
Homotopy similarity of maps. Strong similarity

S. S. Podkorytov

Given pointed cellular spaces X and Y , X compact, and an integer r ⩾ 0,

we define a relation
r
≈ on [X,Y ] and argue for the conjecture that it always

coincides with the r-similarity
r∼.

§ 1. Introduction

This paper continues [2]. We adopt notation and conventions thereof. Let

X and Y be cellular spaces, X compact. For each r ⩾ 0, we define a relation
r
≈,

called the strong r-similarity, on the set [X,Y ]. We will need it in our next pa-
per [4]. We conjecture that strong r-similarity always coincides with r-similarity
r∼. It follows immediately from the definition that it implies r-similarity and
gets nonstrictly stronger as r grows. We do not know whether the strong r-
similarity is always an equivalence. We prove this in the case X = ΣT (§ 8).
The main results are as follows. Strong 1-similarity coincides with 1-similarity
(Theorem 14.2). (We believe that 1-similarity can be given a homological char-
acterization similar to that of homotopy invariants of order at most 1 [1].) If
X = S1, the strong r-similarity coincides with the r-similarity (§ 24). All
(r + 1)-fold Whitehead products are strongly r-similar to zero (Theorem 27.2).

§ 2. Definition of strong similarity

Augmentation. For a set V , introduce the homomorphism

ϵ : ⟨V ⟩ → Z, <v> 7→ 1,

the augmentation. An ensemble S ∈ ⟨V ⟩ is called affine if ϵ(S) = 1.

Hash product. Given a wedge

T =
∨

i∈(m)

Ti

(hereafter, (m) = {1, . . . ,m}) and a space Z, we have the Z-multilinear opera-
tion

⌗
i∈(m)

:
∏

i∈(m)

⟨ZTi⟩ → ⟨ZT ⟩, ⌗
i∈(m)

<vi> = <

∨
i∈(m)

vi>.

Simplex and its faces. Fix a nonempty finite set E. Let P×(E) be the set of
nonempty subsets F ⊆ E. Let A(E) be the set of subsets A ⊆ P×(E) such that
all F ∈ A are disjoint (layouts).
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Let ∆E be the simplex spanned by E. For F ∈ P×(E), ∆F ⊆ ∆E is a face.
For A ∈ A(E), put

∆[A] =
⋃
F∈A

∆F ⊆ ∆E.

Fissile ensembles. For A ∈ A(E), we have

∆[A]+ =
∨
F∈A

(∆F )+.

Hereafter, U+ = U ⊔ {<|}. Given a space Z, we call an ensemble S ∈ ⟨Z(∆E)+⟩
fissile if, for each A ∈ A(E),

S|∆[A]+ = ⌗
F∈A

S|(∆F )+ (1)

in ⟨Z∆[A]+⟩.
An ensemble of the form <v> is fissile. A fissile ensemble is affine (take

A = ∅ in the definition). An affine ensemble S is fissile if it satisfies (1) for

all A with |A| = 2. Given a space Z̃ ⊇ Z, we have ⟨Z̃(∆E)+⟩ ⊇ ⟨Z(∆E)+⟩; the
ensemble S is fissile as an element of ⟨Z̃(∆E)+⟩ if and only if it is fissile as an
element of ⟨Z(∆E)+⟩.

Spaces of maps. Let X and Y be cellular spaces, X compact. Then Y X is the
space of maps X → Y ; its basepoint is the constant map <|XY . Given a map
a : X → Y , we define the spaces (Y X , a) as Y X with the basepoint moved to a
and Y X

a as the basepoint path component of (Y X , a). For an unpointed space
U , introduce the function

θUa : Y X → (Y X , a)U+ , θUa (d)(u) = d (u ∈ U), θUa (d)(
<|) = a.

The filtration ⟨(Y X , a)T ⟩(s)X . Let T be a space. The function

□X : (Y X , a)T → Y T×X , □X(v)(t, x) = v(t)(x),

induces the homomorphism

⟨□X⟩ : ⟨(Y X , a)T ⟩ → ⟨Y T×X⟩.

The filtration of ⟨Y T×X⟩ (see [2]) induces a filtration of ⟨(Y X , a)T ⟩:

⟨(Y X , a)T ⟩(s)X = ⟨□X⟩−1(⟨Y T×X⟩(s)).

Strong similarity. Let X and Y be as above and a, b : X → Y be maps. We
adopt the inclusion ⟨(Y X

a )T ⟩ ⊆ ⟨(Y X , a)T ⟩. We say that a is strongly r-similar
to b,

a
r
≈ b,

if, for any nonempty finite set E, there exists a fissile ensemble S ∈ ⟨(Y X
a )(∆E)+⟩

such that
<θ∆E

a (b)>− S ∈ ⟨(Y X , a)(∆E)+⟩(r+1)
X .
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We have a
r
≈ a (put S = <θ∆E

a (a)>). Clearly, a
r
≈ b implies a

r∼ b (take

E = {•}). We prove below (Theorem 6.2) that the relation
r
≈ is homotopy

invariant.

§ 3. On the filtration ⟨(Y X , a)T ⟩(s)X

3.1. Lemma. Let X, Y , T and T̃ be cellular spaces, X, T and T̃ compact, and
a : X → Y and k : T̃ → T be maps. Then the homomorphism

⟨(Y X , a)k⟩ : ⟨(Y X , a)T ⟩ → ⟨(Y X , a)T̃ ⟩

takes ⟨(Y X , a)T ⟩(s)X to ⟨(Y X , a)T̃ ⟩(s)X .

Proof. We have the commutative diagram

⟨(Y X , a)T ⟩
⟨□X⟩ //

⟨(Y X ,a)k⟩
��

⟨Y T×X⟩

⟨Y k×idX ⟩
��

⟨(Y X , a)T̃ ⟩
⟨□X⟩ // ⟨Y T̃×X⟩.

By the definition of ⟨(Y X , a)T ⟩(s)X , ⟨□X⟩ takes it to ⟨Y T×X⟩(s). By [3, Lemma 2.1],

⟨Y k×idX ⟩ takes the latter to ⟨Y T̃×X⟩(s). By commutativity of the diagram,

⟨(Y X , a)k⟩ takes ⟨(Y X , a)T ⟩(s)X to ⟨□X⟩−1(⟨Y T̃×X⟩(s)), which is ⟨(Y X , a)T̃ ⟩(s)X

by the definition of the latter.

The case a = <|XY .

3.2. Lemma. Let X, Y , and X̃ be cellular spaces, X and X̃ compact, and
k : X̃ → X be a surjective map. Then the homomorphism

⟨Y k⟩ : ⟨Y X⟩ → ⟨Y X̃⟩

satisfies

⟨Y X⟩(s) = ⟨Y k⟩−1(⟨Y X̃⟩(s)). (2)

Proof. By [3, Lemma 2.1], ⟨Y k⟩ preserves the filtration, which yields the inclu-

sion ⊆ in (2). Check the inclusion ⊇. Take V ∈ ⟨Y k⟩−1(⟨Y X̃⟩(s)) and show
that V ∈ ⟨Y X⟩(s). Take R ∈ Fs−1(X). We should check that V |R = 0. We

have R = k(Q) for some Q ∈ Fs−1(X̃). Since ⟨Y k⟩(V ) ∈ ⟨Y X̃⟩(s), we have
⟨Y k⟩(V )|Q = 0. We have the commutative diagram

V ⟨Y X⟩
?|R //

⟨Y k⟩
��

⟨Y R⟩

⟨Y h⟩
��

V |R

⟨Y k⟩(V ) ⟨Y X̃⟩
?|Q // ⟨Y Q⟩, 0

where h = k|Q→R. Since h is surjective, ⟨Y h⟩ is injective. Thus V |R = 0.
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Let X, Y and T be cellular spaces, X and T compact. Let

□̂X : (Y X)T → Y T∧X

be the standard bijection. Consider the homomorphism

⟨□̂X⟩ : ⟨(Y X)T ⟩ → ⟨Y T∧X⟩.

Lemma 3.3. One has

⟨(Y X)T ⟩(s)X = ⟨□̂X⟩−1(⟨Y T∧X⟩(s)).

