Homotopy similarity of maps. Maps of the circle

S. S. Podkorytov

We describe the relation of r-similarity and finite-order invariants on the
homotopy set [S*, Y] = 71 (Y).
§ 1. Introduction

This paper continues [4]. We adopt notation and conventions thereof. Here
we are mainly interested in the set [S1,Y] = m1(Y); in Part I, however, we
consider a more general case. Let X and Y be cellular spaces, X compact. Let
X be equipped with maps g : X — X V X (comultiplication) and v : X — X
(coinversion). The set YX carries the operations

(a,b)H(a#b:X&X\/Xa—@))Y)

and
a (@ XL X5Y).

We suppose that the set [X,Y] is a group with the identity 1 = Hi,(], the
multiplication

[a][b] = [a # b]

and the inversion

Under these assumptions, we call (X, u,v;Y) an admissible couple.
Put
(X, Y] = {ac[X,Y]|1 X a},

We get the filtration
X,Y] = X, Y]V 2 [X,¥]® D ...

We prove that the subsets [X, Y]+ are normal subgroups and form an N-
series (Theorems 4.1 and 4.3). The equivalence holds

a~b < albe[X, Y]tV

(Theorem 4.2).
In Part III, we concentrate on the case X = S* (with the standard p and
v), when [X,Y] = m1(Y). We prove that

T (Y)(T+1) = 7r+17.‘.1 (Y)



(Theorem 11.2). Here, as usual,
G:'ylGQv?GQ

is the lower central series of a group G.

For a homotopy invariant (i. e., a function) f : m1(Y) — L, where L is an
abelian group, its order ord f € {—00,0,1,...,00} is defined (see [4, § 1]). We
prove that ord f = deg f (Theorem 12.2). Recall that, for a function f : G — L,
where G is a group, its degree deg f is defined (see § 12).

Do invariants of order at most r distinguish elements of 7;(Y") that are
not r-similar? In general, no. For r > 3, there is a group G and an element
g € G\ y"tVG such that, for any abelian group L and function f : G — L
of degree at most r, one has f(1) = f(g) (see [5] for r = 3 and [3| Ch. 2]).
Take a cellular space Y with 71 (Y) = G. Then, by Theorems 11.2 and 12.2, the
homotopy classes 1 and g in 1 (Y') are not r-similar, but cannot be distinguished
by invariants of order at most r.

In Part II, which does not depend on the rest of the paper, we prove group-
theoretic Theorem 9.1, which we need for the proof of the above-mentioned
Theorem 11.2.
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In this part, we discuss operations over coherent ensembles of maps between
arbitrary spaces (§§ 2 and 3) and give our results concerning an arbitrary ad-
missible couple (§ 4).

§ 2. Compositions

Let X,Y, X’ and Y’ be spaces and k : X’ — X and h : Y — Y’ be maps.
Introduce the homomorphisms

v Xy 5 (vXY, <as o <aoks,

and
hy <YX> — <YIX>7 <a>+> <hoa>.

2.1. Lemma. We have
k#((yX>(r+1)) C <YX/>(7~+1) and h#(<YX>(r+1)) C <Y/X>(T+1)-

Proof. Take an ensemble A € (YX)(r+1),
To show that k#(A) € (YX)+) we take T' € F,.(X’) and check that
k#(A)|r» = 0. We have the commutative diagram

K

) (YY) ————— (%) 4
?IT/\L i?lk(T/)
"’ # ’
k#(A) | (YT I A— (YR Al pry=0



where ¢ = k|p/ . Since kE(T") € F.(X), we have Alyry = 0. By the
diagram, k% (A)|7 = 0.

To show that hyu(A) € (V') we take T € F,.(X) and check that
hy(A)|r = 0. We have the commutative diagram

A N My
" B
o—alr YTy — vy b
We have A|pr = 0. By the diagram, hx(A)|r = 0. O

2.2. Corollary. Let a,b € YX satisfy a ~b. Thenaok ~ bok in X" and
hoa~hobin X" .

Proof. There is an ensemble A € (YX),
A= Z U;<a;>,

where a; ~ a, such that A = <b>. By Lemma 2.1, k#(A) = <bo k> and
hy(A) = <hob>. Since all the maps of k#(A) are homotopic to a o k, we get
aok ~ bok. Since all the maps of hy(A) are homotopic to h o b, we get
hoa~ hob. O

