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Abstract

A commutative algebra over a field gives rise to a representation of the
category of finite sets and surjective maps. We consider the restriction
of this representation to the subcategory of sets of cardinality at most
r. For each r, we present two non-isomorphic algebras that give rise to
isomorphic representations of this subcategory.

Let Ωr (r = 0, 1, . . . ,∞) be the category whose objects are the sets 〈p〉 =
{1, . . . , p}, p = 1, 2, . . . , p 6 r, and whose morphisms are surjective maps. Let k
be a field. We imply it when saying about vector spaces, tensor products, etc.
By an algebra we mean a commutative non-unital k-algebra. An algebra A gives
rise to the functor Lr(A) : Ωr → k-Mod (a representation of Ωr) that takes an
object 〈p〉 to the vector space A⊗p and takes a morphism s : 〈p〉 → 〈q〉 to the
linear map

A⊗p → A⊗q, a1 ⊗ . . .⊗ ap 7→ m1 ⊗ . . .⊗mq,

where
mj =

∏
i∈s−1(j)

ai

(a variant of the Loday functor [3, Proposition 6.4.4]).
Must algebras A and B be isomorphic if the representations Lr(A) and

Lr(B) are isomorphic? Yes if r =∞, the field k is algebraically closed and the
algebras have finite (vector-space) dimension ([4], cf. [1]). Our aim here is to
show that this is false for arbitrarily large finite r. For each r = 1, 2, . . . and
arbitrary k, we present two non-isomorphic finite-dimensional algebras A and B
with isomorphic representations Lr(A) and Lr(B). These algebras are obtained
from the Stanley–Reisner algebras of certain graphs (“crowns”) by taking the
homogeneous components of degrees 1 and 2.

The functor Lr. The correspondence A 7→ Lr(A) is covariant in an obvious
way. So we have the functor Lr : k-Alc → Fun(Ωr,k-Mod), where k-Alc is
the category of algebras and Fun(Ωr,k-Mod) is that of functors Ωr → k-Mod
(representations).

The action category M \\ S. Let a monoid M act on a set S from the left.
For s, t ∈ S, put M(s, t) = {m : m · s = t} ⊆M . We have the category M \\ S,
where ObM \\ S = S, a bijection

M(s, t)→ MorM\\S(s, t), m 7→ m|s→t,
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is given for each s, t ∈ S, 1s = 1|s→s, and the composition of morphisms is given
by the multiplication in M .

We have the not necessarily commutative unital k-algebra k[M ]. For s, t ∈ S,
we have the subspace k[M(s, t)] ⊆ k[M ].

Consider the linear category k[M \\ S]. For s, t ∈ S, we have the linear map

k[M(s, t)]→ Mork[M\\S](s, t), X 7→ X‖s→t,

given by the rule [m] 7→ [m|s→t]. Clearly, 1‖s→s = 1s (s ∈ S). If X ∈ k[M(s, t)],
Y ∈ k[M(t, u)] (s, t, u ∈ S), then Y X ∈ k[M(s, u)] and

(Y X)‖s→u = Y ‖t→u ◦X‖s→t.

The monoid Wn and the elements Tn and Zn. Introduce the multiplica-
tive submonoid V = {1,−1, 0} ⊆ Z and its submonoids U = {1,−1} and
E = {1, 0}. We denote the elements 1 and −1 also by + and − (respectively).

Let Wn ⊆ V 2n+1 be the submonoid formed by the collections

w = (w1, w2, . . . , w2n+1)

in which w2i+1 ∈ U (i = 0, . . . , n) and wjwj+1 ∈ E (j = 1, . . . , 2n).
Introduce the elements gi, hi ∈Wn (i = 1, . . . , n):

gi = (+, . . . ,+, 0
2i

,+, . . . ,+), hi = (−, . . . ,−, 0
2i

,+, . . . ,+)

and Tn, Zn ∈ k[Wn]:

Tn =

n∑
i=1

(1− [g1]) . . . (1− [gi−1])[hi], Zn = (1− [g1]) . . . (1− [gn]).

Using commutativity of Wn and the relations g2
i = h2

i = gi and gihi = hi, we
get

T 2
n = 1− Zn.

Two actions of Wn and their categories. The monoid Wn acts on the set
U from the left by the rule w · s = w1w2n+1s. Since Tn ∈ k[Wn(s,−s)] and
Zn ∈ k[Wn(s, s)] for each s ∈ U , we have

Tn‖−s→s ◦ Tn‖s→−s = 1s − Zn‖s→s (1)

in k[Wn \\U ].
Consider the one-element set {?} with the left action of Wn. The map U →

{?} induces the functors ωn : Wn \\ U → Wn \\ {?} and k[ωn] : k[Wn \\ U ] →
k[Wn \\ {?}]. For any s, t ∈ U and X ∈ k[Wn(s, t)], we have

k[ωn] : X‖s→t 7→ X‖?→?. (2)
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Graphs. By a graph we mean a pair G = (G1, G2), where G1 is a set and
G2 ⊆ G1 × G1 is a reflexive symmetric relation. The vertices of G are the
elements of G1; its edges are the sets {x, y}, where (x, y) ∈ G2, x 6= y.