Proof. We have the commutative diagram

⟨(Y X)T ⟩
⟨□̂X⟩ //

⟨□X⟩ %%

⟨Y T∧X⟩

⟨Y k⟩
��

⟨Y T×X⟩,

where k : T ×X → T ∧X is the projection. By definition,

⟨(Y X)T ⟩(s)X = ⟨□X⟩−1(⟨Y T×X⟩(s)).

By Lemma 3.2,
⟨Y T∧X⟩(s) = ⟨Y k⟩−1(⟨Y T×X⟩(s)).

The desired equality follows.

§ 4. Primitive transforms

Let Z and Z̃ be spaces and g : Z → Z̃ be a map. For a compact cellular
space T , we have the map gT : ZT → Z̃T .

Lemma 4.1. Let E be a nonempty finite set. Consider the homomorphism

⟨g(∆E)+⟩ : ⟨Z(∆E)+⟩ → ⟨Z̃(∆E)+⟩.

Then, for any fissile ensemble S ∈ ⟨Z(∆E)+⟩, the ensemble ⟨g(∆E)+⟩(S) is fissile.
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Proof. Take A ∈ A(E). We have the commutative diagram

(S)F∈A
� (1) //

_

(2)

��

(⟨g(∆E)+ ⟩(S))F∈A_

(3)

��

∏
F∈A

⟨Z(∆E)+⟩

∏
F∈A

⟨g(∆E)+ ⟩
//

∏
F∈A

(?|(∆F )+
)

��

∏
F∈A

⟨Z̃(∆E)+⟩
∏

F∈A

(?|(∆F )+
)

��
(S|(∆F )+

)F∈A
_

(4)

��

∏
F∈A

⟨Z(∆F )+⟩

∏
F∈A

⟨g(∆F )+ ⟩
//

⌗
F∈A ��

∏
F∈A

⟨Z̃(∆F )+⟩

⌗
F∈A��

(⟨g(∆E)+ ⟩(S)|(∆F )+
)F∈A

_

(5)

��
S|∆[A]+

⟨Z∆[A]+⟩
⟨g∆[A]+ ⟩ // ⟨Z̃∆[A]+⟩ ⌗

F∈A

⟨g(∆E)+ ⟩(S)|(∆F )+

⟨Z(∆E)+⟩

?|∆[A]+

OO

⟨g(∆E)+ ⟩ // ⟨Z̃(∆E)+⟩.

?|∆[A]+

OO

S
_

(6)

OO

� (8) // ⟨g(∆E)+ ⟩(S)

_

(7)

OO

The sending (4) is fissility of S. The sendings (1), (2), (3), (5), (6), and (8) are
obvious. The sending (7) follows. It is fissility of ⟨g(∆E)+⟩(S).

Primitive case. Let X, Y , X̃, and Ỹ be cellular spaces, X and X̃ compact,

and g : Y X → Ỹ X̃ be an unbased map (a transform). We suppose that the

transform g is primitive: for each point w ∈ X̃, there is a point k(w) ∈ X and

an unbased map hw : Y → Ỹ such that

g(d)(w) = hw(d(k(w))), d ∈ Y X .

For a map a : X → Y , we have the map g : (Y X , a)→ (Ỹ X̃ , g(a)).

Lemma 4.2. For a map a : X → Y and a compact cellular space T , the homo-

morphism ⟨gT ⟩ takes ⟨(Y X , a)T ⟩(s)X to ⟨(Ỹ X̃ , g(a))T ⟩(s)
X̃

.

Proof. We may assume that k(<|X̃) = <|X and h
<|

X̃ (<|Y ) = <|Ỹ . We have the
function

K = id× k : T × X̃ → T ×X.

For Q ∈ Fs−1(T × X̃), we have K(Q) ∈ Fs−1(T ×X). We have the function

H : Y K(Q) → Ỹ Q, H(u)(t, w) = hw(u(K(t, w))), (t, w) ∈ Q, u ∈ Y K(Q),

and the commutative diagram

⟨(Y X , a)T ⟩
⟨□X⟩ //

⟨gT ⟩
��

⟨Y T×X⟩
?|K(Q) // ⟨Y K(Q)⟩

⟨H⟩
��

⟨(Ỹ X̃ , g(a))T ⟩
⟨□X̃⟩ // ⟨Ỹ T×X̃⟩

?|Q // ⟨Ỹ Q⟩.
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By the definition of ⟨(Y X , a)T ⟩(s)X , it goes to zero under the composition in
the upper row. Thus its image under ⟨gT ⟩ goes to zero under the composition
in the lower row. Since Q was taken arbitrarily, this image is contained in

⟨(Ỹ X̃ , g(a))T ⟩(s)
X̃

.

Lemma 4.3. Let a, b : X → Y be maps such that a
r
≈ b. Then g(a)

r
≈ g(b).

Proof. Take a finite set E. We have a fissile ensemble S ∈ ⟨(Y X
a )(∆E)+⟩ such

that
<θ∆E

a (b)>− S ∈ ⟨(Y X , a)(∆E)+⟩(r+1)
X .

Consider the homomorphism

⟨g(∆E)+⟩ : ⟨(Y X , a)(∆E)+⟩ → ⟨(Ỹ X̃ , g(a))(∆E)+⟩.

Since
θ∆E
g(a)(g(b)) = g(∆E)+(θ∆E

a (b)),

we have

<θ∆E
g(a)(g(b))>− ⟨g

(∆E)+⟩(S) = ⟨g(∆E)+⟩(<θ∆E
a (b)>− S),

which belongs to ⟨(Ỹ X̃ , g(a))(∆E)+⟩(r+1)

X̃
by Lemma 4.2. By Lemma 4.1, the

ensemble ⟨g(∆E)+⟩(S) is fissile. Since g is continuous, it takes Y X
a to Ỹ X̃

g(a).
Thus

⟨g(∆E)+⟩(S) ∈ ⟨(Ỹ X̃
g(a))

(∆E)+⟩.

We are done.

§ 5. Compositions and smash products

Compositions. Let X, Y , X̃, and Ỹ be cellular spaces, X and X̃ compact.

Corollary 5.1. Let k : X̃ → X and h : Y → Ỹ be maps and a, b : X → Y be

maps such that a
r
≈ b. Then a ◦ k

r
≈ b ◦ k in Y X̃ and h ◦ a

r
≈ h ◦ b in Ỹ X .

Proof. The transforms

Y X → Y X̃ , d 7→ d ◦ k,

and
Y X → Ỹ X , d 7→ h ◦ d,

are primitive. By Lemma 4.3, they preserve strong r-similarity.

Corollary 5.2. Let k : X̃ → X and h : Y → Ỹ be maps and a : X → Y be a

map such that <|
r
≈ a. Then <|

r
≈ a ◦ k in Y X̃ and <|

r
≈ h ◦ a in Ỹ X .

Follows from Corollary 5.1.
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Smash products. Let X, Y , and T be cellular spaces, X and T compact.

Corollary 5.3. Let a, b : X → Y be maps such that a
r
≈ b. Then the maps

a ∧ idT , b ∧ idT : X ∧ T → Y ∧ T

satisfy a ∧ idT
r
≈ b ∧ idT .

Proof. The transform

Y X → (Y ∧ T )X∧T , d 7→ d ∧ idT ,

is primitive. By Lemma 4.3, it preserves strong r-similarity.

Corollary 5.4. Let a : X → Y be a map such that <|
r
≈ a. Then the map

a ∧ idT : X ∧ T → Y ∧ T

satisfies <|
r
≈ a ∧ idT .

Follows from Corollary 5.3.

§ 6. Homotopy invariance

Let X and Y be cellular spaces, X compact.

Lemma 6.1. Let maps a, b, ã : X → Y satisfy

ã ∼ a
r
≈ b.

Then ã
r
≈ b.

Proof. By definition, the relation
r
≈ tolerates homotopy of its left argument. In

detail. For an unbased space U , we have the bijection

eU : (Y X , a)U+ → (Y X , ã)U+ , eU (v) =|U v, eU (v)(<|) = ã.