§ 3. Joining coherent ensembles
Let X1, X5, and Y be spaces. Introduce the homomorphism
(V) : (YX1) @ (YX2) o (yXavXe) <a> ® <b> +— <a V b>.
3.1. Lemma. For p,q > 0, we have
DY) @ (y¥2)(@) € (yXvXey o,

Proof. Take A € (YX1)(P) and B € (YX2)(9). We show that (V)(A ® B) €
(YXaVXey(p+a) | Take T € Fpyq_1(X1 V Xo). We check that (V)(A® B)|r = 0.
We have T' = T; V T5 for some finite subspaces T; C X;, i = 1,2. We have the
commutative diagram

)

Aep (YX) @ (YX2) —— > (YXVX2)  @)(4eB)
?|T1®?|T1i i?h“
Alm@Blr, (YT @ (YT2) S (YT, (V)(A®B)|r

We have Ty € F,—1(X1) or T € Fy_1(X2). Thus A|lr, =0 or B|p, = 0. By the
diagram, (V)(A ® B)|r = 0. O



§ 4. Similarity for an admissible couple
Let (X, p,v;Y) be an admissible couple.
4.1. Theorem. [X,Y]|"+V) C [X,Y] is a subgroup.

Proof. To show that [X,Y]"*+1 is closed under multiplication, we take a,b €
Y¥ such that §~ a and 9 ~ b and check that § <~ a # b. There are ensembles

DaE € <YX>7
D= E ’LL,L'<d,L'> and FE = E Vj<€j>,
( J

where d; ~ J and e; ~ 9, such that D = <a> and E = <b>. Consider the maps
aVbdiVe;: X VX —Y and the ensemble F € (YXVX),

F = Z Uﬂ}j<di z €5>.
4,
We have
«aTb>— F = (V)(<a> ® <b>) — (V)(D & B) =
— (©)((<a> — D) & <b>) + (VYD & (<b> — E) € (Y XVX)(r+1),

where € holds by Lemma 3.1. Since all the maps of F' are null-homotopic, we
get $ < aVb. Since a# b= (aVb)opu, Corollary 2.2 yields § ~ a # b.

Take a € YX such that § < a. Since af = aov, Corollary 2.2 yields § ~ af.
Thus [X,Y]"*+Y is closed under inversion. O

4.2. Theorem. For a,b e [X,Y], we have
a~b < albelX, Y]+, (1)
Proof. Tt suffices to check the implication
a~b = cH#Ha~c#bd

for a,b,c € YX. Given an ensemble A € (YX),
A= Zui<ai>a

where a; ~ a, such that A = <b>, consider the ensemble F € (Y XVX)

F= Zui<cza¢>.
i

We have
<«c¥bs — F = (V)(<c> @ (<b> — A)) € (Y XVX)(r+),

where € holds by Lemma 3.1. Thus F = <¢V b>. Since ¢V a; ~ ¢V a, we get
cVa ~ ¢Vb. Taking composition with p, we get c#a ~ c#b by Corollary 2.2. [



Theorems 4.1 and 4.2 imply that the relaton ~ on [X,Y] is an equivalence,
which is a special case of [4, Theorem 8.1] (note that we did not use it here).
One can prove similarly that

a’lb & balec[X,Y]rtD, (2)

It follows from and that the subgroup [X,Y]"+1) C [X,Y] is normal.
This is a special case of the following theorem.
Let [, ] denote the group commutator.

4.3. Theorem. Put M* = [X,Y]®) C [X,Y]. Then [MP, M9] C MP+4,
Proof. Introduce the map

(inyov)V(ingor)Ving Ving

(3)
(XL S5 XVXVXVX X VX,

where
(3) . o pnVidx pVidx Vid x
w i X 52XV ——XVXVXY —XVXVXVX
(4-fold comultiplication). For a,b € Y, we have
[(aV b) o¢] = [[a], 0] (3)
in the group [X,Y].
Take a,b € Y such that 9 °~" a and § %~ b. We show that § **<"

(a¥Vb)o(.
There are ensembles D, E € (YX),

D= uj<d;> and E =) vj<e;>,
i J

where d; ~ 9 and e; ~ 9, such that D P=' ca> and E ‘=" <b>. Consider the
ensemble F € (YXVX)

F= Zu2<dl Yb> + ZUJ'<CLY€]'> — Zuivj<di z€j>.
@ J 53
We have
<aVb>—F=)((<a>—D)® (<b> — E)) € <YXVX>(Z7+€1)7

where € holds by Lemma 3.1. Thus F pra-t <aVb>. By Lemma 2.1, (¥ (F) =
<(aVb)o(>. By (3), all the maps of (#(F) are null-homotopic. Thus we get

97 (@ ¥ b) o . =
PArT 11

In this part, which is algebraic and does not depend on the rest of the paper,
we prove Theorem 9.1.



