Homotopy similarity of maps. Strong similarity

S. S. Podkorytov

Given pointed cellular spaces X and Y, X compact, and an integer r > 0,

we define a relation A on [X,Y] and argue for the conjecture that it always
coincides with the r-similarity ~.

§ 1. Introduction

This paper continues [2]. We adopt notation and conventions thereof. Let
X and Y be cellular spaces, X compact. For each r > 0, we define a relation é,
called the strong r-similarity, on the set [X,Y]. We will need it in our next pa-
per [4]. We conjecture that strong r-similarity always coincides with r-similarity
<. Tt follows immediately from the definition that it implies r-similarity and
gets nonstrictly stronger as r grows. We do not know whether the strong -
similarity is always an equivalence. We prove this in the case X = XT (§ 8).
The main results are as follows. Strong 1-similarity coincides with 1-similarity
(Theorem 14.2). (We believe that 1-similarity can be given a homological char-
acterization similar to that of homotopy invariants of order at most 1 [1].) If
X = S' the strong r-similarity coincides with the r-similarity (§ 24). All
(r 4 1)-fold Whitehead products are strongly r-similar to zero (Theorem 27.2).

§ 2. Definition of strong similarity

Augmentation. For a set V', introduce the homomorphism
e: (V)= 1Z, <v> 1,

the augmentation. An ensemble S € (V) is called affine if €(S) = 1.
Hash product. Given a wedge

T=\/ T

i€(m)
(hereafter, (m) = {1,...,m}) and a space Z, we have the Z-multilinear opera-
tion _
H# [ 2™ - (2", H o<wi-=<\/ v
i€(m) ie(m) 1€(m) 26711)

Simplex and its faces. Fix a nonempty finite set E. Let Py (E) be the set of
nonempty subsets F' C E. Let A(E) be the set of subsets A C P, (F) such that
all F' € A are disjoint (layouts).



Let AFE be the simplex spanned by E. For F' € P, (F), AF C AFE is a face.
For A € A(E), put
A[A]= | J AF CAE.
FeA
Fissile ensembles. For A € A(E), we have

AlAly = \/ (AF),.

FecA

Hereafter, U, = U U {9}. Given a space Z, we call an ensemble S € (Z(AF)+)
fissile if, for each A € A(E),

NN FilétASkAF)Jr (1)

in (ZAM),

An ensemble of the form <v> is fissile. A fissile ensemble is affine (take
A = @ in the definition). An affine ensemble S is fissile if it satisfies for
all A with |[A| = 2. Given a space Z D Z, we have (Z(AE)+) D (Z(AE)+): the
ensemble S is fissile as an element of (Z(AE)+) if and only if it is fissile as an
element of (Z(AF)+),

Spaces of maps. Let X and Y be cellular spaces, X compact. Then Y is the
space of maps X — Y; its basepoint is the constant map ﬂ;{ Given a map
a: X =Y, we define the spaces (Y, a) as YX with the basepoint moved to a
and Y;X as the basepoint path component of (Y*,a). For an unpointed space
U, introduce the function

oY :YX -5 Y ¥, )%, 0J(d)(u)=d (ueU), 6Y(d)(F) =a.
The filtration (Y™, a)T)$). Let T be a space. The function
0% . (vX,a)T — yTxX, 0% (v)(t, ) = v(t)(x),
induces the homomorphism
(O%) A *,a)F) = (YT,
The filtration of (YT*X) (see [2]) induces a filtration of ((YX,a)T):
<(YX7G,)T>(;) _ <DX>—1(<YTxX>(s))_

Strong similarity. Let X and Y be as above and a,b : X — Y be maps. We
adopt the inclusion ((Y;X)T) C ((YX,a)T). We say that a is strongly r-similar
to b,

a b,

if, for any nonempty finite set F, there exists a fissile ensemble S € ((V;X)(AF)+)
such that
GAE(b)> — S e (Y, a) A0+,



We have a %~ a (put S = <62F(a)>). Clearly, a ~ b implies a ~ b (take
E = {e}). We prove below (Theorem 6.2) that the relation & is homotopy
invariant.

§ 3. On the filtration ((YX,a)T>§)

3.1. Lemma. Let X, Y, T and T be cellular spaces, X, T and T compact, and
a:X =Y and k:T — T be maps. Then the homomorphism

(Y%, a)f) (VX)) = (v, a)T)
takes ((YX,a)T>g?) to ((YX,a)f>g§).
Proof. We have the commutative diagram

(@%)
(Y, a)T) ————— (YT%)
<(Yx’a)k>l i<yk><idx>

(@)

(YX,a)T) (YTxX),

By the definition of (Y, a)T)g?), (O%) takes it to (YT*X)() | By [3, Lemma 2.1],
(Ykxidx) takes the latter to <YTXX>(S). By commutativity of the diagram,
(YX,a)k) takes (YX,a)T)) to (O%)"1((YT*X)(®), which is (YX,a)T)§)
by the definition of the latter. O

The case a = ﬂé

3.2. Lemma. Let X, Y, and X be cellular spaces, X and X compact, and
k: X — X be a surjective map. Then the homomorphism

(Y5 (vX) = (v ¥

satisfies -
(Y5O = (") (Y ). (2)

Proof. By [3, Lemma 2.1], (Y*) preserves the filtration, which yields the inclu-
sion C in . Check the inclusion D. Take V € <Yk)_1(<Y)?>(S)) and show
that V € (YX)(®), Take R € F,_1(X). We should check that V|p = 0. We
have R = k(Q) for some Q € F,_1(X). Since (Y*)(V) € (YX)®), we have
(Y*)(V)|g = 0. We have the commutative diagram

v B Ry g,

(Yk>l l(yh)
> ?
whwy (YY) BLY Yo, o

where h = k|g_ . Since h is surjective, (Y") is injective. Thus V| =0. O



Let X, Y and T be cellular spaces, X and T compact. Let
X . (YX)T — yTrxX
be the standard bijection. Consider the homomorphism
(O (Y N)T) =y ™).
Lemma 3.3. One has
(YN = @) (T,
Proof. We have the commutative diagram

(@%)
—_—

(Y)T) (YTA)
(0% iwk)
<YTXX>,

where k : T'x X — T A X is the projection. By definition,
(Y9ONY =@ ©).

By Lemma 3.2,
<YT/\X>(5) — <Yk>_1(<YTXX>(S)).

The desired equality follows. O

§ 4. Primitive transforms

Let Z and Z be spaces and g : Z — Z be a map. For a compact cellular
space T, we have the map g7 : Z7 — Z7.

Lemma 4.1. Let E be a nonempty finite set. Consider the homomorphism

<g(AE)+> . <Z(AE)+> - <Z(AE)+>.

Then, for any fissile ensemble S € (ZAF)+) | the ensemble (gAF)+)(S) is fissile.



Proof. Take A € A(E). We have the commutative diagram

(1)

(S)reat (g@B1)(S)) rea
i TR T
IT (zaP+)= 1 (Z&P)-)
(2) FeA FeA (3)
?
FI;IA(?I(AF>+) Fl;[A(g(AF)+) N\LFI;IA( l(ar),)
(SlamyIrea 1 (ZA+) [T (ZAP+)  (a@D4) () am, ) rea
T FeA FecA -
(4) F:EtA \LF:E:A (5)
AlA] -
Slatal, (zally T Aty # (gD () am
FeA
LNV T'?\A[Ah_
( ) -~
© (Z(DB)+) _ e S (Z(BB)+y, ™)
St © (BB +)(3)

The sending (4) is fissility of S. The sendings (1), (2), (3), (5), (6), and (8) are
obvious. The sending (7) follows. It is fissility of (g(2#)+)(S). O

Primitive case. Let X, Y, X , and Y be cellular spaces, X and X compact,
and g : YX — YX be an unbased map (a transform). We suppose that the
transform g is primitive: for each point w € )~(, there is a point k(w) € X and
an unbased map h" : Y — Y such that

g(d)(w) = h*(d(k(w))),  deY™.
For amap a: X — Y, we have the map g : (Y, a) — (?X,g(a)).
Lemma 4.2. For a map a: X — 'Y and a compact cellular space T, the homo-

morphism (g7) takes ((YX,a)T>(§) to <(}~/)~{,g(a))T>§).

Proof. We may assume that k(J5) = y and h7%x(9y) = J5. We have the
function B
K=idxk:TxX—=TxX.

For Q € F,_1(T x X), we have K(Q) € F,_1(T x X). We have the function
H:YRQ S99 H)(tw) = i (K (L w), () €Q, ue YKQ),
and the commutative diagram

X
(¥ a)Ty “T ey K9y

<9T>l l(H)

~ = x ~ = 7 ~
() S 79),



By the definition of ((YX,a)T)(;), it goes to zero under the composition in
the upper row. Thus its image under (g7) goes to zero under the composition
in the lower row. Since ) was taken arbitrarily, this image is contained in

(VX g(a))Y. 0

Lemma 4.3. Let a,b: X — Y be maps such that a ~ b. Then g(a) ~ g(b).

Proof. Take a finite set E. We have a fissile ensemble S € ((Y;X)(AE)+) such
that
<B2E(b)> — S € (YX,a) BB+,

Consider the homomorphism
(gBF5) (VX a)B) 5 (VX g(a)) A7),

Since

055 (g(b) = g\ AP+ (0227 (b)),

we have

b (9(0)> — (g BF)(8) = (¢ BF) (<627 (b)> - 9),

which belongs to ((?X7g(a))(AE)+>g~:+1) by Lemma 4.2. By Lemma 4.1, the
ensemble (g(AF)+)(9) is fissile. Since g is continuous, it takes Y.X to ?g)(?a).
Thus .

(g BE)(S) € (T 2B,

We are done. O

§ 5. Compositions and smash products

Compositions. Let X, Y, X , and Y be cellular spaces, X and X compact.

Corollary 5.1. Let k : XX andh:Y—>§/ be maps and a,b: X — 'Y be
maps such that a ~b. Thenaok~bok inYX and hoa~hob in YX.