Clearly,
eU (θUa (d)) = θUã (d), d ∈ Y X . (3)

Since a ∼ ã, eU takes (Y X
a )U+ to (Y X

ã )U+ .
The homomorphism

⟨eU ⟩ : ⟨(Y X , a)U+⟩ → ⟨(Y X , ã)U+⟩

takes ⟨(Y X , a)U+⟩(s)X to ⟨(Y X , ã)U+⟩(s)X . Indeed, we have the commutative dia-
gram

⟨(Y X , a)U+⟩
⟨eU ⟩ //

⟨□X⟩
��

⟨(Y X , ã)U+⟩

⟨□X⟩
��

⟨Y U+×X⟩ ?⌗<ã> // ⟨Y (U+×X)∨X⟩
⟨Y k⟩ // ⟨Y U+×X⟩,
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where k : U+ ×X → (U+ ×X) ∨X is given by the rules

k(u, x) = in1(u, x), k(<|, x) = in2(x), u ∈ U, x ∈ X.

In the lower row, ⟨Y U+×X⟩(s) goes to ⟨Y (U+×X)∨X⟩(s)⟩ by [3, Lemma 3.1]
and then to ⟨Y U+×X⟩(s) by [3, Lemma 2.1]. This suffices by the definition

of ⟨(Y X , a)U+⟩(s)X and ⟨(Y X , ã)U+⟩(s)X .
Take a nonempty finite set E. For A ∈ A(E) and a collection SF ∈

⟨(Y X , a)(∆F )+⟩, F ∈ A, we have

⟨e∆[A]⟩( ⌗
F∈A

SF ) = ⌗
F∈A

e∆F (SF ) (4)

in ⟨(Y X , ã)∆[F ]+⟩. We have a fissile ensemble S ∈ ⟨(Y X
a )(∆E)+⟩ such that

<θ∆E
a (b)>− S ∈ ⟨(Y X

a )(∆E)+⟩(r+1). (5)

We get the ensemble ⟨e∆E⟩(S) ∈ ⟨(Y X
ã )(∆E)+⟩, which is fissile. Indeed, for

A ∈ A(E), we have

⟨e∆E⟩(S)|∆[A]+

(∗)
= ⟨e∆[A]⟩(S|∆[A]+) =

(since S is fissile)
= ⟨e∆[A]⟩

(
⌗
F∈A

S|(∆F )+

)
=

(by (4))

= ⌗
F∈A

⟨e∆F ⟩(S|(∆F )+)
(∗)
= ⌗

F∈A

⟨e∆E⟩(S)|(∆F )+

(the equalities (∗) hold by naturality of eU with respect to U). We have

<θ∆E
ã (b)>− ⟨e∆E⟩(S) = (by (3)) = ⟨e∆E⟩(<θ∆E

a (b)>− S) ∈ ⟨(Y X
ã )(∆E)+⟩(r+1),

where ∈ follows from (5) because ⟨e∆E⟩ preserves the filtration. Thus ã
r
≈ b.

Theorem 6.2. Let maps a, b, ã, b̃ : X → Y satisfy

ã ∼ a
r
≈ b ∼ b̃.

Then ã
r
≈ b̃.

Proof. We crop Y and assume it compact. By [2, Corollary 4.2], we can continu-
ously associate to each path v : [0, 1]→ Y an unbased homotopy Et(v) : Y → Y ,
t ∈ [0, 1], such that E0(v) = id and Et(v)(v(0)) = v(t). Let ht : X → Y ,

t ∈ [0, 1], be a homotopy such that h0 = b and h1 = b̃. For x ∈ X, intro-
duce the path vx = h?(x) : [0, 1] → Y . We have vx(0) = h0(x) = b(x) and

vx(1) = h1(x) = b̃(x). Introduce the homotopy

Ht : X × Y → Y, t ∈ [0, 1], Ht(x, y) = Et(vx)(y).
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We have
H0(x, y) = E0(vx)(y) = y

and
H1(x, b(x)) = E1(vx)(b(x)) = E1(vx)(vx(0)) = vx(1) = b̃(x).

Consider the primitive transforms

gt : Y
X → Y X , t ∈ [0, 1], gt(d)(x) = Ht(x, d(x)).

We have d = g0(d) ∼ g1(d), d ∈ Y X , and g1(b) = b̃.
We have

ã ∼ a ∼ g1(a)
r
≈ g1(b) = b̃,

where
r
≈ holds by Lemma 4.3. By Lemma 6.1, ã

r
≈ b̃.

Using Theorem 6.2, we define the relation of strong r-similarity on the set
[X,Y ] by the rule

[a]
r
≈ [b] ⇔ a

r
≈ b.

§ 7. Joining ensembles

Let X1, X2, Y , and T be spaces, Xi and T compact. Consider the Z-bilinear
operation

⌗T : ⟨(Y X1)T ⟩ × ⟨(Y X2)T ⟩ → ⟨(Y X1∨X2)T ⟩, <v1> ⌗T <v2> = <v>,

v(t) = v1(t) ∨ v2(t) : X1 ∨X2 → Y, t ∈ T.

Lemma 7.1. Let E be a finite set and Si ∈ ⟨(Y Xi)(∆E)+⟩, i = 1, 2, be fissile
ensembles. Then the ensemble

S1 ⌗(∆E)+ S2 ∈ ⟨(Y X1∨X2)(∆E)+⟩

is fissile.

Proof. Take A ∈ A(E). We have the commutative diagram

∏
F∈A

(⟨(Y X1)(∆E)+⟩ × ⟨(Y X2)(∆E)+⟩)

∏
F∈A

⌗(∆E)+

//

∏
F∈A

(?|(∆F )+
×?|(∆F )+

)

��

∏
F∈A

⟨(Y X1∨X2)(∆E)+⟩

∏
F∈A

?|(∆F )+

��∏
F∈A

(⟨(Y X1)(∆F )+⟩ × ⟨(Y X2)(∆F )+⟩)

∏
F∈A

⌗(∆F )+

//

⌗
F∈A

× ⌗
F∈A ��

∏
F∈A

⟨(Y X1∨X2)(∆F )+⟩

⌗
F∈A��

⟨(Y X1)∆[A]+⟩ × ⟨(Y X2)∆[F ]+⟩
⌗∆[A]+ // ⟨(Y X1∨X2)∆[A]+⟩

⟨(Y X1)(∆E)+⟩ × ⟨(Y X2)(∆E)+⟩

?|∆[A]+
×?|∆[A]+

OO

⌗(∆E)+ // ⟨(Y X1∨X2)(∆E)+⟩

?|∆[A]+

OO
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with the sendings

((S1,S2))F∈A
� (1) //

_

(2)

��

(S1⌗(∆E)+
S2)F∈A

_

(3)

��
((S1|(∆F )+

,S2|(∆F )+
))F∈A

_

(4)

��

((S1⌗(∆E)+
S2)|(∆F )+

)F∈A
_

(5)

��
(S1|∆[A]+

,S2|∆[A]+
) ⌗

F∈A

(S1⌗(∆E)+
S2)|(∆F )+

(S1,S2)

(6)

OO

(8) // S1⌗(∆E)+
S2.

(7)

OO

The sending (4) holds by fissility of S1 and S2. The sendings (1), (2), (3),
(5), (6), and (8) are obvious. The sending (7) follows. Thus S1 ⌗(∆E)+ S2 is
fissile.

Lemma 7.2. We have

⟨(Y X1)T ⟩(p)X1
⌗T ⟨(Y X2)T ⟩(q)X2

⊆ ⟨(Y X1∨X2)T ⟩(p+q)
X1∨X2

.

Proof. Take ensembles

Z1 ∈ ⟨(Y X1)T ⟩(p)X1
, Z2 ∈ ⟨(Y X2)T ⟩(q)X2

.

We have the commutative diagram

⟨(Y X1)T ⟩ × ⟨(Y X2)T ⟩
⌗T //

⟨□̂X1 ⟩×⟨□̂X2 ⟩
��

⟨(Y X1∨X2)T ⟩

⟨□̂X1∨X2 ⟩
��

⟨Y T∧X1⟩ × ⟨Y T∧X2⟩ ⌗ // ⟨Y (T∧X1)∨(T∧X2)⟩

(we used distributivity of smash product over wedge) and the sendings

(Z1,Z2)
� //

_

��

Z1⌗TZ2_

��
(⟨□̂X1 ⟩(Z1),⟨□̂X2 ⟩(Z2))

� // ⟨□̂X1∨X2 ⟩(Z1⌗TZ2).