§ 5. Cultured sets

Let E be a set. Consider the Q-algebra QF of functions E — Q. A culture
on E is a filtration ® = (®;),>0 of QF by Q-submodules

Py C P C...CQF

such that
1e q)o and (I)S(bt Q ®s+t-

A set equipped with a culture is called a cultured set. The culture of a cultured
set E is denoted by ®F.

A way to define a culture on a set F is to choose a collection of pairs (u;, s;),
where u; € QF is a function and s; > 1 is a number called the weight, and to
let ®, be spanned by all products u;, ...u;, (p = 0) with s;, +...4+5;, <s. We
define the cultured set

. (4)
as Q™ with the culture given the collection (&;, s;), i € (m), where & : Q™ — Q
is the ith coordinate. Hereafter, we put (m) = {1,...,m}. The cultured set

ZHL
S$1-+-Sm

is defined similarly. We put Qs = Q! and Z; = Z!.

A function g : E — F between cultured sets is called a cultural morphism if
the induced algebra homomorphism h# : QF — QF satisfies g7 (L) C ®F for
all s. A function

9: Q5 s = QL

is a cultural morphism if and only if it has the form

g(@1,. . xm) = (Pi(T1, -+, Tm)) jem),

where P; is a rational polynomial of degree at most t; with respect to its argu-
ments having weights s1,. .., $y,. Cultural maps

ZZ,..sm, — Z:fll...tn
are characterized similarly (their coordinate polynomials need not have integer
coefficients).

Cultured sets and cultural morphisms form a category with products. We

have

m n _ nm+n m
X Qtl...tn - a’nd Zsl.

n _ m—+n
S1...8m S1...8mt1...tn X Ztl...t - Zsl

.Sm n Smti.ty
A cultural morphism g : E — F is called a cultural immersion if g% (®f) =
®F for all 5. Then a function f : D — E, where D is a cultured set, is a cultural
morphism if the composition
pLESF
is. If the composition
ELFha

of two cultural morphisms is a cultural immersion, then g is.



§ 6. The truncated free algebra A/A" D

Consider the algebra A of rational polynomials in non-commuting variables
Ty,...,T,. It is graded in the standard way,

A:EB&.

s=0

Introduce the ideals A® C A,

A =P A,

t>s

We fix 7 > 0 and consider the algebra A/ATTV. Let T; € A/A"+Y be the
image of Tj. An element w € A/AT*Y has the form

_ 2 : (s) w7 T
w = wi1..‘isTi1 ...T,‘s,
$20,41,..., s

where wff)l € Q are uniquely defined for s < r and arbitrary for greater s.

Introduce the group
u =1 +A(1)/A(T+1) g (A/A(T+1))X
with the filtration by subgroups
U=u®ou® ...
where
UG =14 A /A0 s<r+1,

and U) = 1 for s > r + 1. We have [U®), U®] € UGH) In particular,
U C U,
We equip the set U with the culture given by the collection of pairs

()08, 1<s<r i€ (n),
where
51(5)1 U= Q, u ugf)z U= Q
for )
P _
u = Z uj1...jtTj1"‘Tjt
t20, j1,---,5t

with u(®) = 1. Clearly, the cultured set U is a special case of .
For a group G, let Mg : G x G — G be the multiplication.

6.1. Lemma. The function
My :UxU—>U

s a cultural morphism.