A morphism f : G→ H of graphs is a pair f = (f1, f2), where fp : Gp → Hp,
p = 1, 2, are maps such that f2(x, y) = (f1(x), f1(y)), (x, y) ∈ G2. Graphs and
their morphisms form a category Graph.

The cofunctor Q: the algebra of a graph. Let G be a graph. The symmetric
group Σ2 acts on G2 ⊆ G1 × G1 by permuting the coordinates. We have the
projection

kG2 → (kG2)Σ2
, u 7→ ū.

Let A• be the graded algebra concentrated in degrees 1 and 2:

A1 = kG1 , A2 = (kG2)Σ2
,

where, if a, b ∈ A1, then ab = ū ∈ A2, where u ∈ kG2 , u(x, y) = a(x)b(y).
Put Q•(G) = A•. Let Q(G) be the same algebra considered without the

grading. The correspondence G 7→ Q(G) is contravariant in an obvious way. So
we have the cofunctor Q : Graph → k-Alc. We need the following properties
of Q.

1◦. If G is finite, then Q(G) has finite dimension.
2◦. If graph morphisms fi : Gi → H, i ∈ I, form a cover, i. e.,⋃

i∈I
Im fi p = Hp, p = 1, 2,

then the linear map

(Q(fi))i∈I : Q(H)→
∏
i∈I

Q(Gi)

is injective.
3◦. If finite graphs G and H are non-isomorphic, then the algebras Q(G)

and Q(H) are non-isomorphic too. This follows from the Gubeladze theorem [2,
Theorem 3.1]. We give simpler arguments that suffice in the special case that
we will need.

Call a graph G admissible if, for any distinct x, y ∈ G1, there exists z ∈ G1

such that (x, z) /∈ G2 and (y, z) ∈ G2. (For example, any graph without triangles
and pendant vertices is admissible.) We show that an admissible graph G can
be reconstructed from Q(G).

Let A• be a graded algebra concentrated in degrees 1 and 2. Consider the
projective space P (A1). Let [ ] : A1 \ {0} → P (A1) be the projection. Define
on P (A1) a symmetric relation # (dependence): [a] # [b] ⇔ ab 6= 0, and a
preorder .: p . q ⇔ p# ⊆ q#, where r# = {s : r # s}. Let R ⊆ P (A1) be
the set of minimal points, i. e. those points p for which {s : s . p} = {p}. If
A• = Q•(G) for some graph G, then there is the injective map e : G1 → P (A1),
x 7→ [δx], where δx ∈ A1 = kG1 , δx(y) equals 1 if y = x and 0 otherwise.
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The inverse image of # under e equals G2. It is not hard to check that, if G
is admissible, then Im e = R. It remains to add that the graded algebra A•

can be reconstructed from the ungraded algebra A = Q(G): A• is canonically
isomorphic to the graded algebra B• with the components B1 and B2, where
B2 = {b : bA = 0} ⊆ A and B1 = A/B2 (so B2 = A2 and B1 ∼= A1), and the
multiplication induced by that in A.

The graph Bn. Let Bn be the graph shown on the figure. Its vertices are xvj ,
where j = 1, . . . , 2n+ 1, v ∈ V , and v ∈ U if j is odd.
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The monoid Wn acts on Bn from the left by the rule w · xvj = x
wjv
j . Let

w∗ : Bn → Bn be the action of w ∈ Wn. The graph Bn with the action of Wn

gives rise to the functor

Bn : Wn \\ {?} → Graph, ? 7→ Bn, w|?→? 7→ w∗.

Since Fun(Ωr,k-Mod) is a linear category, the cofunctor

Wn \\ {?}
Bn−−→ Graph

Q−→ k-Alc
Lr

−−→ Fun(Ωr,k-Mod)

extends to a linear cofunctor

brn : k[Wn \\ {?}]→ Fun(Ωr,k-Mod).

Lemma. We have bn−1
n (Zn‖?→?) = 0.

Proof. Take p = 1, . . . , n− 1. The monoid Wn acts on Bn from the left. The in-
duced right action on the vector space Q(Bn)⊗p makes it a right k[Wn]-module.
We should show that Q(Bn)⊗pZn = 0.

For i = 1, . . . , n, let Fi be the subgraph of Bn spanned by the vertices xvj
with |j − 2i| 6 1 and let ei : Fi → Bn be the inclusion morphism. Since the
subgraphs Fi cover Bn, the linear map

(Q(ei))
n
i=1 : Q(Bn)→

n⊕
i=1

Q(Fi)
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is injective (by the property 2◦). Raising it to the tensor power p, we get an
injective linear map

Ep : Q(Bn)⊗p →
⊕

i1,...,ip

Si1...ip , Si1...ip = Q(Fi1)⊗ . . .⊗Q(Fip).

The subgraphs Fi are invariant under the action of Wn. The induced right action
on the vector spaces Si1...ip makes them right k[Wn]-modules. The map Ep is a
homomorphism of k[Wn]-modules. Since it is injective, it suffices to show that
Si1...ipZn = 0.