By Lemma 3.3,

(⟨□̂X1⟩(Z1), ⟨□̂X2⟩(Z2)) ∈ ⟨Y T∧X1⟩(p) × ⟨Y T∧X2⟩(q).

Thus, by [3, Lemma 3.1],

⟨□̂X1∨X2⟩(Z1 ⌗T Z2) ∈ ⟨Y (T∧X1)∨(T∧X2)⟩(p+q).

Thus, by Lemma 3.3,

Z1 ⌗T Z2 ∈ ⟨(Y X1∨X2)T ⟩(p+q).
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Corollary 7.3. Let maps ai : Xi → Y , i = 1, 2, satisfy <|
r
≈ ai. Then the map

a1 ∨ a2 : X1 ∨X2 → Y

satisfies <|
r
≈ a1 ∨ a2.

Proof. Take a finite set E. We have fissile ensembles Si ∈ ⟨(Y Xi
<| )(∆E)+⟩, i = 1, 2,

such that
<θ∆E

<| (ai)>− Si ∈ ⟨(Y Xi)(∆E)+⟩(r+1)
Xi

.

By Lemma 7.1, the ensemble

S1 ⌗(∆E)+ S2 ∈ ⟨(Y X1∨X2
<| )(∆E)+⟩

is fissile. We have

<θ∆E
<| (a1 ∨ a2)>− S1 ⌗(∆E)+ S2 =

= <θ∆E
<| (a1)> ⌗(∆E)+

<θ∆E
<| (a2)>− S1 ⌗(∆E)+ S2 =

= (<θ∆E
<| (a1)>− S1)⌗(∆E)+

<θ∆E
<| (a2)> +

+ S1 ⌗(∆E)+ (<θ∆E
<| (a2)>− S2) ∈ ⟨(Y X1∨X2)(∆E)+⟩(r+1)

X1∨X2
,

where ∈ holds by Lemma 7.2. We are done.

§ 8. Strong similarity for an admissible couple

Let X and Y be cellular spaces, X compact. Let X be equipped with maps
µ : X → X ∨X (comultiplication) and ν : X → X (coinversion). The set Y X

carries the operations

(a, b) 7→ (a ∗ b : X µ−→ X ∨X
a∨b−−→ Y )

and
a 7→ (a† : X

ν−→ X
a−→ Y ).

We suppose that (X,µ, ν;Y ) is an admissible couple in the sense of [3], that is,
the set [X,Y ] is a group with the multiplication

[a][b] = [a ∗ b],

the inversion
[a]−1 = [a†],

and the identity 1 = [<|XY ]. We are mainly interested in the case of X = ΣT
with standard µ and ν.

We proceed parallelly to [3]. The subsets

[X,Y ]((r+1)) = {a ∈ [X,Y ] | 1
r
≈ a }

form the filtration

[X,Y ] = [X,Y ]((1)) ⊇ [X,Y ]((2)) ⊇ . . . .

11



Theorem 8.1. [X,Y ]((r+1)) ⊆ [X,Y ] is a normal subgroup.

Proof. Take a, b : X → Y , <|
r
≈ a, b. Check that <|

r
≈ a ∗ b. We have the

decomposition

a ∗ b : X µ−→ X ∨X
a∨b−−→ Y.

By Corollary 7.3, <|X∨X
Y

r
≈ a ∨ b. By Corollary 5.2, <|

r
≈ a ∗ b.

Take a : X → Y , <|
r
≈ a. Check that <|

r
≈ a†. We have the decomposition

a† : X
ν−→ X

a−→ Y.

By Corollary 5.2, <|
r
≈ a†.

Take a, b : X → Y , <|
r
≈ a. Check that <|

r
≈ b†∗(a∗b). Consider the primitive

transform
Y X → Y X , d 7→ b† ∗ (d ∗ b).

We have
<|XY ∼ b† ∗ (<|XY ∗ b)

r
≈ b† ∗ (a ∗ b),

where
r
≈ holds by Lemma 4.3. By Lemma 6.1, <|

r
≈ b† ∗ (a ∗ b).

We do not know whether the subgroups [X,Y ]((s)) form an N-series.

Theorem 8.2. For a, b ∈ [X,Y ], we have

a
r
≈ b ⇔ a−1b ∈ [X,Y ]((r+1)).

Proof. It suffices to check that, for maps a, b, c : X → Y , a
r
≈ b implies c ∗ a

r
≈

c ∗ b. This follows from Lemma 4.3 for the primitive transform

Y X → Y X , d 7→ c ∗ d.

It follows from Theorems 8.1 and 8.2 that, for an admissible couple (X,µ, ν;Y ),

the relation
r
≈ on [X,Y ] is an equivalence.

§ 9. Presheaves and extenders

Let P be a finite partially ordered set and C be a concrete category. (Con-
creteness is not essential; we assume it for convenience of notation only.) A
cofunctor S : P → C is called a presheaf. For p, q ∈ P , p ⩾ q, we have the
induced morphism

?|q : S(p)→ S(q)

(the restriction morphism).
For a preasheaf U : P → Ab, we have the isomorphism

∇P :
⊕
p∈P

U(p)→
⊕
p∈P

U(p), inp(u) 7→
∑

q∈P⌈p⌉

inq(u|q), u ∈ U(p), p ∈ P.

12



Hereafter,
P ⌈p⌉ = { q ∈ P | p ⩾ q }

and
inq : U(q)→

⊕
p∈P

U(p)

are the canonical insertions.
Suppose that P has the infimum operation ∧ and the greatest element ⊤.

It follows that P is a lattice. We put P× = P \ {⊤}. An extender λ for the
preasheaf S is a collection of morphisms

λq
p : S(q)→ S(p), p, q ∈ P, p ⩾ q,

such that, for p, q ∈ P and s ∈ S(q),

λq
p(s)|q = s if p ⩾ q

and
λq
⊤(s)|p = λp∧q

p (s|p∧q).

In particular,
λq
p(s) = λq

⊤(s)|p.
(The extenders we deal with satisfy the identity λq

p ◦λr
q = λr

p. We neither check
nor use this.)

Consider a preaheaf U : P → Ab with an extender λ. The symbol ⊕
below denotes the homomorphism of a direct sum given by its restrictions to
the summands.

Lemma 9.1. For q ∈ P , the diagram

⊕
p∈P

U(p)

pr

��

⊕
p∈P

U(p)
∇P

∼=
oo

⊕
p∈P

λp
⊤

//

Rq

��

U(⊤)

?|q

��⊕
p∈P⌈q⌉

U(p)
⊕

p∈P⌈q⌉
U(p)

∇P⌈q⌉

∼=
oo

⊕
p∈P⌈q⌉

λp
q

// U(q),

where Rq is the homomorphism defined by the rule

inp(u) 7→ inp∧q(u|p∧q),

is commutative.

Direct check.

Lemma 9.2. The homomorphism

U(⊤)→ lim
p∈P×

U(p), u 7→ (u|p)p∈P× ,

is surjective.
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Proof. Take a collection

(up)p∈P× ∈ lim
p∈P×

U(p) ⊆
⊕
p∈P×

U(p).

Define a collection (vp)p∈P× and a section u by the diagram

⊕
p∈P×

U(p)
⊕

p∈P×
U(p)

∇P×

∼=
oo

⊕
p∈P×

λp
⊤

// U(⊤).

(up)p∈P× (vp)p∈P×
�oo � // u

Take q ∈ P×. We show that u|q = uq, which will suffice. In the diagram of
Lemma 9.1, we have

(up)p∈P

(3)

��

(vp)p∈P
�(1)oo � (2) //

_

(4)

��

u_

(5)

��
(up)p∈P⌈q⌉ inq(uq)

�(6)oo � (7) // uq,

where we put u⊤ = v⊤ = 0 in U(⊤). The sendings (1) and (2) follow from
the construction of the collections. The sending (6) expresses the equalities
uq|p = up, p ∈ P ⌈q⌉, which hold by the definition of limit. The sending (3) is
obvious. The sending (4) follows because the left square is commutative and
∇P⌈q⌉ is injective. The sending (7) is the equality λq

q = id, which follows from
the definition of extender. By commutativity of the right square, the sending
(5) holds, which is what was to be checked.