Proof. Given u,v € U,

u = Z ugf_)__isTl-l .. .Tis and v = Z ’Uﬁ)_“jtle .. '73},

520,101,000, 20, 41,000

N

with ©(® = v(© =1, we have

— } : (s) &) o
U = uil‘”Z-SvjlmjtTl1 LT Ty Ty,
520, 11,00,
120, 71,..,J¢
. (s) () . . .
We consider w;,” ; and v, ; with s, > 0 here as variables of weights s and ¢,

respectively. In the last expression, the monomial in T; has degree s +t, and its

Ef)lv](f)]t and thus has degree s 4+ ¢. Thus the total coefficient

of each monomial in T'; of some degree z > 0 in this series is a polynomial in
(®)

ugf)z and v;’ ; of degree at most z. O

coefficient is

6.2. Lemma. For u € U®), the function

E,:Z;,— U, r—u”

)

s a cultural morphism. Moreover, it extends to a cultural morphism
Eu : Qs — U

Proof. We have u =1+ w in A/A"Y for some w € A®)/ATTD,

t — —
w = Z U}gl?_itT“ th

128, 81,..050t

For x € Z, we have

E,(z)=u"=(1+w)"= E ( )wp =
p=0
= E E wgtl) R .
1150501ty Tpls--stptp P
P20 128,011,001y,
tp>s,7lp1,...,iptp

-T

T

S|

Consider = here as a variable of weight s. In the last expression, the monomial
in T'; has degree ¢; + ...+ ¢p, which is at least ps. Its coefficient is a rational
multiple of (i) and thus a polynomial in x of degree at most ps. Thus the
total coefficient of each monomial in T; of some degree z > 0 in this series is a
polynomial in z of degree at most z.

The extension FE, exists automatically. O



§ 7. The free nilpotent group N

Recall that we fix numbers n and r. Let F' be the free group on the generators
Zi,...,Zy,. Consider the free nilpotent group N = F/4"t'F. Put N =
YNCN, s> 1.

Following Magnus, consider the homomorphism

Hereafter, the bar denotes the projection to the proper quotient group. The
homomorphism p exists because 4" U = 1, The quotient N(*) / NG+ js abelian
and finitely generated. Since p(N(*)) C v*U C U®), there is a homomorphism

o) NG NG 5 4,

such that 7
p(h) =1+ (R) (mod ACHTY) — heN®.

By Magnus [2] (see also [6, Part I, Ch. TV, Theorem 6.3]), N(&) = p=1(U®)).
It follows that o(*) are injective and N() /N(5+1) are torsion-free and thus free
abelian. It follows that there is a filtration

N=N'DON?D...DNI DNl =1

such that N() = NJs for some 1 = j; < ... < jry1 = ¢+ 1 and NI /N/H
are infinite cyclic. For j < n + 1, we choose N7 be the subgroup generated by
Ziy..yZn and N®. Put s; = max{s | js < j}, j € (q). Clearly, 1 < 51 <

< sg<r,s51=...=5, =1, and NV C N(5). The subgroups N/ C N are
normal.

For each j € (g), choose an element b; € N7 such that b; generates N7 /NJ+1,
In doing so, we put

bj=2;  je(n)
The collection (by,...,b,) is a “Mal’cev basis” [Il, 4.2.2]. For j € (¢ + 1), the
function
Bzt N7 (xj,...,xq)Hb;j...bgq,
is bijective. We put
B=p:79 = N.
The elements o(%i)(b;) € A are linearly independent.

Any group G carries the immanent culture ® with ®, consisting of all func-
tions G — Q of degree at most s (see § 12). If N is equipped with its immanent
culture,

B Zgl...sq — N

becomes a culture isomorphism. The proof is omitted.
7.1. Lemma. The composition
P i Bj . pj
7 Zgj.{jq SN s,

where p? = plni, 18 a cultural immersion.



Introduce the projections
p:QIItl 5 Q, (..., xq) — x5,

and ' _
R:qujJrl*}quj, (l'j.-.,ﬂfq)*—)(IEj+1,...,:Cq).

Proof. We show that 77 is a cultural morphism by backward induction on j.
For j = q + 1, the assertion is trivial. Take j < ¢. Since & € Ni), we have
p(b?) € UL3). We have the decomposition

) ) yxnpitt
W LI =2, x 28T, % U x U228,
where E, ) @ © = p(b;)*. Here cultural morphisms are £, ) by Lemma 6.2,

17! by the induction hypothesis, and My by Lemma 6.1. Thus n? is a cultural
morphism.