Proof. The transforms
vX 5YX,  dedok,

and _
yX 5 vX, d+ hod,

are primitive. By Lemma 4.3, they preserve strong r-similarity. U

Corollary 5.2. Letk: X — X andh:Y~—>}~/ be maps and a : X — Y be a
map such that $~a. Then Y~aok inYX and 9~ hoa in YX.

Follows from Corollary 5.1.



Smash products. Let X, Y, and T be cellular spaces, X and T compact.
Corollary 5.3. Let a,b: X — Y be maps such that a 2~ b. Then the maps
aNidp,bANidp : X AT =Y AT
satisfy a A idp ~bA idp.
Proof. The transform
Y¥ 5 (Y AT)XM . des dAddy,
is primitive. By Lemma 4.3, it preserves strong r-similarity. O
Corollary 5.4. Let a: X =Y be a map such that %~ a. Then the map
aNidp : X AT =Y AT
satisfies % a Aidr.

Follows from Corollary 5.3.

§ 6. Homotopy invariance

Let X and Y be cellular spaces, X compact.
Lemma 6.1. Let maps a,b,a: X =Y satisfy
a~a~b.
Then @~ b.

Proof. By definition, the relation ~ tolerates homotopy of its left argument. In
detail. For an unbased space U, we have the bijection

eV (YX o)V — (YX a)V+, V() =y v, V() () =a.
Clearly,
(0 (d) =67 (d), dey™. (3)
Since a ~ @, eV takes (Y;¥)U+ to (Yz¥)U+.
The homomorphism

() (Y™, a)7) = (Y, @)7)

takes ((YX,a)UJr)g?) to <(YX,5)U+>§). Indeed, we have the commutative dia-
gram
(")

(YX,a)P%) (YX,a)V)
(Dx>l l@X)
(YU xXy H<a> (Y U+ x X)Xy ") (YU+xX),



where k: Uy x X — (U x X) V X is given by the rules
k(u,z) = iny (u, z), k(9,z) = ina(x), vel, reX.

In the lower row, (YU+*X)(5) goes to (Y(U+*xX)VX)(9)) by [3] Lemma 3.1]
and then to (YU+*X)() by [3, Lemma 2.1]. This suffices by the definition
of {(YX,0)7) and (Y, @)"0) ).

Take a nonempty finite set E. For A € A(F) and a collection Sp €
(YX,a)AF)+) F € A, we have

(M) (H Sr) = H 2F(Sr) (4)

FeA FeA
in ((YX,a)2Fl+). We have a fissile ensemble S € ((V;X)(AF)+) such that
<GP (b)> — 5 € (Y1) AP+, ()

We get the ensemble (e2F)(S) € ((YZX)(AE)+), which is fissile. Indeed, for
A € A(E), we have

()

(€2F)(9)|apa, = (€M) (S|apa),) =
(since S is fissile)
= <6A[A]>( H S‘(AF)+) _

FeA

(by @)

— H (2 (Slam,) 2 H 5 am,
FecA FecA

(the equalities (*) hold by naturality of eV with respect to U). We have
<O25(0)> — (2F)(S) = (by @) = (2F)(<02F (b)> — 5) € ((¥5°) ),
where € follows from (f]) because (e2F) preserves the filtration. Thus @ ~b. O

Theorem 6.2. Let maps a, b,?i,gz X =Y satisfy

T
a~a=xb~b.

Then @ ~ b.

Proof. We crop Y and assume it compact. By [2, Corollary 4.2], we can continu-
ously associate to each path v : [0,1] — Y an unbased homotopy F:(v) : Y — Y,
t € [0,1], such that Ep(v) = id and E:(v)(v(0)) = v(t). Let hy : X — Y,
t € [0,1], be a homotopy such that hyg = b and hy = b. For x € X, intro-
duce the path v, = he(z) : [0,1] — Y. We have v,(0) = ho(z) = b(z) and

vz(1) = h1(x) = b(z). Introduce the homotopy

H: X xY =Y, te(0,1],  Hiz,y) = Ei(v.)(y).



We have
Ho(z,y) = Eo(va)(y) =y
and
Hy(,b()) = By (02) (b()) = E1(v2)(02(0)) = v,(1) = b(a).

Consider the primitive transforms
gt : vY - YXa te [Oa l]a gt(d)(x) = Ht(xvd(x))

We have d = go(d) ~ g1(d), d € YX, and g1(b) =b.
We have , -~
ar~a~gi(a)~gi(b) =0,

where & holds by Lemma 4.3. By Lemma 6.1, a ~ b O

Using Theorem 6.2, we define the relation of strong r-similarity on the set
[X,Y] by the rule
[a~[)] < a&b.

§ 7. Joining ensembles

Let X1, Xs2,Y, and T be spaces, X; and T compact. Consider the Z-bilinear
operation

Ho <(YX1)T> % <(YX2)T> N <(YX1VX2)T>, <v1> Hp <vg> = <>,
v(t) =v1(t) Vua(t) : X1V Xy =Y, teT.

Lemma 7.1. Let E be a finite set and S; € (Y X)(AE)+) § = 1,2, be fissile
ensembles. Then the ensemble

Si#am), S € (Y¥1VX2)88))
is fissile.

Proof. Take A € A(E). We have the commutative diagram

I1 #@ae) .,
IT (Y X) (BB x (¥ Xa)(aE) ) 2 [T (¥ XevXe)ams)
FeA FcA
FI;[A(?I(AF)+ lar) 11«“1;[,4?|(AF)Jr
[1 #aar,
IT (1) (3P x (7 X)(@F) ) 2 [T (¥ X))
FeA FeA
F:EtA X F:EtA FeA
(X)) s (v Xa)alele) Ty )alale)
?atary X?agar, N
#(AE)+

(Y X)BB)) x (1 2) (BB (Y XivXa)am)



with the sendings
1)

((51,52))Feal (S1#ap), S2)rea
(2) (3)
((S1l(ar)S2lar) ) Fea ((S1#ap), S2)lar) )Fea
(4) (5)
(S1laga)y Szlagary) H (Si#@ar S2)lar,
Fea
(6) (7)
(8)
(S1,52) Si#am), S2-

The sending (4) holds by fissility of S; and Ss. The sendings (1), (2), (3),
(5), (6), and (8) are obvious. The sending (7) follows. Thus S Hap), S2 is
fissile. O

Lemma 7.2. We have
(VT e (V)G ()T,
Proof. Take ensembles
Zie (YN Ze (v,
We have the commutative diagram

(YX)T) x (YX2)T) —EL o (yXavXo)T)
<GX1>x<GX2>J/ i@xlw‘%

(YTAX1) x (YTAXz) H <Y(T/\X1)V(T/\X2)>

(we used distributivity of smash product over wedge) and the sendings

(Z1,25) | ZrtrZs
I |
(B¥)(20)(072) (22)) b= (@51 %2) (21887 22).
By Lemma 3.3,
(B )(20), ©¥)(Z) € (YT 0 (yT03) 0
Thus, by [3} Lemma 3.1],
<ﬁX1VX2>(Zl ttr Zo) € (Y TAXDV(TAX)) (+),
Thus, by Lemma 3.3,
Zy $tr Zy € (Y22 oha), -

10



Corollary 7.3. Let maps a; : X; =Y, i=1,2, satisfy 9 ~ a;. Then the map
alyagin \/X2—>Y
satisfies ~ a1 Vas.

Proof. Take a finite set E. We have fissile ensembles S; € ((Yé(i)(AE)*}, i=1,2,

such that
<037 (ar)> = Si € (Y X)BP0) T,

By Lemma 7.1, the ensemble
S1#ap), S2 € <(YqX1VX2)(AE)+>
is fissile. We have
<9<A1E(a1 Vas)> — S1 #agr), S2 =
= <05%(a1)> #(ap), <057 (az)> — S1 #ap), S2 =
= (<05 (a1)> — S1) #am), <057 (az)> +
+ 51 #am), (<037 (az)> — o) € (VXY BRI THR |

where € holds by Lemma 7.2. We are done. O

§ 8. Strong similarity for an admissible couple

Let X and Y be cellular spaces, X compact. Let X be equipped with maps
p: X — X VX (comultiplication) and v : X — X (coinversion). The set Y
carries the operations

(a,0) = (axb: X % xvx Ly

and
a— (@ XL X 5Y).

We suppose that (X, u,v;Y) is an admissible couple in the sense of [3], that is,
the set [X,Y] is a group with the multiplication

[a][b] = [a  b],
the inversion
and the identity 1 = [ﬂf,(] We are mainly interested in the case of X = XT

with standard p and v.
We proceed parallelly to [3]. The subsets

(X, V] = fa e [X,Y]|1~a}
form the filtration

(X,Y] = [X, V] o [x,v](®) > .

11



Theorem 8.1. [X,Y](("*1) C [X,Y] is a normal subgroup.

Proof. Take a,b : X = Y, 9 ~ a,b. Check that 9 A~ a*b. We have the
decomposition

axb: X % xXvx -y
By Corollary 7.3, ﬂévx % aV b. By Corollary 5.2, 9 & a*b.
Takea: X — Y, 9 % a. Check that J A~ af. We have the decomposition
Al X5 XY

By Corollary 5.2, 9 ~al.
Takea,b: X =Y, 9 & a. Check that 9 & bl % (axb). Consider the primitive

transform
YX¥ 5 vX de— b« (dxb).

We have .
ﬂif NbT*(ﬂi/(*b) sz*(a*b),

where ~ holds by Lemma 4.3. By Lemma 6.1, § & b' % (a * b). O
We do not know whether the subgroups [X,Y]((*)) form an N-series.

Theorem 8.2. For a,b € [X,Y], we have
ar~b < a'bel[X, Y]+

Proof. 1t suffices to check that, for maps a,b,c: X =Y, a ~b implies ¢ * a ~
¢ b. This follows from Lemma 4.3 for the primitive transform

YX 5 v¥, d— cxd. O

It follows from Theorems 8.1 and 8.2 that, for an admissible couple (X, u, v;Y),
the relation & on [X, Y] is an equivalence.