§ 10. The abstract fissilizer ΦE on ⟨M(E)⟩

Fix a nonempty finite set E. The set P×(E) is partially ordered by inclusion.
For A,B ∈ A(E), we say A ⩾ B if, for each G ∈ B, there is F ∈ A such that

F ⊇ G. Such an F is unique; we denote it by (A)G. The set A(E) becomes a
lattice with the infimum operation

A ∧B = {F ∩G | F ∈ A, G ∈ B } \ {∅}

and the greatest element ⊤ = {E}.
Let Mg be the category of sets and M : P×(E) → Mg be a presheaf. We

define a presheaf M : A(E)→Mg. For A ∈ A(E), put

M(A) =
∏
F∈A

M(F ).

For A,B ∈ A(E), A ⩾ B, define the restriction function

M(A)→M(B), m 7→ m|B ,
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by putting, for m = (mF )F∈A,

m|B = (m(A)G|G)G∈B .

Clearly, M({E}) = M(E).
Taking composition with the functor ⟨?⟩ : Mg→ Ab, we get the presheaves

P×(E)→ Ab, F 7→ ⟨M(F )⟩,

and
A(E)→ Ab, A 7→ ⟨M(A)⟩. (6)

For A ∈ A(E), we have the Z-multilinear operation

⌗
F∈A

:
∏
F∈A

⟨M(F )⟩ → ⟨M(A)⟩, ⌗
F∈A

<mF > = <(mF )F∈A> (7)

(cf. § 2). For Q ∈ ⟨M(E)⟩ and A ∈ A(E), put

Q⌗(A) = ⌗
F∈A

Q|F ∈ ⟨M(A)⟩.

We call an ensemble R ∈ ⟨M(E)⟩ fissile if, for any layout A ∈ A(E),

R|A = R⌗(A)

in ⟨M(A)⟩.
We suppose that the presheaf M has an extender

λB
A : M(B)→M(A), A,B ∈ A(E), A ⩾ B.

Then the preasheaf (6) has the extender

⟨λB
A⟩ : ⟨M(B)⟩ → ⟨M(A)⟩, A,B ∈ A(E), A ⩾ B.

For Q ∈ ⟨M(E)⟩, define an ensemble ΦE(Q) ∈ ⟨M(E)⟩ by the rule

⊕
A∈A(E)

⟨M(A)⟩
⊕

A∈A(E)

⟨M(A)⟩
∇A(E)

∼=
oo

⊕
A∈A(E)

⟨λA
{E}⟩

// ⟨M(E)⟩.

Q⌗ ∇−1
A(E)

(Q⌗)
�oo � // ΦE(Q)

We get a function (not a homomorphism)

ΦE : ⟨M(E)⟩ → ⟨M(E)⟩,

which we call the fissilizer.

Lemma 10.1. For any ensemble Q ∈ ⟨M(E)⟩, the ensemble ΦE(Q) is fissile.
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Proof. Take A ∈ A(E). We have the commutative diagram

Q⌗[

��

∇−1
A(E)

(Q⌗)
�oo � //ΦE(Q)c





⊕
a∈A(E)

⟨M(a)⟩

pr
��

⊕
a∈A(E)

⟨M(a)⟩
∇A(E)

∼=
oo

⊕
a∈A(E)

⟨λa
{E}⟩

//

RA
��

⟨M(E)⟩

?|A
��⊕

a∈A(E)⌈A⌉
⟨M(a)⟩

JA
∼=
��

⊕
a∈A(E)⌈A⌉

⟨M(a)⟩
∇A(E)⌈A⌉

∼=
oo

⊕
a∈A(E)⌈A⌉

⟨λa
A⟩

//

JA
∼=
��

⟨M(A)⟩

IA∼=
��⊗

F∈A

(
⊕

b∈A(F )

⟨M(b)⟩)
⊗
F∈A

(
⊕

b∈A(F )

⟨M(b)⟩)

⊗
F∈A

∇A(F )

∼=
oo

⊗
F∈A

(
⊕

b∈A(F )

⟨λb
{F}⟩)

// ⊗
F∈A

⟨M(F )⟩,

⊗
F∈A

Q|⌗F
⊗

F∈A

∇−1
A(F )

(Q|⌗F )
�oo � //

⊗
F∈A

ΦF (Q|F )

where the upper half comes from Lemma 9.1, IA is the isomorphism defined by
the rule

<(mF )F∈A> 7→
⊗
F∈A

<mF >,

and JA is the isomorphism defined by the rule

ina(<m>) 7→
⊗
F∈A

ina∧{F}(<m|a∧{F}>)

(note that a∧{F} ∈ A(F ) ⊆ A(E)). Commutativity of the lower half is checked
directly. The sendings in the upper row hold by the definition of ΦE . The
sendings in the lower row hold by the definition of ΦF : ⟨M(F )⟩ → ⟨M(F )⟩.
The sending in the left column is checked directly. The sending in the right
column follows. Since

IA : ⌗
F∈A

qF 7→
⊗
F∈A

qF

for qF ∈ ⟨M(F )⟩, F ∈ A, we get

ΦE(Q)|A = ⌗
F∈A

ΦF (Q|F ).

In particular, for A = {F}, this gives

ΦE(Q)|F = ΦF (Q|F ).

Thus, for arbitrary A,

ΦE(Q)|A = ⌗
F∈A

ΦE(Q)|F .

Thus ΦE(Q) is fissile.
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Let N(A) ⊆ ⟨M(A)⟩, A ∈ A(E), be a collection of subgroups preserved by
the restriction homomorphisms and the homomorphisms ⟨λB

A⟩.

Lemma 10.2. Let an ensemble Q ∈ ⟨M(E)⟩ satisfy

Q⌗(A)−Q|A ∈ N(A)

for all A ∈ A(E). Then

ΦE(Q)−Q ∈ N({E}).

Proof. We have the presheaf

A(E)→ Ab, A 7→ ⟨M(A)⟩/N(A),

with the induced restriction homomorphisms. We have the commutative dia-
gram

(Q|A)A∈A(E) in{E}(Q)
�oo � // Q

Q⌗ ∇−1
A(E)

(Q⌗)
�oo � // ΦE(Q)

⊕
A∈A(E)

⟨M(A)⟩

pr
��

⊕
A∈A(E)

⟨M(A)⟩
∇A(E)

∼=
oo

⊕
A∈A(E)

⟨λA
{E}⟩

//

pr
��

⟨M(E)⟩

pr

��⊕
A∈A(E)

⟨M(A)⟩/N(A)
⊕

A∈A(E)

⟨M(A)⟩/N(A)
∇A(E)

∼=
oo // ⟨M(E)⟩/N({E}).

The upper line of sendings is obvious. The lower line of sendings holds by the
definition of ΦE . By hypothesis, the difference of the elements in the upper-left
corner descends to zero. Since ∇A(E) in the lower row is an isomorphism, the
difference of elements in the upper-right corner also descends to zero.

§ 11. Topological and simplicial constructions

Topological cones. Take s ∈ {0, 1}. Given an unpointed space U , form the space

CsU = (U × [0, 1])/(U × {s}),

the cone over U . The innate basepoint (where U × {s} is projected) is called
the apex. Using the “base” embedding

U
u 7→(u,1−s)−−−−−−−→ U × [0, 1]

pr−→ CsU,

we adopt the inclusion U ⊆ CsU and the based one U+ ⊆ CsU . A path of the
form

[0, 1]
t7→(u,t)−−−−−→ U × [0, 1]

pr−→ CsU
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is called a generating path. For an unpointed subspace V ⊆ U , we have CsV ⊆
CsU .

Notation: Č = C0, Ĉ = C1.

Topological suspensions. For an unpointed space U , the unreduced suspension
ΣU is the colimit of the diagram

{0, 1} pr←− U × {0, 1} in−→ U × [0, 1].

Let sΣU ∈ ΣU be the point coming from s ∈ {0, 1}. We appoint 0ΣU to be the
basepoint of ΣU .

We use also the usual reduced suspension Σ.

Unreduced Kan cones. Let ∆n be “the n-simplex”, the simplicial set represented
(as a cofunctor) by the object [n] of the simplex category. Take s ∈ {0, 1}. Let
δ
s : ∆0 → ∆1 be the morphism induced by the function δs : [0]→ [1], 0 7→ 1−s.