For each j € (g), choose a linear functional ¢; : A,, — Q such that
$;(0®1)(by)) equals 1 for k = j and 0 for all other k with sy = s;. Given
j<q+1land z = (zj,...,24) € Z977T1 we have

(@) = p(B(2)) = p(b .. bEe) = p(b) ... pBE).
Assume j < g. Then

W(x) =1+ Z xka( D(by) (mod AGI+D)

in A/ATH) and _ _
() = p(b)™ 1" T (R(2)).
Note that, for any linear functional F': A, — Q, the composition
Flout a7AC+) 24 5 g
is a cultural morphism. For ¢ € Q, we have
(coj)! (W (z)) = cxj, T = (zj,...,1,) € ZIIHL
We show that 7)/ is a cultural immersion by constructing a cultural morphism
67U — (@q J'H

such that 67 o 5/ is the inclusion

Zq J+1 Qq J+1.

Backward induction on j. Let 897! be the unique function U — Q°. Take j < g¢.
Introduce the cultural morphism

(—¢)! By,

L:U Qs; u

10



where Ep(bj) is given by Lemma 6.2. Given x = (z;, ..
L(n’(z)) = p(b;)~%. Introduce the cultural morphism

.y Tq) € 2979 we have

Lxid

NI TR TR VA o T

Hereafter, X combines two morphisms with one source into a morphism to the
product of their targets. We have

0'(n () = 07 (L (2))n’ () = 07+ (p(b) ™" (2)) =

=67 (1P (R(2))) = R(x).
Put
67 :u QSJ X Qsﬁl =Qi ]'H.
We get
07 (1 (2)) = (6,1 (7 (2)),0' (7 (2))) = (2, R(2)) = =. O

7.2. Lemma. Define a function m? by the commutative diagram

79~ J+1 X 79~ ]+14>Zq Jj+1
Sj-Sq Sj-Sq 8j++-8q

BjXﬂji lﬁj
M..;

NI x NI i NI,

Then m? is a cultural morphism. It extends to a cultural morphism

Qq J+1 @q J+1 Qq J+1.

The coordinate polynomials of m? are known as the “multiplication polyno-
mials” [I], 4.2.2].

Proof. We have the commutative diagram

—j+1 —j+1 m’ +1
LI X LT ——————= LT
B7 Xﬁji \LBJ

. . M, .

NI x N7 NJ
ijp]i \ij

M
UxU = .

Here My, is a cultural morphism by Lemma 6.1. It follows from Lemma 7.1
that the composition in the left column is a cultural morphism. Since the
composition in the right column is a cultural immersion by Lemma 7.1, m7? is a
cultural morphism.

The extension M/ exists automatically. O

11



7.3. Lemma. Given an element h € N7, define a function e{l by the commu-
tative diagram

q—j+1
ZSj...Sq
el l,@j
z—h”® .
Zsj — = NJ.

Then e{L 18 a cultural morphism. It extends to a cultural morphism
e - Qs; — QZ;J;F:

The coordinate polynomials of efl are a specialization of the “exponentiation
polynomials” [II 4.2.2].

Proof. The composition
j ; ;
Zy, O ga—itt B i 2y
Sj Sj..-Sq

sends x to p(h)® and thus coincides with E,y, which is a cultural morphism

by Lemma 6.2. Since p? o 7 here is a cultural immersion by Lemma 7.1, e% is
a cultural morphism.
The extension €, exists automatically. O

§ 8. Cultural view of a subgroup of N

Let K C N be a subgroup. For each j € (q), the image of N7 N K in the
quotient N7 /NJ*1 is generated by Bjj for some d; > 0.

8.1. Lemma. There exists a cultural morphism f : Q% . — Q% . such

that - ”
BHK)=fHdiZ x ... x d,Z)

as subsets of Q4.

The morhism f constructed in the proof is a cultural isomorphism, its jth
coordinate f; depends on the first j coordinates of the argument only, and, for
x € Z9, fi(x) € Zif fr(x) € diZ for all k < j. The proof of these properties is
omitted.

Proof. For each j € (¢ + 1), we construct a cultural morphism f7 : QZ;?IJ —
Qg;_j_qu such that

BTN NEK) = (1) MdZ x ... x dyZ)
as subsets of Q?7*!, Backward induction on j. Let f971 : Q° — Q° be the

unique function. Take j < q.