§ 9. Presheaves and extenders

Let P be a finite partially ordered set and C' be a concrete category. (Con-
creteness is not essential; we assume it for convenience of notation only.) A
cofunctor S : P — C is called a presheaf. For p,q € P, p > q, we have the
induced morphism

?lg: S(p) — S(q)

(the restriction morphism).
For a preasheaf U : P — Ab, we have the isomorphism

Vp: @U(p) — @ U(p), in,(u) — Z ing(uly), ueU(p), peP.

peP peEP g€ P[p]

12



Hereafter,
Plpl={qeP|p>q}
and
ing : U(q) — @ U(p)
peEP

are the canonical insertions.

Suppose that P has the infimum operation A and the greatest element T.
It follows that P is a lattice. We put P* = P\ {T}. An extender X for the
preasheaf S is a collection of morphisms

A S(q) = S(p),  pa€P, p=gq,

such that, for p,q € P and s € S(q),
)‘Z(S)|q:5 ifp=>gq

and
AT (8)|p = AP (slpng)-
In particular,
Ap(s) = AT (s)lp-

(The extenders we deal with satisfy the identity Ao Ay = A,. We neither check
nor use this.)

Consider a preaheaf U : P — Ab with an extender A. The symbol &
below denotes the homomorphism of a direct sum given by its restrictions to
the summands.

Lemma 9.1. For q € P, the diagram

8 ¥
Vp peEP

D Ulp) = D Ulp)

pEP pEP
pr Rq _ ?‘q
D A7

Vera PEP[q]

u(T)

@ Ulp) ~ @ U U(q),
pEP[q] pEP[q]
where Ry is the homomorphism defined by the rule
iny(u) = inpag(ulpng),
18 commutative.
Direct check. O

Lemma 9.2. The homomorphism

U(T) — lim U(p), w = (ulp)pepx,

peEPX

18 surjective.

13



Proof. Take a collection

(p)perx € lim U(p) C P vp).
peEPX

Define a collection (vp),cpx and a section u by the diagram

5
er

@ Ulp) ~ @® Ulp)

peEPX peEPX

U(m.
(up)pepx < (Up)pepx ———————>u

Take ¢ € P*. We show that u|, = u4, which will suffice. In the diagram of
Lemma 9.1, we have

(1) (2)

(up)pep i (vp)pep u
(3)i (4)I 1(5)
(6) , (7)
(up)peprql ting(ug) | Ug,

where we put ut = vt = 0 in U(T). The sendings (1) and (2) follow from
the construction of the collections. The sending (6) expresses the equalities
Uqglp = up, p € P[q], which hold by the definition of limit. The sending (3) is
obvious. The sending (4) follows because the left square is commutative and
Vprq is injective. The sending (7) is the equality A = id, which follows from
the definition of extender. By commutativity of the right square, the sending
(5) holds, which is what was to be checked. O

§ 10. The abstract fissilizer ®” on (M(FE))

Fix a nonempty finite set E. The set P« (E) is partially ordered by inclusion.

For A, B € A(E), wesay A > B if, for each G € B, there is F' € A such that
F D G. Such an F is unique; we denote it by (A)G. The set A(E) becomes a
lattice with the infimum operation

ANB={FNG|FeA GeB}\{o}

and the greatest element T = {E}.
Let Mg be the category of sets and M : P, (E) — Mg be a presheaf. We
define a presheaf M : A(F) — Mg. For A € A(E), put

M(A) = [ M(F).

FeA

For A, B € A(E), A > B, define the restriction function

M(A) —» M(B),  m~— m|p,

14



by putting, for m = (mp)pca,

m|p = (maclc)cen-

Clearly, M({E}) = M(E).
Taking composition with the functor (?) : Mg — Ab, we get the presheaves

P« (E) — Ab, F— (M(F)),

and
A(E) — Ab, A (M(A)). (6)

For A € A(E), we have the Z-multilinear operation

o [T M) = (), FHF <mp> = <(mp)rea> (7)
FEA pca FeA

(cf. § 2). For Q € (M(E)) and A € A(E), put

QF(A) = H Qlr € (M(4)).

FeA

We call an ensemble R € (M(E)) fissile if, for any layout A € A(E),
R|a = R*(4)

in (M(A)).
We suppose that the presheaf M has an extender

Aj:M(B)— M(A), A BeA(E), A>B.
Then the preasheaf @ has the extender
(\Z) - (M(B)) = (M(A4)),  ABeA(E), A>B.

For Q € (M(E)), define an ensemble ®£(Q) € (M (E)) by the rule

S ey
Va(e) AEA(B)
(M(A)) = D (M(4) (M(E)).
A€A(E) AcA(E)
Q* i V;&E)(Q#) m—— 2 (4))

We get a function (not a homomorphism)
®F - (M(E)) — (M(E)),
which we call the fissilizer.

Lemma 10.1. For any ensemble Q € (M(E)), the ensemble ®F(Q) is fissile.

15



Proof. Take A € A(E). We have the commutative diagram

# 1 vi(E)(Q#) f — <I’E(Q
D (Aigy)
Vam) a€A(E)
D (M(a)) = ® (Ma)) (M(E))
a€EA(E) a€A(E)
pr\L RA\L é l
Vae)ral aeﬂ(_)(/ﬂ
(M(a)) = M(A))
acA(E)[A] a€A(E)[A]
JA\L% ® Ve JA\LE FEA( E (A{F})) l
FcA be
(D (M) = X ( D (MD) (M(F
EA beA(F) FEA beA(F) FeA
H _ F
R ®, Vil @i 8, @i

where the upper half comes from Lemma 9.1, I4 is the isomorphism defined by
the rule

<(mF)FeA> — ® <mp>,
FeA

and J4 is the isomorphism defined by the rule

ina(<m>) = ® inu,/\{F}(<m|a/\{F}>)
FeA

(note that aA{F'} € A(F) C A(F)). Commutativity of the lower half is checked
directly. The sendings in the upper row hold by the definition of ®¥. The
sendings in the lower row hold by the definition of ®F : (M(F)) — (M(F)).
The sending in the left column is checked directly. The sending in the right

column follows. Since
In: # ar— Q) ar
FeA FeA

for gr € (M(F)), F € A, we get

F(Q)la= H 2"(Qlr).

FeA
In particular, for A = {F'}, this gives
25(Q)lr = 2" (Qlr).

Thus, for arbitrary A,

P(Q)a= H "(Q)lr.

FeA

Thus ®F(Q) is fissile. O
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Let N(A) C (M(A)), A € A(E), be a collection of subgroups preserved by
the restriction homomorphisms and the homomorphisms (A5).

Lemma 10.2. Let an ensemble Q € (M(E)) satisfy
Q™ (A) - Qla € N(4)
for all A € A(E). Then
®”(Q) - Q € N({E}).
Proof. We have the presheaf
A(E) = Ab, A (M(A))/N(A),

with the induced restriction homomorphisms. We have the commutative dia-
gram

(Qla)aeca(r) {ing gy (Q) Q

Q¥ IV ot (@) 27(Q)

D iy
AE%E)<M(A)> <v1$AE§RE)<ZM(A)> . <M1E)>

(M(A))/N(A)<=—— D (M(A)/N(A) —— (M(E))/N{E}).
A€A(E) A€A(E)

Va(e)
-~

The upper line of sendings is obvious. The lower line of sendings holds by the
definition of ®¥. By hypothesis, the difference of the elements in the upper-left
corner descends to zero. Since V 4(gy in the lower row is an isomorphism, the
difference of elements in the upper-right corner also descends to zero. O

§ 11. Topological and simplicial constructions

Topological cones. Take s € {0,1}. Given an unpointed space U, form the space
C°U = (U x[0,1])/(U x {s}),

the cone over U. The innate basepoint (where U x {s} is projected) is called
the apezr. Using the “base” embedding

u—(u,1—s)

U U x[0,1] 2 c*U,
we adopt the inclusion U C C*U and the based one U, C C*U. A path of the

form
t—(u,t)
—

[0,1] Ux[0,1] 2 cUu

17



is called a generating path. For an unpointed subspace V' C U, we have C*V C
C°U. 5 .

Notation: C = C°, C = CL.
Topological suspensions. For an unpointed space U, the unreduced suspension
3U is the colimit of the diagram

{0,1} & U x {0,1} 2 U x [0,1].

Let sy, € fg be the point coming from s € {0,1}. We appoint Oy, to be the
basepoint of XU.
We use also the usual reduced suspension 3.

Unreduced Kan cones. Let A™ be “the n-simplex”, the simplicial set represented
(as a cofunctor) by the object [n] of the simplex category. Take s € {0,1}. Let
6° : A — A! be the morphism induced by the function % : [0] — [1], 0 — 1 —s.
Given a simplicial set U, we define its cone C*U. There is a unique (up to an
isomorphism) Cartesian square

U—i.cU

L,

AOLS-A1

with the universal property expressed by the diagram

T\A;B//7 l
s T

AO

where the lower trapeze is assumed to be Cartesian. The morphism &'~ : A —
A! lifts along p uniquely. This yields a morphism AY — C*U, which makes
C*#U a pointed simplicial set. The basepoint is called the apex. The morphism
1 is injective. Using it, we adopt the inclusion U C C*U and the based one
U, CC°U. We call p the projection.

All constructions are covariant/natural in U. The functor C® preserves
injective morphisms. Using this, we adopt the inclusion C*V C C*U for a
simplicial subset V' C U.

Notation: € = C?, € = C!.

There is a unique natural map r : C*|U| — |C*U]| such that the diagram

C*|U]
|U| v |CSU|
in (= |1])
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is commutative and each generating path of C*|U| is sent to an affine path in
some simplex of |C*U|. The map r is a homeomorphism. Using it, we adopt
that |C*U| = C*|U|.

Reduced Kan cone. For a pointed simplicial set T, introduce the pointed sim-
plicial set @T = CT/C(9), where () C T is the simplicial subset generated by
the basepoint § € T (so, () = A®). We adopt the obvious inclusion T C &T
and identification &(U,) = CU. & is a functor; it preserves wedges.

Unreduced Kan suspension. For a simplicial set U, introduce the pointed sim-
plicial set ZU = CU/U. It has two vertices: the top lg,, which is the image

of the apex of the cone CUA under the projection ¢Uu -~ 3U , and the basepoint
Ogy (where the base U C CU is sent). We have

18U| = |CU|/|U| = C|U|/|U| = Z|U|.