Each element gi acts trivially on the subgraphs Fi′ , i
′ 6= i. Thus, if i is distinct

from i1, . . . , ip, the element gi acts trivially on Si1...ip and thus Si1...ipZn = 0.
Since p < n, such an i exists for any i1, . . . , ip.

The graphs Cs
n (crowns). Take n > 2. For s ∈ U , let Cs

n be the graph
obtained from Bn by identifying xv2n+1 with xsv1 for each v ∈ U . Let fsn : Bn →
Cs

n be the projection morphism. We call C+
n the simple crown and C−n the

Möbius one.
The graphs Cs

n, s ∈ U , are non-isomorphic (the edges containing vertices
of valency 2 form two cycles in C+

n and one cycle in C−n ). They are finite
and admissible, and thus (see the properties 1◦ and 3◦) their algebras Q(Cs

n)
are finite-dimensional and non-isomorphic. We show that the representations
Ln−1(Q(Cs

n)), s ∈ U , are isomorphic.
For s, t ∈ U and w ∈Wn(s, t), let w∗ : Cs

n → Ct
n be the morphism such that

the following diagram is commutative:

Bn

w∗

��

fs
n // Cs

n

w∗

��
Bn

ft
n // Ct

n.

So we have the functor

Cn : Wn \\U → Graph, s 7→ Cs
n, w|s→t 7→ w∗.

The morphisms fsn, s ∈ U , form a morphism of functors fn : Bn ◦ ωn → Cn:

Graph

Wn \\ {?}

Bn

::

fn

/7

Wn \\U .ωn

oo

Cn

cc

Since Fun(Ωr,k-Mod) is a linear category, the cofunctor

Wn \\U
Cn−−→ Graph

Q−→ k-Alc
Lr

−−→ Fun(Ωr,k-Mod)
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extends to a linear cofunctor

crn : k[Wn \\U ]→ Fun(Ωr,k-Mod).

The morphism fn induces a morphism of cofunctors

Fun(Ωr,k-Mod)

nv
k[Wn \\ {?}]

brn

99

k[Wn \\U ],
k[ωn]

oo

crn

ff

i. e., for any s, t ∈ U and X ∈ k[Wn(s, t)], we have the commutative diagram

Lr(Q(Bn)) Lr(Q(Cs
n))

Lr(Q(fs
n))oo

Lr(Q(Bn))

brn(X‖?→?)

OO

Lr(Q(Ct
n))

crn(X‖s→t)

OO

Lr(Q(ft
n))oo

(we used the rule (2)). Since fsn is a cover, the homomorphism Q(fsn) : Q(Cs
n)→

Q(Bn) is injective (by the property 2◦), and thus the morphism Lr(Q(fsn)) is
objectwise injective.

Now assume r = n− 1, s = t and X = Zn. By Lemma, bn−1
n (Zn‖?→?) = 0.

Thus cn−1
n (Zn‖s→s) = 0 (by commutativity of the diagram and the mentioned

objectwise injectivity). We show that the arrows of the diagram

Ln−1(Q(C+
n ))

cn−1
n (Tn‖−→+)

--
Ln−1(Q(C−n ))

cn−1
n (Tn‖+→−)

mm

are mutually inverse. For each s ∈ U , we have

cn−1
n (Tn‖s→−s) ◦ cn−1

n (Tn‖−s→s) = cn−1
n (Tn‖−s→s ◦ Tn‖s→−s) =

= cn−1
n (1s − Zn‖s→s) = 1Ln−1(Q(Cs

n)) − cn−1
n (Zn‖s→s) = 1Ln−1(Q(Cs

n))

(we used the equality (1)).

I am grateful to I. S. Baskov, my conversations with whom resulted in this work.

References

[1] W. Dreckmann, Linearization reflects isomorphism, preprint
(2012), https://www.idmp.uni-hannover.de/fileadmin/institut/

IDMP-Studium-Mathematik/downloads/Dreckmann/lincat.pdf.

6

https://www.idmp.uni-hannover.de/fileadmin/institut/IDMP-Studium-Mathematik/downloads/Dreckmann/lincat.pdf
https://www.idmp.uni-hannover.de/fileadmin/institut/IDMP-Studium-Mathematik/downloads/Dreckmann/lincat.pdf


[2] J. Gubeladze, The isomorphism problem for commutative monoid rings, J.
Pure Appl. Algebra 129 (1998), 35–65.

[3] J.-L. Loday, Cyclic homology, Springer-Verlag, 1992.

[4] S. S. Podkorytov, Commutative algebras and representations of the category
of finite sets, J. Math. Sci. (N. Y.) 183 (2012), no. 5, 681–684.

St. Petersburg Department of Steklov Mathematical Institute
of Russian Academy of Sciences

ssp@pdmi.ras.ru

http://www.pdmi.ras.ru/~ssp

7

mailto:ssp@pdmi.ras.ru
http://www.pdmi.ras.ru/~ssp