12



Case dj = 0. Then N N K C N7+, Put

idx f7+t

FrQEith=Q,, x QLY L, ——— Q, x Q7 = QLT
Take z = (zj,...,24) € Q4771 We have
(xez7*, flz) e N NK) &
& (re0xZI, gFITYR(z) e NN TINK) <
& (r;=0, FTYR() €djZ x...xd,Z) <
& fl2) €0xdiZ x ... x d,Z.

Case d; # 0. Choose an element k € N/ N K such that k = Ejj in N7 /NI +1,
Consider the cultural morphisms

Qq J+1 _ /df) Qs, Qq J+1
where —p/d; : (z;,...,24) = —x;/d; and ’e\i is given by Lemma 7.3, and
4-d+1 N L% QLI LN Y P a-i
fQuit B gt guoitt 2 o e

where M/ is given by Lemma 7.2. Put

41 pxf 1
£ Qq e § J S]H . Qq J+ )
Take © = (j,...,24) € d;Z x Z979. Then
k~i/digi () € NIF1

and

kg () = B (y),
where y € 74771,

y = (@ (~x;/d;), x).
Thus p(y) = 0 and

kB (x) = B (y) = BT (R(y)) = 7T (R (], (—5/dy), 7))

Take 7 = (15, 2,) € QU9+, Put y = 79 (&) (—;/d),2) € Q9+ and
y =R(y) € Q777. We show that

p(y) =0 (5)
and o
v = i (& (2;/d;).y). (6)

13



It suffices to consider the case x € d;Z x 7977, Then, as shown above, y €
79791 p(y) =0, and _ _
kBB (@) = B (y).
Thus ‘ .
B (z) = kwj/djﬁj (),
which implies @ It follows from and @ that
(z; €d;Z, y €2979) = az€d;ZxZL77.
We have f’(x) = f7*1(y) and
(x ez piz) eN'NK) <«
(x € d;Z x 2977, k~2/4 5 () e N9 N K)
(z; €d;Z, y € 2977, pIT(y) e NNTI N K)
& (zjedZ, YY) edjZx...xd,Z) <
~ (.’Ej S de, f’(i]']) € dj+1Z X ... X qu) 4
& fl)ediZ x ... xd,T. O

= =
= =

§ 9. Defining v"t1G by equations and congruences

9.1. Theorem. Let G be a group with elements g1,...,9, € G. Fix r > 0.
Then, for some q > 0, there are rational polynomials P;(X1,...,X,), j € (q), of
degree at most r and integers dy, ... ,dq > 0 such that, for anyx = (z1,...,2,) €
7",
ar.gin ey G e (Pi(z) € d;Z, j € (q)).
The polynomials P; constructed in the proof have the following integrality
property: for x € Z", Pj(x) € Z if Py(x) € diZ for k < j. The check is omitted.

Proof. We use the constructions of the previous sections of Part II for the given
n and 7. In particular, we let the required ¢ be the size of the Mal’cev basis of
N, the free nilpotent group of rank n and class r. Consider the homomorphism

t:N—=G/yTaG, Zi v ;.

Put K = Kert C N. By Lemma 8.1, there are integers di,...,d; > 0 and a
cultural morphism f: Q% , — Q% . such that

S$1...8
BHEK) = fHdW1Z x ... x d,7)
as subsets of Q4. Define the required polynomials P; by the equality

f(@1, .., 20,0,...,0) = (Pj(2))je(q) x=(21,...,2,) € Q™.

14



Since s1 = ... = s, = 1, the degree of P; is at most s;, which does not exceed
r. Given ¢ = (z1,...,2,) € Z", we have
g gt mod G =t(Z) ... Z)") = t(B(x1, . . ., &, 0,...,0))
in G/7" TG and thus
gt gt ey TG e B(ry,...,20,0,...,00 e K &

-~ f(xl,...,xn,O,...,O)Gdle...xqu ~ (P](x)ede,]e(q)) O

PArT 111

In this part, we consider the group [S!, Y] = m(Y).

§ 10. Managing an ensemble of maps S! — Y
For n > 0 and a group G, introduce the function
M:G" — G, (g1, 9n) = g1 ---Gn-
For K C (n), let wg : G™ — G be the projection.

10.1. Lemma. Consider an ensemble A € <Ysl>,
A = Z U; <>,
iel

such that A = 0. Then, for some n > 1, there exist elements z; € 1 (Y)", i € I,
such that [a;] = M(z;) and the element

Z =Y uj<z> € (m(Y)") (7)
i€l
satisfies (wx)(Z) = 0 in (1 (Y)E) for all K C (n) with |[K| <.