Thick simplex. For a set U, let EU be the simplicial set with (BU), = UM
(= U™*1) and obvious structure functions.

For each u € U, there is a unique retraction o, : CCEU — CEU sending
the apex to the vertex u € U = (BU)o C (CEU)y. Define retractions @, and
o, by the commutative diagram

GCEU %, GSEU — - &SEU

¢Ey —2 . SEU,

where @ and I are projections. We call o, the canonical contraction.

Lemma 11.1. Let V C U be a subset. Then, for u € V, the diagram

&JEV — > &BEU
|
SEV SEU,

where the horizontal arrows are induced by the inclusion V.— U, is commuta-
tive. O

If U is finite, let
&u  |BU| — AU (8)

be the unbased map that sends, for each u € U, the corresponding vertex
|u| of |EU| to the corresponding vertex <u> of AU and is affine on simplices.
Hereafter, we put Ag = @.

Barycentric subdivision. Let K be an (abstract simplicial) complex. We order
the set of simplices of K by reverse inclusion. Define the simplicial set BK as the
nerve of this partially ordered set. For a subcomplex I, C K, we have L C BK.
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There is a homeomorphism |BK| — |K| that sends the vertex of |BK]| cor-
responding to a simplex k of K to the barycentre of the simplex |k| C |K| and
takes each simplex of |BK| to some simplex of |K| affinely. Using it, we adopt
that |BK| = |K|.

Canonical retractions. Given a complex K and a subcomplex L C K, we have
CBL C CBK and define the based morphism

P : CBK — CBL

as the retraction that sends all vertices outside CBL to the apex of CBL. We
call pf]f the canonical retraction.

Lemma 11.2. For two subcompleres L, M C K, the diagram
Gpr, —i" . @Bk
pili lpﬁ
CB(L N M) 2> CBM
is commutative. O

§ 12. Canonical retractions in the cones CBAE and CAE
Fix a nonempty finite set E.

The simplex AE and its subcomplexes. Let the AE be the complex whose set
of vertices is E and set of simplices is P« (E). For F' € Py (F), we have the
subcomplex AF C AE. For A € A(E), introduce the subcomplex A[A] C AE,

AlA] = | AF.
FeA

For A, B € A(E), we have
A>B = A[A] D A[B]

and A[A A B] = A[A] N A[B]. Moreover, A[{E}] = AE.
For A, B € A(E), A > B, we have the canonical retraction

P = Pyl - CBA[A] — CBA[B).

Corollary 12.1. For two layouts A, B € A(E), the diagram

CBA[A] —* - CBAE

B
pﬁ/\B\L lpg ’

CBA[A A B] -2~ CBA[B]

18 commutative.
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Follows from Lemma 11.2. O

Geometric realization. We adopt the obvious identification |AE| = AE. For
F e P (F), |AF| = AF as subsets of AE. For A € A(E), |A[A]| = A[A] in the
same sense. For A, B € A(E), A > B, we have A[A] D A[B] and the retraction
P

B

CA[A] CA[B]
[l A [l
EBALA] 2L &AL

We call p4 the canonical retraction, too.

Corollary 12.2. For two layouts A, B € A(E), the diagram

CA[A] —2 ~ CAE
Pﬁ/\B ip{BE}
CA[A A B] —2= CA[B]

15 commutative.

Follows from Corollary 12.1. O

§ 13. The fissilizer ®F on ((YaX)CAE>

Fix a space Z and a finite set E. Consider the presheaf M : P (E) — Mg,
F s ZCAF (with the obvious restriction functions). For A € A(E), we have

CAlA]=C(|J aF) =\ CAF,

We identify the presheaf M : A(E) — Mg (see § 10) with the presheaf A —

ZCAlA] by the chain of equalities/obvious identifications

M(A) = H M(F) = H FOAF _ 7V ey CAF _ 7CA[A]
FeA FeA

The operation in our case coincides with the operation

- [[ (298 = (2021,
FeA pcgp

which we have by § 2. We will need the following formulas:

e(# Qr) = [ «@r) (9)

FeA FcA
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and

(F%AQFMCAG:( H E(QF))QG- (10)

FeA\{G}

For A,B € A(E), A> B, let \§ : M(B) — M(A) be the function
705 . 7CAB] ZCA[A]’

where p : CA[A] — CA[B] is the canonical retraction. It follows from Corol-
lary 12.2 that the functions A5 form an extender. By § 10, we get the fissilizer

(I)E . <ZCAE> N <ZCAE>.
Corollary 13.1. For any ensemble Q) € <ZCAE>, the ensemble ®F (Q) is fissile.
Follows from Lemma 10.1. O

We set Z = Y. X, where X and Y are cellular spaces, X compact, and a :
X — Y is a map. For a space T, we have the inclusion ((Y;X)T) C ((YX,a)T).

An ensemble Q € ((Y.X)CAE) is called (X, r)-almost fissile if, for any layout
A€ A(E),

t Qloar — Qleaja € (VX a) ).

FeA
Lemma 13.2. Any affine ensemble Q € ((YaX)CAE> is (X, 1)-almost fissile.
Proof. Take A € A(E). Consider the quantity D € ((Y.X)CAMI),

D= $ Qlear — Qleajay-
FeA

We should show that D € (Y, a)CA[A])g?). Consider the homomorphism
<|:|X> . <(YX7a)CA[A]> N <YCA[A]><X>.

We should show that (O%)(D) € (YCAMIXX)2) | Take R € F1(CAJA] x X).
We check that (O0%)(D)|g = 0. We are in (at least) one of the two following
cases.

Case 0: R ={9}. We have

(OO =eDy= (uwing @) =[] eQlear) — @lea) =
FeA
=[] <@ -<@ = (since €(Q) = 1) =0,
FeA

which suffices in this case.
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Case 1: R C CAGxX forsome G € A. Tt suffices to check that (0%)(D)|aagxx =
0. We have the commutative diagram

(VX a)ealany O

?léAGl lﬂcacxx

<(YX7a)CAG> (@) <YCAG><X>.

<YCA[A] ><X>

Thus it suffices to check that D|xo = 0. We have

Dleac = (using ) = ( H €(Q|CAF))Q|CAG —Qleac =
FeA\{G}
(since €(Qleap) = €(Q) = 1) =0. O

Corollary 13.3. Let Q € ((YaX)CAE) be an (X,r)-almost fissile ensemble.
Then .
2¥(Q) - Q e (VX))

Proof. For A € A(F), introduce the subgroup
N(A) = (V7)) 0 () AR T € () SR = (ar(4)).

By Lemma 3.1, this family is preserved by the restriction homomorphisms of
the presheaf A + (M(A)) and the homomorphisms (A5). Since the ensemble Q
is (X, r)-almost fissile, it satisfies the hypothesis of Lemma 10.2. Thus ®¥(Q) —
Q € N({E}), as required. O

Given maps a,b: X — Y, let us say that a is firmly r-similar to b, a x b, if,
for any nonempty finite set E, there is a fissile ensemble R € ((Y;X)®2F) such
that

<62E(b)> — Rl(am), € (YX,a) BB+ Y. (11)
Lemma 13.4. Let a,b: X — Y be maps. Then a &b implies a ~b.

We do not know whether the converse holds.

Proof. Take a nonempty finite set £. We have a fissile ensemble R € ((YX)CAE)
satisfying (II)). We seek a fissile ensemble S € (Y, X)(45)+) such that

<OAF(b)> — S € (VX,a) AP+ D), (12)

Put S = R‘(AE)Jr.
For a layout A € A(E), we have

Slaa), = R|CA[A]|A[A]+ = (since R is fissile) = (F_thA R|CAF) |A[A]+ =
(by naturality of +) = H Rlar, = F Slar),-
FeA FeA

Thus S is fissile.
The condition is just the equality (L1). O
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Proposition 13.5. Let a,b: X — Y be maps. Suppose that, for any finite set
E, there is an (X,r)-almost fissile ensemble QF € ((Y.X)“2E) such that

<O2E(b)> — QF|(am), € (Y, a)AB+)IHY. (13)

r T
Then a = b and, moreover, a = b.

Proof. Take a nonempty finite set E. Put Q = QF and R = ®F(Q) ¢
(Y;X)CAE). By Corollary 13.1, R is fissile. By Corollary 13.3,

R-Qec <(YX’a)CAE>g€+1).
By Lemma 3.1,
R|ap), — Qlar)., € <(YX70)(AE)+>§+1)~
Using , we get
<62E(b)> — Rl(am), € (Y™,a) BB+ Y,
Thus a & b. By Lemma 13.4, a 2 b. O
§ 14. Strong 1-similarity
Let X and Y be spaces and a : X — Y be a map.
Lemma 14.1. Let U be an unpointed space. Then the homomorphism
(02) : (Y¥) = (Y, a)"")
takes (Y X)) to <(YX,a)U+>g?).
Proof. Introduce the map
p: U xX = XVX, (u,z) — iny(x), (§,2) — ing(x).

(u e U, x € X). We have the commutative diagram

(X)) (v X )
<6>J« l<mx>
(Y'?)

<YX\/X> <YU+XX>,

where e = ?Va:YX — YXVX,
We show that (e) sends (YX)(*) to (YXVX)(5). Indeed, (e) equals the com-
position

(Y Xy Jomez, (v Xy g (v Xy B, (y Xy
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(see [3, § 3] for (V)). Here (YX)(®) goes to (Y X)) @ (YX)(© which goes to
(YXVX)() by [3, Lemma 3.1].

The homomorphism (Y?) takes (YXVX)() to (YU+*X)() by [3] Lemma 2.1].
Thus, by the diagram, (8Y) takes (YX)(*) to (OX)=1((YU+*X)(*)) which is
(Y™, a)U+>g§+1) by definition. O

Theorem 14.2. Let a,b: X — Y be maps such that a A b. Then a ~ b.

Proof. We have an ensemble A € (YV.X),
A= Z Ui <Qz;>,
i

such that <b> — A € (YX)(?), For each 4, choose a path h; : [0,1] — Y;X from a
to a; and consider the composition

g; : CAR ZEoection, 1 47 hiy y X,

Consider the ensemble Q € ((YV.X )CAE>’
Q= wea-

We have
€(Q) = €(A) = (since <b> — A € (YX)W)) = ¢(<b>) = 1.