Given a simplicial set U , we define its cone CsU . There is a unique (up to an
isomorphism) Cartesian square

U i //

��

CsU
p
��

∆0 δ
s
// ∆1

with the universal property expressed by the diagram

U i //

��

CsU
p
��

A //

gg

ww
B

66

((
∆0 δ

s
// ∆1,

where the lower trapeze is assumed to be Cartesian. The morphism δ1−s : ∆0 →
∆1 lifts along p uniquely. This yields a morphism ∆0 → CsU , which makes
CsU a pointed simplicial set. The basepoint is called the apex. The morphism
i is injective. Using it, we adopt the inclusion U ⊆ CsU and the based one
U+ ⊆ CsU . We call p the projection.

All constructions are covariant/natural in U . The functor Cs preserves
injective morphisms. Using this, we adopt the inclusion CsV ⊆ CsU for a
simplicial subset V ⊆ U .

Notation: Č = C0, Ĉ = C1.
There is a unique natural map r : Cs|U | → |CsU | such that the diagram

Cs|U |

r

��
|U |

in (= |i|)
//

in

77

|CsU |
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is commutative and each generating path of Cs|U | is sent to an affine path in
some simplex of |CsU |. The map r is a homeomorphism. Using it, we adopt
that |CsU | = Cs|U |.
Reduced Kan cone. For a pointed simplicial set T , introduce the pointed sim-
plicial set čT = ČT/Č(<|), where (<|) ⊆ T is the simplicial subset generated by
the basepoint <| ∈ T0 (so, (<|) ∼= ∆0). We adopt the obvious inclusion T ⊆ čT
and identification č(U+) = ČU . č is a functor; it preserves wedges.

Unreduced Kan suspension. For a simplicial set U , introduce the pointed sim-
plicial set Σ̂U = ĈU /U . It has two vertices: the top 1Σ̂U , which is the image

of the apex of the cone ĈU under the projection ĈU → Σ̂U , and the basepoint
0Σ̂U (where the base U ⊆ ĈU is sent). We have

|Σ̂U | = |ĈU |/|U | = Ĉ|U |/|U | = Σ|U |.

Thick simplex. For a set U , let EU be the simplicial set with (EU)n = U [n]

(= Un+1) and obvious structure functions.

For each u ∈ U , there is a unique retraction σ̃u : ČĈEU → ĈEU sending
the apex to the vertex u ∈ U = (EU)0 ⊆ (ĈEU)0. Define retractions σu and
σu by the commutative diagram

ČĈEU
Čq //

σ̃u

��

ČΣ̂EU
r //

σu

��

čΣ̂EU

σuzz
ĈEU

q // Σ̂EU,

where q and r are projections. We call σu the canonical contraction.

Lemma 11.1. Let V ⊆ U be a subset. Then, for u ∈ V , the diagram

čΣ̂EV //

σu

��

čΣ̂EU

σu

��
Σ̂EV // Σ̂EU,

where the horizontal arrows are induced by the inclusion V → U , is commuta-
tive.

If U is finite, let
ξU : |EU | → ∆U (8)

be the unbased map that sends, for each u ∈ U , the corresponding vertex
|u| of |EU | to the corresponding vertex <u> of ∆U and is affine on simplices.
Hereafter, we put ∆∅ = ∅.

Barycentric subdivision. Let K be an (abstract simplicial) complex. We order
the set of simplices of K by reverse inclusion. Define the simplicial set βK as the
nerve of this partially ordered set. For a subcomplex L ⊆ K , we have βL ⊆ βK .
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There is a homeomorphism |βK | → |K | that sends the vertex of |βK | cor-
responding to a simplex k of K to the barycentre of the simplex |k| ⊆ |K | and
takes each simplex of |βK | to some simplex of |K | affinely. Using it, we adopt
that |βK | = |K |.
Canonical retractions. Given a complex K and a subcomplex L ⊆ K , we have
ČβL ⊆ ČβK and define the based morphism

ρ
K
L : ČβK → ČβL

as the retraction that sends all vertices outside ČβL to the apex of ČβL. We
call ρKL the canonical retraction.

Lemma 11.2. For two subcomplexes L,M ⊆ K , the diagram

ČβL in //

ρ
L
L∩M
��

ČβK

ρ
K
M
��

Čβ(L ∩ M )
in // ČβM

is commutative.

§ 12. Canonical retractions in the cones Čβ∆E and Č∆E

Fix a nonempty finite set E.

The simplex ∆E and its subcomplexes. Let the ∆E be the complex whose set
of vertices is E and set of simplices is P×(E). For F ∈ P×(E), we have the
subcomplex ∆F ⊆ ∆E. For A ∈ A(E), introduce the subcomplex ∆[A] ⊆ ∆E,

∆[A] =
⋃
F∈A

∆F.

For A,B ∈ A(E), we have

A ⩾ B ⇒ ∆[A] ⊇ ∆[B]

and ∆[A ∧B] = ∆[A] ∩ ∆[B]. Moreover, ∆[{E}] = ∆E.
For A,B ∈ A(E), A ⩾ B, we have the canonical retraction

ρ
A
B = ρ

∆[A]
∆[B] : Čβ∆[A]→ Čβ∆[B].

Corollary 12.1. For two layouts A,B ∈ A(E), the diagram

Čβ∆[A]
in //

ρ
A
A∧B

��

Čβ∆E

ρ
{E}
B

��
Čβ∆[A ∧B]

in // Čβ∆[B]

is commutative.
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Follows from Lemma 11.2.

Geometric realization. We adopt the obvious identification |∆E| = ∆E. For
F ∈ P×(E), |∆F | = ∆F as subsets of ∆E. For A ∈ A(E), |∆[A]| = ∆[A] in the
same sense. For A,B ∈ A(E), A ⩾ B, we have ∆[A] ⊇ ∆[B] and the retraction
ρAB ,

Č∆[A]
ρA
B // Č∆[B]

|Čβ∆[A]|
|ρAB | // |Čβ∆[B]|.

We call ρAB the canonical retraction, too.

Corollary 12.2. For two layouts A,B ∈ A(E), the diagram

Č∆[A]
in //

ρA
A∧B

��

Č∆E

ρ
{E}
B

��
Č∆[A ∧B]

in // Č∆[B]

is commutative.

Follows from Corollary 12.1.

§ 13. The fissilizer ΦE on ⟨(Y X
a )Č∆E⟩

Fix a space Z and a finite set E. Consider the presheaf M : P×(E)→Mg,

F 7→ ZČ∆F (with the obvious restriction functions). For A ∈ A(E), we have

Č∆[A] = Č
( ⋃
F∈A

∆F
)
=

∨
F∈A

Č∆F.

We identify the presheaf M : A(E) → Mg (see § 10) with the presheaf A 7→
ZČ∆[A] by the chain of equalities/obvious identifications

M(A) =
∏
F∈A

M(F ) =
∏
F∈A

ZČ∆F = Z
∨

F∈A Č∆F = ZČ∆[A].

The operation (7) in our case coincides with the operation

⌗
F∈A

:
∏
F∈A

⟨ZČ∆F ⟩ → ⟨ZČ∆[A]⟩,

which we have by § 2. We will need the following formulas:

ϵ
(
⌗
F∈A

QF

)
=

∏
F∈A

ϵ(QF ) (9)
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and (
⌗
F∈A

QF

)∣∣
Č∆G

=
( ∏
F∈A\{G}

ϵ(QF )
)
QG. (10)

For A,B ∈ A(E), A ⩾ B, let λB
A : M(B)→M(A) be the function

ZρA
B : ZČ∆[B] → ZČ∆[A],

where ρAB : Č∆[A] → Č∆[B] is the canonical retraction. It follows from Corol-
lary 12.2 that the functions λB

A form an extender. By § 10, we get the fissilizer

ΦE : ⟨ZČ∆E⟩ → ⟨ZČ∆E⟩.

Corollary 13.1. For any ensemble Q ∈ ⟨ZČ∆E⟩, the ensemble ΦE(Q) is fissile.

Follows from Lemma 10.1.

We set Z = Y X
a , where X and Y are cellular spaces, X compact, and a :

X → Y is a map. For a space T , we have the inclusion ⟨(Y X
a )T ⟩ ⊆ ⟨(Y X , a)T ⟩.

