$\downarrow^{H_{0}(\lambda_{*}(Y,X)) \otimes H_{0}(\lambda_{*}(X,Y))} \xrightarrow{H_{0}(\lambda_{*}(X,X))} \downarrow$$

$$[M_{*}(Y), M_{*}(X)] \otimes [M_{*}(X), M_{*}(Y)] \xrightarrow{\operatorname{cromposition}} [M_{*}(X), M_{*}(X)]$$

where $\gamma: X^Y \wedge Y^X \to X^X$ is the composition map. We use the notation $B \otimes A \mapsto B \circ A$ for the upper line homomorphism $H_0(X^Y) \otimes H_0(Y^X) \to H_0(X^X)$. By Theorem 0.3, $H_0(\lambda_*(X,Y))$, $H_0(\lambda_*(Y,X))$ and $H_0(\lambda_*(X,X))$ are isomorphisms.

Let $f: M_*(X) \to M_*(Y)$ and $g: M_*(Y) \to M_*(X)$ be mutually inverse chain homotopy equivalences. We have $[f] = H_0(\lambda_*(X,Y))(A)$ for some $A \in H_0(Y^X)$ and $[g] = H_0(\lambda_*(Y,X))(B)$ for some $B \in H_0(X^Y)$. By the diagram, $B \circ A = 1$ in $H_0(X^X)$. Thus there are maps $a: X \to Y$ and $b: Y \to X$ such that $b \circ a \sim$ id_X . Interchanging X and Y in this reasoning, we get maps $a': X \to Y$ and $b': Y \to X$ such that $a' \circ b' \sim \mathrm{id}_Y$. Since X and Y are ℓ -toy, these four maps are weak equivalences.

References

- [1] S. T. Ahearn, N. J. Kuhn, Product and other fine structure in polynomial resolutions of mapping spaces, Alg. Geom. Topology **2** (2002), 591–647.
- [2] D. W. Anderson, A generalization of the Eilenberg-Moore spectral sequence, Bull. AMS, 78 (1972), No. 5, 784–786.
- [3] J. Antosz, S. Betley, Homological algebra in the category of Γ-modules, Commun. Algebra 33 (2005), No. 6, 1913–1936.
- G. Arone, A generalization of Snaith-type filtration, Trans. AMS 351 (1999), No. 3, 1123–1150.
- [5] M. Bendersky, S. Gitler, The cohomology of certain function spaces, Trans. AMS 326 (1991), No. 1, 423–440.
- J. M. Boardman, Conditionally convergent spectral sequences, Contemp. Math. 239 (1999), 49–84.
- [7] A. K. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), No. 2, 361–394.
- [8] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations, Lect. Notes Math. 304, Springer, 1972.
- [9] S. S. Podkorytov, Commutative algebras and representations of the category of finite sets, arxiv:1011.6192.
- [10] B. E. Shipley, Convergence of the homology spectral sequence of a cosimplicial space, Amer. J. Math. 118 (1996), No. 1, 179–207.
- [11] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, AMS, 1992.

ssp@pdmi.ras.ru
http://www.pdmi.ras.ru/~ssp