By Lemma 13.2, @ is (X, 1)-almost fissile. Clearly, ¢;|(ap), = 05 (a;). Thus
Qliary, = (02F)(A). We get

<027 (0)> = Qliamy, = (027)(<b> = A) € (Y ¥, a) @),
where € holds by Lemma 14.1. By Proposition 13.5, a ~ b, O

§ 15. Two identities

Let A and I be finite sets. Let P(I) be the set of subsets of I. Consider the
set P(I)* of functions k : A — P(I). For k € P(I)4, put

U(k) = | k(a) € P(1).

acA
Let R(A,I) be the set of k € P(I)4 such that U(k) = I (covers).

Lemma 15.1. In the group (P(I))®4, the equality holds

Z (71)|I|*\J\®<J>: Z ®( Z (71)‘k(a)|7‘J‘<J>).

JeP(I) acA kER(A,I) a€A JeP(k(a))
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Proof. We have

S ) R( Y k) =

JeP(I) a€A KeP(J)
- Y IS @) -
JeP(I) keP(I)?: acA
U(k)CJ
= Y (Y TR k@Y Y Q) <kla)
keP(I)A JEP(I): acA kER(A,I) a€A
JDU (k)

where (x) holds because the inner sum on the left equals 1 if U(k) = I and 0
otherwise. The set P(I) is partially ordered by inclusion. We have the isomor-
phism

Vi (PI) = (P(D)

(see § 9), under which
Z <K>m— <J>, J e P(I),
Ke®(J)

and
<K>+— Z ‘Kl |]|<J> K e P().
JEP(K)

Applying it to each factor of the summands in the left and right sides of the
calculation, we get the required equality. O

Put P*(I) = P(I) \ {I}. We adopt the inclusion P*(I)4 C P(I)A. Let
R'(A, T) be the set of k € P*(I)? such that U(k) =

Lemma 15.2. In the group (P*(I))®4, the equality holds

®( Z (—nHI==l gy - Z (—1)l=1=17] ® g =

a€A JePx(I) JEPX(I) acA

= Z ® Z \k(a)\ \J\<J>)

kER/(A,1) a€A JeP(k(a))

Proof. We use the inclusion (P*(I))®4 C (P(I))®4. Put

T0=@( Y UML), ke s

acA JeP(k(a))

We have
I S S
keP(I)4 a€A KeP(I) JeP(K

:®( Z ( Z (—:[)‘Kl_l‘jl)<J>)(;)®<I>7 (14)
)

a€A JeP(I) KeP(I): acA
KDJ
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where (%) holds because the inner sum on the left equals 1 if J = I and 0
otherwise. We have also

> r0-@( Y 3 ) -

kePx (I)A a€A KePx(I) JeP(K)

:®( Z Z (71)‘K|7|J|)<J>):®( Z (71)‘I|717‘J‘<J>).
)

a€A JeP*x(I) KeP>X(I): a€A JeP*(I)

KDJ
(15)
Note that
R(A D) 2R(A D), P 2P*(D)4,
and
R(A )\ R(A, 1) = P4\ P (D)
as subsets of P(I)4. Thus
oo Tky= > Th- D Th)+ D T(k)=
keR' (A,D) kER(A,I) keP(I)A kePx (I)A
(by Lemma 15.1 and equalities and (15))
ST I @@ X ) =
JeP() acA acA a€A JeP*(I)
- _ Z HHI=1- \J\®<J>+® Z HHl=1- \J\<J>)
JePX(I) acA a€A JePx(I)
as required. O

§ 16. Chained monoids

Let P be a monoid. Then (P) is its monoid ring. We call the monoid P
chained if (P) is equipped with a chain of left ideals (P)[],

(Py = (POl o> (pll o

Given a finite set I, we consider P(I) as a monoid with respect to intersection
and chain it by letting (P(I))[*] be the subgroup generated by elements

wy = Z (—1)|J|_|Kv‘<}(>7

KeP(J)

where J € P(I), |J]| > s
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§ 17. The filtration (Z7T)l

Let P be a chained monoid. Let T and Z be pointed simplicial sets. Let
Z7T denote the set of based morphisms T — Z. Let P act on Z (on the left;
preserving the basepoint). For an element p € P, let p(z) : Z — Z be its action.
(We will use this notation for all actions.) The set ZT carries the induced action
of P. Thus the abelian group (ZT) becomes a (left) module over (P). We define
a filtration

(27) = (2T > (2T > ..

Let TV, j € (n), be pointed simplicial sets and

£:7— \/ T

Jj€(n)

be a based morphism. We have the Z-multilinear operation

o [[ (27 -2V ), <vis =<\ vis,
J€(m)  je(n) j€n) JEm)

and the homomorphism
(2%) - (Ve T} (27).
Take ensembles v; € (P) 51(ZT"), j € (n), and consider the ensemble v € (ZT),

v=<Zf>(:I:|: v7). (16)

JE(n)

We call v a block of rank sy + ...+ s,. We let (ZT)ls] C (ZT) be the subgroup
generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 17.1. Let T be a pointed simplicial set and K : T - T be a based
simplicial morphism. Then the homomorphism

(z%) . (27) - (27)
takes (ZT)] to <ZE'>[S]. O

Lemma 17.2. Let Z be a pointed simplicial set acted on by P and h: Z — z
be a P-equivariant based simplicial morphism. Then the homomorphism

(hT): (27) - (27)
takes (ZT)] to (ET)[S]. O
The cone &Z carries the induced action of P. We have the function

éz:27 5 (é2)%T, v eév.
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Lemma 17.3. The homomorphism
(€z): (27) — ((e2)%T)
takes (ZT)l] to ((&Z)CT)I5).

Proof. 1t suffices to show that (&%) sends any block to a block of the same rank.
Consider the block (I6). Since v7 € (P)ls] (ég” and the functions

&t - z% - (&z)%"

preserve the action of P, we have

(€2 )(v)) € (P)!((&2)°T),
Let 4
in*: T \/ T
je(n)
be the canonical insertions. We have the commutative diagram
\/ éTi
je(n)

g — .
o — ¢ in’
/ \Le,_\/je(n)c1n

eT— - &(\ T),
¢t je(n)

where @ is an isomorphism (since € preserves wedges) and g is the unique lift

of @F. For arbitrary based morphisms v7 : T9 — Z, we have the commutative
diagram with sendings

(&2)Vsem & v &v
=7 T(c‘:z)e /E("L)j

Thus we have the commutative diagram

(&2)Vsem &T)
(&2)9) T“éz)e)

(&Z)eT ﬁ (€2)%WViem T-i)>
&Zz)¢
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and the sendings

# (&) )

@D ((ZF)( H# v)) =~ (e T wi)

j€(n) je(n)

for our (and arbitrary) ensembles v/. We get

(€5 (v) = (€5 ((Z5)( H V) = (€2)9)( H (€F)())),

JE(n) J€(n)
as promised. O

Lemma 17.4. Let T?, i € (m), be pointed simplicial sets and v* € (ZT )[*:] be
ensembles. Then _
H ot e (ZViewm Tylsitotom], O
i€(m)

Fissile and almost fissile ensembles. Let E be a nonempy finite set. An ensemble
q € (Z°BLE) g called fissile if, for any layout A € A(E),

qlCBA[A] = F:E:AqléﬁAF

in (ZCM[A]> (cf. 8§ 2, 10). Tt is called r-almost fissile if, for any layout A € A(E),

:ll:t q|CBAF _q‘CBA[A] c <ZCBA[A]>[T+1]
FecA

(cf. § 13).

§ 18. The wedge W(I)

Fix a finite set I. Consider the pointed simplicial set

W)= \/ ZE(J\J).

JeP(I)

Let
in; :SE(I\J)— W)

be the canonical insertions. The lead vertex
Tway = (n1)o(lgg,) € W(I)o

is isolated. W(I) has the pointed simplicial subsets

W ()= \/ BE({I\J)
JePx(I)
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and )
W)= \/ ZE{I\J), LeP*(I).
JeP(L)
For JJK € P(I), J 2 K, let
T 8B\ J) = SE(I \ K)
be the morphism induced by the inclusion I\ J — I\ K.
Let the monoid P(I) act on W(I) by the rule

SE(I\ J) T SE(I\ (K NJ))

iinKﬁJ

Ky W(I)

K € P(I). The simplicial subsets W (I) and W (I) are P(I)-invariant.
For L € P*(I) and i € I \ L, we define a retraction & by the commutative
diagram

ERE(1\ J) 2L awi(n)
SE(1\ J) 2 Wi (D),

where in§ are the canonical insertions and o; are the canonical contractions
(see § 11). We call oF the canonical contraction, too. It follows from Lemma 11.1
that oF is P(I)-equivariant.

Given a pointed simplicial set T, introduce the filling function

& & L
XEWEDT 5 WHIDST, v (T &% eWH(1) 25 WH(I)).
Since oF is a retraction,
XLi(v)|r=v. (17)
§ 19. The module <W(I)CBAE>

Fix a finite set I. We consider the (P(I))-modules (W(I)T) for a number
of pointed simplicial sets T. For a P(I)-invariant pointed simplicial subset

Z C W(I), the subgroup (ZT) C (W(I)T) is a (P(I))-submodule. If Z C Z for
two such subsets, then (ZT)ls] C (ZT)ls] by Lemma 17.2.