An ensemble Q ∈ ⟨(Y X
a )Č∆E⟩ is called (X, r)-almost fissile if, for any layout

A ∈ A(E),

⌗
F∈A

Q|Č∆F −Q|Č∆[A] ∈ ⟨(Y
X , a)Č∆[A]⟩(r+1)

X .

Lemma 13.2. Any affine ensemble Q ∈ ⟨(Y X
a )Č∆E⟩ is (X, 1)-almost fissile.

Proof. Take A ∈ A(E). Consider the quantity D ∈ ⟨(Y X
a )Č∆[A]⟩,

D = ⌗
F∈A

Q|Č∆F −Q|Č∆[A].

We should show that D ∈ ⟨(Y X , a)Č∆[A]⟩(2)X . Consider the homomorphism

⟨□X⟩ : ⟨(Y X , a)Č∆[A]⟩ → ⟨Y Č∆[A]×X⟩.

We should show that ⟨□X⟩(D) ∈ ⟨Y Č∆[A]×X⟩(2). Take R ∈ F1(Č∆[A] × X).
We check that ⟨□X⟩(D)|R = 0. We are in (at least) one of the two following
cases.

Case 0: R = {<|}. We have

ϵ(⟨□X⟩(D)) = ϵ(D) = (using (9)) =
∏
F∈A

ϵ(Q|Č∆F )− ϵ(Q|Č∆[A]) =

=
∏
F∈A

ϵ(Q)− ϵ(Q) = (since ϵ(Q) = 1) = 0,

which suffices in this case.
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Case 1: R ⊆ Č∆G×X for someG ∈ A. It suffices to check that ⟨□X⟩(D)|Č∆G×X =
0. We have the commutative diagram

⟨(Y X , a)Č∆[A]⟩
⟨□X⟩ //

?|Č∆G

��

⟨Y Č∆[A]×X⟩

?|Č∆G×X

��
⟨(Y X , a)Č∆G⟩

⟨□X⟩ // ⟨Y Č∆G×X⟩.

Thus it suffices to check that D|Č∆G = 0. We have

D|Č∆G = (using (10)) =
( ∏
F∈A\{G}

ϵ(Q|Č∆F )
)
Q|Č∆G −Q|Č∆G =

(since ϵ(Q|Č∆F ) = ϵ(Q) = 1) = 0.

Corollary 13.3. Let Q ∈ ⟨(Y X
a )Č∆E⟩ be an (X, r)-almost fissile ensemble.

Then
ΦE(Q)−Q ∈ ⟨(Y X , a)Č∆E⟩(r+1)

X .

Proof. For A ∈ A(E), introduce the subgroup

N(A) = ⟨(Y X
a )Č∆[A]⟩ ∩ ⟨(Y X , a)Č∆[A]⟩(r+1)

X ⊆ ⟨(Y X
a )Č∆[A]⟩ = ⟨M(A)⟩.

By Lemma 3.1, this family is preserved by the restriction homomorphisms of
the presheaf A 7→ ⟨M(A)⟩ and the homomorphisms ⟨λB

A⟩. Since the ensemble Q
is (X, r)-almost fissile, it satisfies the hypothesis of Lemma 10.2. Thus ΦE(Q)−
Q ∈ N({E}), as required.

Given maps a, b : X → Y , let us say that a is firmly r-similar to b, a
r
≋ b, if,

for any nonempty finite set E, there is a fissile ensemble R ∈ ⟨(Y X
a )Č∆E⟩ such

that
<θ∆E

a (b)>−R|(∆E)+ ∈ ⟨(Y
X , a)(∆E)+⟩(r+1)

X . (11)

Lemma 13.4. Let a, b : X → Y be maps. Then a
r
≋ b implies a

r
≈ b.

We do not know whether the converse holds.

Proof. Take a nonempty finite set E. We have a fissile ensemble R ∈ ⟨(Y X
a )Č∆E⟩

satisfying (11). We seek a fissile ensemble S ∈ ⟨(Y X
a )(∆E)+⟩ such that

<θ∆E
a (b)>− S ∈ ⟨(Y X , a)(∆E)+⟩(r+1)

X . (12)

Put S = R|(∆E)+ .
For a layout A ∈ A(E), we have

S|∆[A]+ = R|Č∆[A]|∆[A]+ = (since R is fissile) =
(
⌗
F∈A

R|Č∆F

)∣∣
∆[A]+

=

(by naturality of ⌗) = ⌗
F∈A

R|(∆F )+ = ⌗
F∈A

S|(∆F )+ .

Thus S is fissile.
The condition (12) is just the equality (11).
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Proposition 13.5. Let a, b : X → Y be maps. Suppose that, for any finite set
E, there is an (X, r)-almost fissile ensemble QE ∈ ⟨(Y X

a )Č∆E⟩ such that

<θ∆E
a (b)>−QE |(∆E)+ ∈ ⟨(Y

X , a)(∆E)+⟩(r+1)
X . (13)

Then a
r
≈ b and, moreover, a

r
≋ b.

Proof. Take a nonempty finite set E. Put Q = QE and R = ΦE(Q) ∈
⟨(Y X

a )Č∆E⟩. By Corollary 13.1, R is fissile. By Corollary 13.3,

R−Q ∈ ⟨(Y X , a)Č∆E⟩(r+1)
X .

By Lemma 3.1,

R|(∆E)+ −Q|(∆E)+ ∈ ⟨(Y
X , a)(∆E)+⟩(r+1)

X .

Using (13), we get

<θ∆E
a (b)>−R|(∆E)+ ∈ ⟨(Y

X , a)(∆E)+⟩(r+1)
X .

Thus a
r
≋ b. By Lemma 13.4, a

r
≈ b.

§ 14. Strong 1-similarity

Let X and Y be spaces and a : X → Y be a map.

Lemma 14.1. Let U be an unpointed space. Then the homomorphism

⟨θUa ⟩ : ⟨Y X⟩ → ⟨(Y X , a)U+⟩

takes ⟨Y X⟩(s) to ⟨(Y X , a)U+⟩(s)X .

Proof. Introduce the map

p : U+ ×X → X ∨X, (u, x) 7→ in1(x), (<|, x) 7→ in2(x).

(u ∈ U , x ∈ X). We have the commutative diagram

⟨Y X⟩
⟨θU

a ⟩ //

⟨e⟩
��

⟨(Y X , a)U+⟩

⟨□X⟩
��

⟨Y X∨X⟩
⟨Y p⟩ // ⟨Y U+×X⟩,

where e = ? ∨ a : Y X → Y X∨X .
We show that ⟨e⟩ sends ⟨Y X⟩(s) to ⟨Y X∨X⟩(s). Indeed, ⟨e⟩ equals the com-

position

⟨Y X⟩ ?⊗<a>−−−−→ ⟨Y X⟩ ⊗ ⟨Y X⟩ (∨)−−→ ⟨Y X∨X⟩
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(see [3, § 3] for (∨)). Here ⟨Y X⟩(s) goes to ⟨Y X⟩(s) ⊗ ⟨Y X⟩(0), which goes to
⟨Y X∨X⟩(s) by [3, Lemma 3.1].

The homomorphism ⟨Y p⟩ takes ⟨Y X∨X⟩(s) to ⟨Y U+×X⟩(s) by [3, Lemma 2.1].
Thus, by the diagram, ⟨θUa ⟩ takes ⟨Y X⟩(s) to ⟨□X⟩−1(⟨Y U+×X⟩(s)), which is

⟨(Y X , a)U+⟩(r+1)
X by definition.

Theorem 14.2. Let a, b : X → Y be maps such that a
1∼ b. Then a

1
≈ b.

Proof. We have an ensemble A ∈ ⟨Y X
a ⟩,

A =
∑
i

ui<ai>,

such that <b>−A ∈ ⟨Y X⟩(2). For each i, choose a path hi : [0, 1]→ Y X
a from a

to ai and consider the composition

qi : Č∆E
projection−−−−−−→ [0, 1]

hi−→ Y X
a .

Consider the ensemble Q ∈ ⟨(Y X
a )Č∆E⟩,

Q =
∑
i

ui<qi>.