Proof. Take a finite subspace D C S' consisting of n > 2 points. It cuts S' into
closed arcs By, k € (n). A continuous function v : By — Y with v(0By) = {9y}
has the (relative to dBj) homotopy class [v] € m1(Y). For a map w: ST — Y
with w(D) = {9y}, we have

[w] = [] [wls,] (®)
k=1

in 7 (Y) (we assume that By are oriented and numbered properly).
By [}, Corollary 6.2], we may assume that A % 0 for some open cover I' of

S1. We suppose that D is chosen dense enough so that each By, is contained in
some G € I'. Put
v=\/5"

iel
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Let U be the quotient of V' by the identifications in;(x) ~ in;(z) for € By and
i,j € I such that a; =|g, a;. U is a graph. Let h : V — U be the projection.
Introduce the maps

et ST 2LV LNy 58
There is a map ¢ : U — S' such that goe; = idg1. Put

b= a;: V=Y.

<<l

el

m

There is a map a : U — Y such that b = a o h. Clearly, a; = aoe;. Put
D = ¢ Y(D) C U. D is a finite subspace. The map a|5 is null-homotopic
because the inclusion D — U is. Extending the homotopy, we get a map

@:U — Y such that @ ~ a and a(D) = {Jy}. Put a; = Goe; : ST = Y.
Clearly, a; ~ a; and a;(D) = {9y }. Put

2 = ([az‘|3k])ke(n) em(Y)"
‘We have .
i) = @) < [ @ils] = M=),

k=1
where (*) follows from (8)). For k € (n) and i,j € I, we have the implication
ai =la, a5 = [ails,] = [a]5,] (9)

because the premise implies that e; =|p, e; and thus @; =|p, a;.
Consider the element Z € (m(Y)") given by (7). Take K C (n). Put

G(K) = {fy}u |J Gr C 5"

keK

By @, we have the implication
ai =lgrya; =  wk(z)=wk(z).

Suppose that |K| < r. Then A|g k) = 0 because A % 0. Thus (wk)(Z) =0. O

§ 11. Similarity on 71 (Y")
11.1. Lemma. Let G be a group. Consider an element Z € (G™),
Z = Z U;<Zi>,
iel

where I has a distinguished element 0 and ug = 1. Suppose that (wx)(Z) =0

for all K C (n) with |K| <7 and M(2;) € "G for all i # 0. Then M(z) €
r+1

YTGL
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Proof. We have z; = (z;1,... ,2zin), where z;;, € G. Take distinct g1,...,9m € G
that include all the z;;,. We have

Zik = Hgl[zyik_gl]
=1
and thus o
M(z) =[] TTa™ ™"
k=11=1

Hereafter, given a condition C, the integer [C] is 1 under C and 0 otherwise.
By Theorem 9.1, for some g > 0, there are rational polynomials P;(X), X =
(Xr)ke(n), 1e(m) J € (q), of degree at most r and integers d; > 0 such that, for
any collection @ = (Zr1)ke(n), 1e(m)> Tkt € Z, we have the equivalence

n m
[II]serc & (Piz)edZ, je<(q).
k=11=1

Order the set (n) x (m) totally. We have

Pj(X) = 3 P X - X,
0<s<r,
(k1,l1) <. < (ks Ls)

for some Pj(lizll..iksls € Q. We have

> wiPi(([zik = gi))ke(n), 1e(m)) =
el

s (%)
= Z Pj(kzll...ksls Zui[zikt =g, t€(s) =0, (10)

0<s<r, el
(k1,01) < Kk ls)

where (x) holds because the inner sum is zero, which is because (wx)(Z) = 0
for K = {ki1,...,ks}. Since M(z;) € y"1(Q) for i # 0, we have

Pi(([zik = 91 ke(n),1e(m)) € d;Z (11)
for ¢ # 0. Since uy = 1, it follows from that holds for ¢ = 0 too. Thus
M(z0) € v"H1(G). O