Lemma 19.1. For L € P*(I), i € I\ L, and a pointed simplicial set T, the
filling homomorphism

(XLi) - (WE(DT) — (WE(D)ST)

takes (W ()T to (W (1)ST)[sl,
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Proof. By construction of X%’,w we have the decomposition

(&gr 1)) . ol)eT &
((e7)°7) <WL(I)CT>

By Lemma 17.3, (€&xv(;)) takes (WE(I)T)E to ((EWL(I))8T)l). Since of

is P(I)-equivariant, {(F)T) takes the ((EWE(I))ST)lsl to (WL (I)ST)lsl by

2

Lemma 17.2. O

Fix a nonempty finite set E. For F' € P, (F) and J € P(I), introduce the
based morphism
6 - (BAF). — W(I)

that sends BAF to the vertex inl(lf}E([\J))'
Lemma 19.2. For F € Py (E) and J € P(I),
Z (=DII=IKI@E > e (W7 (1)BAF)+) 1],
KeP(J)

Proof. Since
ef( = K(wJ(I)(BAF>+)(e§)a

the ensemble in question equals w;<@% > and thus belongs to (P(I)) 711 (W7 (I)BAF)+),
which is contained in (WY (I)®2F)+)[IVll by the definition of the latter. O

Lemma 19.3. There exist fissile ensembles
ps € (WX (DF), T e P (D),

satisfying the following conditions for each J € P*(I):
(1) one has
PJ\(BAE)+ = <9§>
in (W (I)BAE)+Y
(2) one has

Z (—)I-IKlp . e <WX(])CBAE>HJH.
KeP(J)

Proof. We will construct ensembles
Py € (W/(1)PAF), (FJ) € Pu(D) x PX(D),

satisfying the following conditions (0%), (15), and (2%) for each pair (F,.J) €
P (1) x P (I):
(0F) one has
p5|épA[B] = H pfz;
GeB
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in (W7 (I)SBAIBYY for all B € A(F);
(15) one has B
pylesr). = <05~
in (W7(1)P42)+);
(25) one has
Z (_1)|J|—|K\pf( e <WJ(I)CBAF>[|J|]_
KeP(J)

Note that (05) implies
F e
by |CBAG =Dy
for G € P« (F). Thus (0%) will yield
p§|CBA[B] = H Pﬂc‘:mc
GeB
for all B € A(F), which means that p} is fissile. Thus it will remain to put
E
ps=pPy-

Induction on (F,J) € Py (E) x P*(I). Take a pair (F,J). We assume that
p% are defined and the conditions (0%)-(2%) are satisfied for

(G, K) € Pu(F) x P(J)\{(F, )}

We construct p& and check the conditions (05)—(2%).
For B € A(F), put

U(B) = <WJ(I)CBA[B]>HJH_
For B,C € A(F), B > C, we have, by Lemma 17.1, the restriction homomor-
phism

?Nepajc)  U(B) = U(C).

Thus we have a presheaf
U:A(F)— Ab.

By Lemma 17.1, the canonical retractions
pE : CBA[B] — CBA[C]
induce homomorphisms
B
AG = (W (1)) |y c)»up) : U(C) = U(B),

which form an extender for U, as follows from Corollary 12.1. For B € A*(F) =
A(F)\ {{F}}, introduce the ensemble up € (W’ (I)BAB]),

up= 3 (~D)VIIK  pf

KeP(J) GeB
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By Lemma 15.1,

up= S (Y (C)H@IKE).
1eR(B,) “€B KkeP(q))

By (QﬁG)L the inner sum belongs to (WJ(I)éMG>W(G)H. Using Lemma 17.4 and

the inequality
> &) =11,
GeB

we get that the hash product and thus up belong to <WJ(I)CBA[B]>“J”. We have
got up € U(B). For B,C € A*(F), B> C, and K € P(J), we have

G . e
PK)|& = by naturality of #) = P% | —
(7 enacy ( i Pilepaoniay
(o (05) S o) - gl
GeB HeCA{G} HeC

It follows that uBléBA[C] = uc, that is,

(uB)peax(r) € Beg@(F) U(B).

By Lemma 9.2, there exists an ensemble
we U{FY) = (W7 (D)%en)l) (18)

such that
ulggaip =us, B EAT(L).

Consider the ensembles ¢, r € (WJ(])(EBAF%

a= 3 (—)PIEEIERE =gt
KePx(J)

For B € A*(F), we have

dleparp) = Z (—1)‘J‘_1_‘K‘p£|épa[31 = (by (0%))
KePx(J)

= > (=R pE (19)

KePx(J) GeB

and

rlegarn) = dlepas) T ulepais = dlepas) +us = (by (19))
= Y GOV g G s 3 (VI g o = o . (20)

KePr(J) GeB Kepen) GeB GeB
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‘We have

lgary, + Y. (~)IEL gL = (by (1%)
KeP*x(J)
= 7’| (BaF), + Z l‘]l lKIPK'(BAF)+ \(BAF)Jr - CI|(BAF)+ =
KePx(J)
=ul@ar), € (by Lemma 17.1) e (W (1)BAE)+) 71T,

From this and Lemma 19.2,
<a§>_r‘(BAF)+ € <WJ(I)(BAF)+>“J”. (21)
Choose ¢ € I\ J. We have the filling homomorphism
AF s
W) (WD) — (W (1)%er).

Put (BAF),
py =1+ <07 = rlpar),).

Check of (05). For B = {F}, the condition is satisfied trivially. Take
B € A*(F). We have

TBa[B)) . = (by and naturality of #) = G#Bp§|(BAG)+ =
€
(by (15)) = GﬂiB <07>=<07>|gaia), - (22)
€

By naturality of X}:i with respect to T', we have the commutative diagram

B0+

WY (1B 2 (1)

?l(gam) 4 l i lepars)
BB 4

W7 (I)BALE BT W/(I

We get,
BAF
p§|CBA[B] = 7"|(:BA[B] + <Xfu )+>(<9§> - 7”|(BAF)+)|(:BA[B] =
(by the diagram) = rlegags + ) (<07 > parmy, — l@ars),) =
(by (22)) =Tlgpaip) = (by (20)) = G#BPJ'
€
Check of (1%). We have
AF
Y leary, — rleary. = XD (<05> — rlgar), ) gar), =
(by (7)) = <07> —rl@ar), -
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Thus pj|@ar), = <05>.
Check of (2%). Tt follows from by Lemma 19.1, that

AF C
0705 —rlgar).) € (W7 (1)) I, (23)

We have

ST )RR = pf — g =4 PO (<00 — 7| gar),) —q =
KeP(J)

AF s
= u+ () (<07 — vl gar), ) € (W7 (DT,
where € follows from and . O

Corollary 19.4. There exists an (|I|—1)-almost fissile ensemble ¢ € (W* (I)éBAE>
such that
<GIE> — q|(BAE)+ c <W(I)(BAE)+>HI|]

Proof. Lemma 19.3 gives fissile ensembles p; € <WX(I)6ME> satisfying the
conditions (1) and (2) thereof. Put

q= Z (=D)HI=1=11p

JePx(I)

Check that ¢ is (]I| — 1)-almost fissile. Take A € A(E). We have

FjétAﬂéaAF — dlepaja = FflétA( Z (_1)|I‘717|J|pJ|CBAF)_

JeP*(I)
_ T S - fssi
(-1) prlegara) (since py are fissile)
JEPX(I)
=+ ( Z (—l)lﬂflflﬂpﬂémp) - Z (—nH==E pIlepar =
FEA jepx(D) JEPX(I) Fea
(by Lemma 15.2) = > H( Y )V ) =

keR (A1) FEA Jepr(r))
k(F)|—|J
S SR T0D SNSRI
ke (A1) FEA Jep(F)
By condition (2), the inner sum of the last expression belongs to (W* (I)CBAE> [IRCI,
By Lemma 17.1, its restriction to CBAF belongs to (W (I)SPAF) K Using
Lemma 17.4 and the inequality

D KB = 1,

FeA

we get that the hash product and thus the whole expression belong to (W * (I)CM[A] YL
as required.
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‘We have

<9F> - Q|(BAE)+ = <0F> - Z (_1)m_l_u‘pﬂ(ﬁms)+ =
JeP*(I)

(by condition (1)) =<0 — Z (—n)HI=1= g2 =
JEPX(I)

= Z (—)HI=1T1. 5 ¢ (by Lemma 19.2) € (W (I)BSD+y I,
JeP(I)

§ 20. The filtration ((YX)T)l

General case. We give a topological version of the definition of § 17. Let T" and
Z be spaces. Let a chained monoid P act on Z (preserving the basepoint). The
set ZT carries the induced action of P. Thus the abelian group (Z7) becomes
a module over (P). We define a filtration (Z7)[*l. Let T7, j € (n), be spaces
and

fir=\/ 1T

Jj€(n)

be a map. Take ensembles V; € (P)l*il (Z™’), j € (n), and consider the ensemble

Ve <ZT>>
V= (2)( 4 V). (24)

JE(n)

We call V a block of rank sy + ...+ s,. We let (Z7)[*] C (ZT) be the subgroup
generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 20.1. Let Z be a space acted on by P and h : Z — Z bea P-equivariant
map. Then the homomorphism

(") (Z2") = (2"
takes (ZT)s) to (ZT)ls]. O

Lemma 20.2. Let T and Z be pointed simplicial sets. Let P act on Z and
thus on |Z|. Consider the geometric realization function

v: 2T 52T v v,

and the homomorphism

() (Z%) = (1 2]I).
Then () takes (ZT)[] to (|Z|IT1)I5], O
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The case Z = Y. Let I be a finite set and Y be space acted on by the chained
monoid P = P(I). We suppose that the action is special:

Y = U FiX{i}(y).

icl

Let X be a space. Consider the space Z = Y. It carries the induced action of

P(I).
Lemma 20.3. In the (P(I))-module (YX), the inclusion holds
(P Y) € (Y N)©.

Proof. Take a map a € Y and a subset J € P(I), |J| > s. The ensembles
of the form wy<a> generate the subgroup (P(I))l*1(Y'X). Thus we should show
that wy<a> € (YX)®). Take a subspace R € F,_1(X). We should check that
wy<a>|gr = 01in (Y1), Since the action is special, for each z € X, there is i, € I
such that a(x) € Fix{i, }y). Consider the subset

K ={i. |z € R\{J}} € ().
Clearly, |[K| < s. For « € R\ {9}, we have
Ky (a(@)) = Ky ({ia}ry(a(2))) =
= (KN {iz}) ) (a(@)) = {iz }(v)(a(2)) = a(z).

Thus K(y) o a =|g a. Thus <K><a> =|g <a> in (Y). Since |K| < s, we have
K 2 J. Tt follows that w;<K> =0 in (P(I)). We get

wy<a> =|g wy<K><a> = 0. O
Lemma 20.4. Let T be a space. Then
()N )NY.

Proof. Take a block V' € ((YX)T) of rank at least s. We should show that
Ve ((YX)T)(;). Consider the homomorphism

8x)

(r)T) S (r X,

By Lemma 3.3, we should show that (O0¥)(V) € (YTAX)(). We have the
equality for some spaces 77, map f and ensembles V7 € (P(I))ls:1((YX)T"),
where s; +...s, > s. Since the function

|’jX : (YX)Tj - YTJ'AX
is P(I)-equivariant, (OX)(VJ) € (P))=1 (YT’ AX) . By Lemma 20.3,

(E¥) (V) € (YT X)),
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Consider the commutative diagram

(V)jem | (@ )em
1 (0%
IT (V9)T) = T (7%
i€(n) i€(n)
. @ .
5 v (Ve ™) e (Ve ) g @)
T <<Yx>f>l l<yfmx> T
<(YX)T> L <YT/\X>. (%)

Vi (@Xy(v)

(We used distributivity of smash product over wedge.) All the sendings are
obvious except (x), which follows by commutativity of the diagram. By [3]
Lemma 3.1],

H (OX)(VI) e (¥ Viem T/AXY (),

Jj€(n)

By [3, Lemma 2.1], (O%)(V) € (YT"¥)() as was to be shown. O

§ 21. The wedge V(I) and a P(I)-equivariant map h: V(I) - Z

Let I be a finite set. We give a topological version of W(I). Consider the
space

v =\/ SAT\J).

JeP(I)

Let
iny: SA(I\J) — V()

be the canonical insertions. V' (I) consists of the isolated lead point
Ty = inr(lgag)

and the subspace
vin= "\ Tag\J),
JePx(I)

which is contractible.
For JJK € P(I), J 2 K, let

- SA(I\ J) —» AT\ K)

be the map induced by the inclusion I\ J — I'\ K.
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Let the monoid P(I) act on V(I) by the rule

iAU\ﬂ;—iéi—>iAU\U(mﬂ)

linxru
Kway

V(I) V(I),

K € P(I). The subspace V*(I) is P(I)-invariant.
For J € P(I), we have the map
& = Stng =
ey |BE(I\ J)| =SB\ J)| —= AU\ J)
(see (8) for &p\s). These e; form the map
e=\/ es:|W(I)|— V() (25)
JeP(I)

It is P(I)-equivariant, sends the point | Tg(p)| to Ty (r), and takes the subspace
|W*(I)| to V*(I).

Lemma 21.1. Let Z be a space acted on by P(I). Suppose that the basepoint
path component Zq C Z is weakly contractible. Let Tz € Z be a point such that

K(Z)(Tz) S Zq

for all K € P*(I). Then there exists a P(I)-equivariant map h : V(I) = Z
such that h(Tv ) = Tz.

Proof. We crop Z and assume that Z = Zq U {T z}. We will construct maps
! EA(INJ) = Z, J € P(I),

satisfying the following conditions (1) and (2%) for J, K € P(I), J C K:
(1) one has h!(1gr,) = Tz;
(2K) the diagram

SAUIN\K) s 7

5 i iJ (2)
SA(IN ) 7

is commutative.

Note that the condition (27) is the equality J(z) o h’ = h”.
Induction on J € P(I). We define the map h! by the condition (1). The
condition (2%) is satisfied trivially. Take J € P*(I). We assume that the maps
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h% are defined for K 2 J and the conditions (2% ) are satisfied for L O K 2 J.
We construct h” and check (2%) for K D J.
For K D J, put

Bi = Im(SA(I\ K) 25 SA(I\ J)).

Since 7 is an embedding, there is a map fX : B — Z4 such that

FEEE®) = Jo (W (1), te BAUN\K),
(we use here that Im J(z) C Z4). We show that

fK :|BKOBL fL

for K, L 2 J. Take s € BxkNBy. Since BxkNBL = Biur, we have s = TfUL(t)
for some t € ¥A(I\ (K UL)). We have the commutative diagram

/ / i o

SA(IN\J) DELLE SAUI\K) ——=Z
(the square is commutative by (2KYL)). Using the diagram, we get

FE(s) = FR( @) = R (PR @) = Tz (BE (g 7E (1) =
= Ji2)(K(z) (WU (1)) = (T N K) 2y (WEVE (@) = Tz (REVE (1)),
Similarly, f*(s) = Jiz)(R"9E(t)). Thus f¥(s) = f*(s), as promised.
We have
U Bk =S0A(I\J) CSA(T\ J),

K2J

where OA(TI \ J) denotes the boundary of the simplex A(I \ J). Since Bg are
closed, there is a map B
fSOA(INJ) = Z4

such that f|p, = f¥ for all K 2 J. Since YOA(I \ J) is the boundary of the
ball XA(I'\ J) and Zq is weakly contractible, f extends to a map

g:SAINJ) = Zq.

We put
h(s) = Jiz(9(s), s €SATN\ ).
Clearly, J(z)o h? = h’, which is the condition (27). We check the condition
(2K) for K 2 J. For t € SA(I'\ K), we have

R (5 () = Jzy (9(m5 (1) = Jz)(f(r5 (1)) = oy (fF (75 (1)) =
= Jiz)(Jiz) (W (1)) = Jz) (KX (1)),
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as required.
We join all the h” into the desired h:

h= \/ h’.
JEP(I)

Since Ty () = iny(15,4), we have

WMTvm) =h (Igay) = (by (1)) =Ty

To show that d is P(I)-equivariant, we should check that, for K, J € P(I), the
diagram

SA(INJ) —" 7

T{mi in)

SAIN (KnJ) X 2

is commutative. Indeed,
Kzyo h! = (by (25)) =KzyoJizo h' =
=(KnNJ)zoh’ = (by (2kn.s)) =1 orin, D

§ 22. The realization YF : W(I)T — (YX)ITI

Let X and Y be cellular spaces, X compact. Let I be a finite set and Y carry
a special action of the monoid P(I). Let h: V(I) — Y be a P(I)-equivariant
map. Let T be a pointed simplicial set. Introduce the function

TEHWT ()T, v (1] 5 WD) S V() 5 YY),
(see for e), the realization.
Lemma 22.1. The function Y¥ takes W*(I)T to (Y$)‘T|.

Proof. The map e takes |W*(I)| to V*(I). Since V*(I) is path connected, d
takes it to Y<f<. O

Consider the homomorphism
(T35)  (W(D)T) = (v )!T).
Lemma 22.2. The homomorphism (YT) takes (W(I)T)l¥ to <(YX)‘T‘>S?).
Proof. We have the decomposition
&2 ((hoe)'™)
(07 = (W(DT) = (W (D)) === (v¥)IT),

where y : W(I)T — |W(I)|IT! is the geometric realization function. By Lemma 20.2,
() takes (W(I)T) I to (|W(I)[IThs]. By Lemma 20.1, ((hoe)!T!) takes (|W (I)[IT1)]
to (YX)ITI)e]| which is contained in ((YX)ITH)() by Lemma 20.4. O
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Lemma 22.3. Let E be a nonempty finite set and q € <W(I)CBAE> be an r-

almost fissile ensemble. Then the ensemble <TSBAE>(q) € (YX)CABY s (X, r)-
almost fissile.

Proof. Take A € A(E). The diagram

CBAE
CBAE FI;IA B X\CAE
[T W) [T )
FeA FeA
I 7le I 7l
Al Clesar ' FHA TSBAF FG:“ GAF
H W(I)CBAF € H (YX>CAF
FeA FeA
v v
FeA v LBl VFeA
h
W([)CBA[A] (YX)CA[A]
?|E:BA[A] ?‘CA[A]
W(I)CBAE e (YX)CAE

is commutative because Tg’ is natural with respect to T'. Thus the diagram

o, AL v
[T (W(1)P2F) [T ((Y¥)°2%)
FeA FeA
IT 7l IT ?le
oy (eBar ' FI;[A<TEMF> Fej‘ CAF
[T (W(1)%P2F) [T ((Y*)°2F)
FeA FeA
FeA . FeA
W (1)CBALA] (Pt Y X)CA[A]
(W(I) ) (V) )
?lepata) “leara)
N (T?AE> ;
(W ()% (rX)eas)
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is also commutative. In it, we have

()real (Q)Fea
(dlgpap)Frea (Qlear)Fea

b

Hreadlepar > ¥ Qlear
FeA

(2)

Q|(ZBA[A] f Q‘CA[A]
ql Q,

where Q = (TSBAEX(]). All the sendings are obvious except (1) and (2), which
follow by commutativity of the diagram. Since g is r-almost fissile,

H dlepar — dlepara) € (W (1)CRAIAT [r+1]
FeA
By Lemma 22.2,
F:ttAQ|CAF — Qleapa € <(YX)CA[A]>§+1).
€

Thus @ is (X, r)-almost fissile. O

§ 23. Brunnian loops in a wedge of circles

Fix a finite set I of cardinality r+1. Put X = St and Y = I, A S! (a wedge
of r + 1 circles). Let the monoid P(I) act on the space I, by putting

i ified
J, ) = '
(1) (0 {<1 otherwise,

for i € I, J € P(I). This action induces one on Y. A map b: X — Y (a loop)
is called Brunnian if the composition

x Ly y
is null-homotopic for all J € P*(I).

Lemma 23.1. Letb: X — Y be a Brunnian loop. Then 9 ~ b

Proof. Take a finite set E. Consider the loop space Y. It carries the induced
action of the monoid P(I). The path component Y;f is weakly contractible.