11.2. Theorem. LetY be a cellular space. Then
m(YV)0+D = 4+l (7). (12)

Proof. The inclusion D in follows from Theorem 4.3. To prove the inclusion
C, we take a € YS' such that 9 < a and check that [a] € 4”17y (Y). There is

an ensemble D € <Y51>,
D= Z Uy <dy>,

17



where d; ~ 9, such that D = <a>. By Lemma 10.1, for some n > 1, there are
elements z,w; € w1 (Y)™ such that M(z) = [a] and M (w;) = 1 in 7r1(Y) and,
putting

W = Zui<wi> S <7T1(Y)n>v

we have (wk)(<z> — W) =0 for all K C (n) with |K| < r. By Lemma 11.1,
M(z) € 4"l (Y), which is what we need. O

§ 12. Finite-order invariants on 71 (Y)

For a group G, (G) is its group ring. Let [G] C (G) be the augmentation
ideal, i. e., the kernel of the ring homomorphism (called the augmentation)
(G) = Z, <g> 1.

12.1. Lemma. Let G be a group and Z € (G™) be an element such that
(wr)(Z) = 0 in (GK) for all K C (n) with K| < r. Then (M)(Z) € [G]"*!
(C(G)).

Proof. For K C (n), consider the function
ex 1 GN = G", (9r)kex = (Gr)ren),
where g equals g if K € K and 1 otherwise, the composition
kG S GRS G

and the homomorphism Sk : (G™) — (G™),

Sk =Y (=1)*"(pp).

LCK
It K = {ki,...,k}, k1 < ...<k, then

((M) © Sk )(<(gr)rem)>) = (L= <gr,>) -+ (L = <gx,>)
n (G). Thus

Im((M) o Sk) € [G]' %1, (13)
We have
S DS = 3 (=)E ST ()
KC(n) KC(n) LCK
= > (¥ (~1)'E1) (o).
LC(n) KC(n):K2L

The inner sum equals (—1)"[L = (n)]. Thus

> (=D)KISK = (py) = id(g).

KC(n)
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For L C (n), |L| < r, we have (p)(Z) = {er)({wr)(Z)) = 0. Thus Sk (Z) =0
if | K| < r. We get

7= (-1)¥sk(2) = > (—1)"1Sk(2).
KC(n) KC(n):|K|zr+1

Thus
(M)(Z) = > (=)IE(M) 0 Sk)(2).

KC(n):|K|=r+1
By ([13), (M)(2) € [G]"*. O

A function f : G — L, where L is an abelian group, gives rise to the
homomorphism
TG =L, <g> f(g)
We define deg f € {—00,0,1,...,00}, the degree of f, as the infimum of r € Z
such that +f|[G]T+1 = 0 (adopting [G]°* = (G) for s < 0).

12.2. Theorem. Let Y be a cellular space, L be an abelian group and f :
m1(Y) — L be a homotopy invariant (i. e., a function). Then ord f = deg f

Proof. We suppose f # 0 omitting the converse case.
(1) Suppose that ord f < r (r > 0). We show that deg f < r. It suffices to
check that

FH((1 = <foa]) - (1= <[apsr])) = 0
for any a1,...,a,41 € YS' . Pt W=51v...vst (r + 1 summands) and
g=a1V...Va41: W =Y.
Let p: ST — W be the (r+1)-fold comultiplication and Ay : W — W, d € £,
be as in [, § 3]. Consider the ensemble A € (YS'),
A= Y (-1)M<a(a)-,
degrtl

where

Clearly,
[a(d)] = [a]™ .. [a ]

in 7 (Y). By [ Lemma 3.1], A = 0. We have

+f((1 —<[a1]>) ... (1 = <[ar41]>)) = Z (_l)ldlf([al]ch o [ar-i-l]drﬂ) —

deg&rtt

= 3 () f(a@)) Do,

degrtt
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where (%) holds because ord f < r.
(2) Suppose that deg f < r (r > 0). We show that ord f < r. Take an

ensemble A € (YS'),
A = Z’(,L1'<CL,;>7
iel

such that A = 0. We should show that

Zuif([ai]) =0.

iel

By Lemma 10.1, for some n > 1, there exist elements z; € m (Y)", i € I,
such that [a;] = M(z;) and the element Z € (m(Y)™) given by satisfies
(wr)(Z) =0 in (1 (Y)E) for all K C (n) with |K| < 7. We have

S wf(lai) = F(MY(2)).

iel

By Lemma 12.1, (M)(Z) € [G]"*'. Since deg f < r, Tf((M)(Z)) = 0. N
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