Since b is Brunnian, Jyx(b) (= Jiy)ob) € Y<f for all J € P*(I). Therefore,
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Lemma 21.1 yields a P(I)-equivariant map h : V(I) — Y X such that d(T) = b.
We get the realization homomorphism

(YCPEEY o (W (1)TBEE) 5 (Y X)OAE),

By Corollary 19.4, there is an r-almost fissile ensemble ¢ € (W (I)SP2E) such

that
<65 — qlpam), € (W(I)EAD), (26)

Put Q = (TSBAE>(q). By Lemma 22.1, Q € <(Y§()CAE>. By Lemma 22.3, @ is
(X, r)-almost fissile. We have

TSBAE(QF) = by construction = Q%E(h(—m) = Q%E(b)
and
Q|(AE)+ = (TSBAE>(Q)|(AE)+ = by naturality of T = <T§1ME)+>(Q|(BAE)+)'
Thus

AE AE
O2F- — Qliamy. = (TP) (<2F- — gl gapy, ) € (V) BB,
where € follows from by Lemma 22.2. By Proposition 13.5 ~b. O

§ 24. Loops in an arbitrary space

Nested commutators. A nesting t of weight |t| > 1 is either the atom e if [¢t| = 1,
or a pair (t,t") of nestings with [¢/| 4+ [t”| = |t|. Given elements gy,...,gs of a
group G, and a nesting t of weight s, the t-nested commutator

‘lodii e G
is defined to be either g; if s =1, or
’ t 17
[l Tl ]

if t = (¢, ). Nested commutators of weight s in G generate v*G, the sth term
of the lower central series of G.

Loops. Put X = S' and let Y be a cellular space. We consider the group
71(Y) = [X,Y] with the filtration 7, (Y)((*) = [X,V]()) (see § 8).

Theorem 24.1. One has
(V)@ = oy (1),
Recall [3, Theorem 13.2]:
m(Y)® = m(Y). (27)
Thus, by Theorem 8.2 and [3, Theorem 4.2], the strong r-similarity on m(Y)

coincides with the r-similarity.
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Proof. The inclusion m (Y)((*) C 4%, (Y) follows from the comparisons 71 (Y)((*)) C
m(Y)® (immediate from the definitions) and (27).

Check that v*m(Y) C w1 (Y)(). Since 7 (Y)(*)) is a subgroup (by The-
orem 8.1), it suffices to show that, for any nesting ¢ of weight s and any maps
ai,...,as: X =Y, one has

Hlaillizy € m(Y)),

Put _
Bsz\/X and a:\/ai:Bs—>Y.
iE(S) ’LG_(S)

Let in; : X — B, be the canonical insertions. Choose a loop e : S' — B, with

le] = "[lini]]5=

in m(Bs). So Y[la;]]iL; = [a o e€]. Clearly, the loop e is Brunnian. By
Lemma 23.1, [¢] € 71(B,)((*)). By Corollary 5.1, [aoe] € m (Y)((*)) as was
to be shown. O

§ 25. Whitehead products

Whitehead product. Let T;, i = 1,2, be compact cellular spaces and
T, &5 Ty x Ty &5 Ty AT

be the projections. The map
S(Ty x Ty) =5 (T AT)

is homotopy right-invertible (because there is a canonical map r of the join
Ty Ty to X(Ty x T3) such that Xk o r is a homotopy equivalence). Let Y be a
space. Given homotopy classes a; € [XT;,Y], i = 1,2, consider the homotopy
classes

aioSp;  S(Th x Tn) ~25 ST, %5y,  i=1,2,

and their commutator
[ai 0 Xp1,az 0 Xps] € [E(Th x Tz),Y].
The Whitehead product
la, asz] € [X(Th A T2),Y]
is uniquely defined by (homotopy) commutativity of the diagram

[a10Xpi,a20Xp2]

E(Tl X TQ) Y
Zkl %
S(Ty A Ty).
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see [Bl, Section 7.8].
Nested Whitehead products. Let T, i € (s), be compact cellular spaces and

T, & Ty % xTe BTy A AT,
be the projections.

Lemma 25.1. The map

STy % X T) =5 STy A .. ATy)

18 homotopy right-invertible.
Proof. Induction on s. If s = 1, k is the identity. Take s > 1. Put
T =Ty x...xTs_1, Z =Ty N...NTs_q.
Let
T'xT, 5T AT, and T 27
be the projections. We have the decomposition

(K Aidg,)
_—

Sk S(T x Ty) =5 S(T AT, S(Z' ATy),

where XK is right-invertible (as noted above) and the second arrow is because

it coincides with
Sk’ Aidp,
ST AT, LN AN

which is right-invertible because Xk’ is by the induction hypothesis. O

Let Y be space, and a; € [XT;,Y] be homotopy classes. Given a nesting ¢
of weight s, define the t-nested Whitehead product

Haili, € [S(TiA...ATy),Y]

by induction on s putting
lailizi = a

for s =1 and
s ’ t/ 1" s
flailiz = | Laiu;pt |_a’75~|i:|t’|+1.|

for t = (¢/,t").
Lemma 25.2. For a nesting t of weght s, the diagram

c:="[a;0Xp;]5_,

S(Ty x ... x Ty) Y
ST N NTs)

is (homotopy) commutative.
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Proof. Induction on s. If s = 1, ¥k is the identity and ¢ = w = a;. Take s > 1.
We have t = (¢/,t"). Put s’ = |¢|, s = |¢"'], and

T’:Tlx...xTS/, 1—‘I,:TIS/+1><...><T‘S7
Z'=TiN...NTy, 7" =Ty N... Ty,

We have the commutative diagrams of projections

T xT" T xT"
n \LP’ / ip“
L R ) I K
Consider the diagram
(T xT") (28)

EP'J/
T’
|
VAR

The upper triangle is commutative because the function
[(ET,Y] = [(T' xT"),Y]

induced by X P’ is a homomorphism and sends a; o Xp; to a; o Xp;. The lower
triangle is commutative by the induction hypothesis. Similarly, we have the
commutative diagram

S(T' x T") (29)

=~ s

¢’=t laioZpi]i_./ s

ZP”\L
t A El
[a;oXp; ]]7.7g/_'_1
ST =

W=,

We have the commutative diagram of projections

T P’ T« T P T"

k,l J{k'xk” lk//
"

Q

Z/ X Z/l Z//




Consider the diagram

(T x T")

E(k’xk”)l =[]
Sk (7' x gv) LR Y
ZK\L
S(Z' A 2").

The upper triangle is commutative because the function

(2 x Z2"),Y] = [2(T' xT"),Y]

induced by (k' x k") is a homomorphism under which
w' 0 ¥Q' — w' o Xk’ o XP’ = by diagram =7

and
w” 0 XQ" — w" o Lk" o X P" = by diagram =¢".

The lower triangle is commutative by the definition of Whitehead product. We
are done. O

Corollary 25.3. Let R be a homotopy right-inverse of Xk:

STy % .. xTy) ——2 > S(TyA...AT,),  SkoR~id.

\—/

R

Then, for any nesting t of weght s, the diagram

c:="[a;0Zp;]i_,

S(Ty x ... x Ty)

|

S(Ty A ... ATy).

w:=" lailiz,

is (homotopy) commutative.
Proof. We have

¢o R = (by Lemma 25.2) =woXko R = (since Yko R~ id) =w. O

§ 26. Loops and Whitehead products

By = \/ St

1€(s)

Consider the wedge
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Given a map v : S' — B (a loop) and a space T, introduce the map v*:

ST L\ ST
1€(s)

vAidp

S'ANT ——— B, AT.

Let
in;: ' - B, and in?:%T — \/ 2T
1€(s)
be the canonical insertions.
Lemma 26.1. The function
m(B,) = [T, \/ =717, [v] — [v™],
1€(s)
is a homomorhism, under which [in;] — [in} ]. O
Let T;, i € (s), be spaces and
T, 8Ty x . xTe STy A AT,

be the projections. Let Y be a space and a; : ¥7; — Y be maps. We have the

compositions

aioEpi:Z(Tlx...sz)&)ETigY.

Lemma 26.2. Let t be a nesting of weight s. Let e : S' — B, be a loop with
le] = *[lina]]3=,
in m1(Bs). Then the diagram

=

STy % oo X Ty) —————> V(o Z(T1 % ... x T)
A=V (a;0%p;)
c:="[la;]oZp;]i_, i€(s)
Y.

is (homotopy) commutative.

Proof. Put T =17 x...Ts. By Lemma, the function

m(Bs) = [T, \/ =T, [o] = [07],
i€(s)

is a homomorhism, under which [in;] — [in?]. Thus

[e¥] = "Tlin{ 15 -
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The map A induces a homomorphism
[£T,Y] — [T, \/ =77,
i€(s)
under which [in]] ~ [a; o ¥p;] and thus
[e¥] = *[lin7 I3=y = "[lai] o Zpidiey = ¢,

which is what was to be shown. O

By Lemma 25.1, we have the diagram

Sk

(T % .. x Ty) —=F STy AL ATY),

\—/

R

where ¥k o R ~ id. Introduce the composition M} (a;)i—;:

=

E(Tl X oo XTS)U—>\/,'E(3)Z(T1 X ... XTS)
RT A:= z (a;0%p;)
M) i€(s)
S(Ty A ... ATy) e Y.

Lemma 26.3. Let t be a nesting of weight s. Let e : S — By be a loop with

le] = "[lini]]5=

in m1(Bs). Then
(M (ai)iy] ="llai] 13-,
in (ST A...ANTs),Y].

Proof. Recall the homotopy class

c:="[[a;]oSp; ], Y.

S(Ty % ... xTy)
We have

[M§&(a;)i_;] = [Ace®oR] = (by Lemma 26.2) = coR = (by Corollary 25.3) = *|[as]]5_;.
O

§ 27. Strong nullarity of Whitehead products

Let a; : ¥T; — Y, etc., be as in the previous section.
Lemma 27.1. Let v: S' — B; be a loop such that 9 ~v. Then

=~ Mg(ai)ig-

o1



Proof. We have
Mp(a)iy = Aov=o R

(see the construction). By Corollary 5.4, 9 ~ v=. By Corollary 5.2, 9
Aov¥oR.

0O a-

Given a nesting ¢ of weight s and homotopy classes a; € [X2T;,Y], ¢ € (s),
consider the ¢t-nested Whitehead product

ttai]le S [E(Tl AL Tg),Y]
Theorem 27.2. One has
tla)i, € [B(TL A ... Ty), Y],

Proof. For each i, choose a representative a; : ¥T; — Y of a;. Choose a loop
e: S! — B, with
le] = "[lin] 15,

in 71(B;s). Clearly, the loop e is Brunnian. By Lemma 23.1, T e By
Lemma 27.1,

sl e s
9~ Mg(ai)i_;.

By Lemma 26.3,
[Mp(ai)izi] ="lailiz

Thus
Hlailis, € [B(Ty A ... Ty), Y] O
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