We have

ϵ(Q) = ϵ(A) = (since <b>−A ∈ ⟨Y X⟩(1)) = ϵ(<b>) = 1.

By Lemma 13.2, Q is (X, 1)-almost fissile. Clearly, qi|(∆E)+ = θ∆E
a (ai). Thus

Q|(∆E)+ = ⟨θ∆E
a ⟩(A). We get

<θ∆E
a (b)>−Q|(∆E)+ = ⟨θ∆E

a ⟩(<b>−A) ∈ ⟨(Y X , a)(∆E)+⟩(2),

where ∈ holds by Lemma 14.1. By Proposition 13.5, a
1
≈ b.

§ 15. Two identities

Let A and I be finite sets. Let P(I) be the set of subsets of I. Consider the
set P(I)A of functions k : A→ P(I). For k ∈ P(I)A, put

U(k) =
⋃
a∈A

k(a) ∈ P(I).

Let R(A, I) be the set of k ∈ P(I)A such that U(k) = I (covers).

Lemma 15.1. In the group ⟨P(I)⟩⊗A, the equality holds∑
J∈P(I)

(−1)|I|−|J|
⊗
a∈A

<J> =
∑

k∈R(A,I)

⊗
a∈A

( ∑
J∈P(k(a))

(−1)|k(a)|−|J|
<J>

)
.
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Proof. We have∑
J∈P(I)

(−1)|I|−|J|
⊗
a∈A

( ∑
K∈P(J)

<K>

)
=

=
∑

J∈P(I)

(−1)|I|−|J|
∑

k∈P(I)A:
U(k)⊆J

⊗
a∈A

<k(a)> =

=
∑

k∈P(I)A

( ∑
J∈P(I):
J⊇U(k)

(−1)|I|−|J|)⊗
a∈A

<k(a)>
(∗)
=

∑
k∈R(A,I)

⊗
a∈A

<k(a)>,

where (∗) holds because the inner sum on the left equals 1 if U(k) = I and 0
otherwise. The set P(I) is partially ordered by inclusion. We have the isomor-
phism

∇−1
P(I) : ⟨P(I)⟩ → ⟨P(I)⟩

(see § 9), under which ∑
K∈P(J)

<K> 7→ <J>, J ∈ P(I),

and
<K> 7→

∑
J∈P(K)

(−1)|K|−|J|
<J>, K ∈ P(I).

Applying it to each factor of the summands in the left and right sides of the
calculation, we get the required equality.

Put P×(I) = P(I) \ {I}. We adopt the inclusion P×(I)A ⊆ P(I)A. Let
R′(A, I) be the set of k ∈ P×(I)A such that U(k) = I.

Lemma 15.2. In the group ⟨P×(I)⟩⊗A, the equality holds⊗
a∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|
<J>

)
−

∑
J∈P×(I)

(−1)|I|−1−|J|
⊗
a∈A

<J> =

=
∑

k∈R′(A,I)

⊗
a∈A

( ∑
J∈P(k(a))

(−1)|k(a)|−|J|
<J>

)
.

Proof. We use the inclusion ⟨P×(I)⟩⊗A ⊆ ⟨P(I)⟩⊗A. Put

T (k) =
⊗
a∈A

( ∑
J∈P(k(a))

(−1)|k(a)|−|J|
<J>

)
, k ∈ P(I)A.

We have∑
k∈P(I)A

T (k) =
⊗
a∈A

( ∑
K∈P(I)

∑
J∈P(K)

(−1)|K|−|J|
<J>

)
=

=
⊗
a∈A

( ∑
J∈P(I)

( ∑
K∈P(I):
K⊇J

(−1)|K|−|J|)
<J>

) (∗)
=

⊗
a∈A

<I>, (14)
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where (∗) holds because the inner sum on the left equals 1 if J = I and 0
otherwise. We have also∑

k∈P×(I)A

T (k) =
⊗
a∈A

( ∑
K∈P×(I)

∑
J∈P(K)

(−1)|K|−|J|
<J>

)
=

=
⊗
a∈A

( ∑
J∈P×(I)

( ∑
K∈P×(I):

K⊇J

(−1)|K|−|J|)
<J>

)
=

⊗
a∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|
<J>

)
.

(15)

Note that
R(A, I) ⊇ R′(A, I), P(I)A ⊇ P×(I)A,

and
R(A, I) \ R′(A, I) = P(I)A \ P×(I)A

as subsets of P(I)A. Thus∑
k∈R′(A,I)

T (k) =
∑

k∈R(A,I)

T (k)−
∑

k∈P(I)A

T (k) +
∑

k∈P×(I)A

T (k) =

(by Lemma 15.1 and equalities (14) and (15))

=
∑

J∈P(I)

(−1)|I|−|J|
⊗
a∈A

<J>−
⊗
a∈A

<I> +
⊗
a∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|
<J>

)
=

= −
∑

J∈P×(I)

(−1)|I|−1−|J|
⊗
a∈A

<J> +
⊗
a∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|
<J>

)
,

as required.

§ 16. Chained monoids

Let P be a monoid. Then ⟨P ⟩ is its monoid ring. We call the monoid P
chained if ⟨P ⟩ is equipped with a chain of left ideals ⟨P ⟩[s],

⟨P ⟩ = ⟨P ⟩[0] ⊇ ⟨P ⟩[1] ⊇ . . . .

Given a finite set I, we consider P(I) as a monoid with respect to intersection
and chain it by letting ⟨P(I)⟩[s] be the subgroup generated by elements

ωJ =
∑

K∈P(J)

(−1)|J|−|K|
<K>,

where J ∈ P(I), |J | ⩾ s.
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§ 17. The filtration ⟨ZT ⟩[s]

Let P be a chained monoid. Let T and Z be pointed simplicial sets. Let
ZT denote the set of based morphisms T → Z. Let P act on Z (on the left;
preserving the basepoint). For an element p ∈ P , let p(Z) : Z → Z be its action.

(We will use this notation for all actions.) The set ZT carries the induced action
of P . Thus the abelian group ⟨ZT ⟩ becomes a (left) module over ⟨P ⟩. We define
a filtration

⟨ZT ⟩ = ⟨ZT ⟩[0] ⊇ ⟨ZT ⟩[1] ⊇ . . . .

Let T j , j ∈ (n), be pointed simplicial sets and

f : T →
∨

j∈(n)

T j

be a based morphism. We have the Z-multilinear operation

⌗
j∈(n)

:
∏

j∈(n)

⟨ZT j

⟩ → ⟨Z
∨

j∈(n) T j

⟩, ⌗
j∈(n)

<v j
> = <

∨
j∈(n)

v j
>,

and the homomorphism

⟨Zf ⟩ : ⟨Z
∨

j∈(n) T j

⟩ → ⟨ZT ⟩.

Take ensembles vj ∈ ⟨P ⟩[sj ]⟨ZT j ⟩, j ∈ (n), and consider the ensemble v ∈ ⟨ZT ⟩,

v = ⟨Zf ⟩
(
⌗

j∈(n)

vj
)
. (16)

We call v a block of rank s1 + . . .+ sn. We let ⟨ZT ⟩[s] ⊆ ⟨ZT ⟩ be the subgroup
generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 17.1. Let T̃ be a pointed simplicial set and k : T̃ → T be a based
simplicial morphism. Then the homomorphism

⟨Zk⟩ : ⟨ZT ⟩ → ⟨ZT̃ ⟩

takes ⟨ZT ⟩[s] to ⟨ZT̃ ⟩[s].

Lemma 17.2. Let Z̃ be a pointed simplicial set acted on by P and h : Z → Z̃
be a P -equivariant based simplicial morphism. Then the homomorphism

⟨hT ⟩ : ⟨ZT ⟩ → ⟨Z̃T ⟩

takes ⟨ZT ⟩[s] to ⟨Z̃T ⟩[s].

The cone čZ carries the induced action of P . We have the function

čT
Z : ZT → (čZ)čT , v 7→ čv .
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Lemma 17.3. The homomorphism

⟨čT
Z ⟩ : ⟨ZT ⟩ → ⟨(čZ)čT ⟩

takes ⟨ZT ⟩[s] to ⟨(čZ)čT ⟩[s].

Proof. It suffices to show that ⟨čT
Z ⟩ sends any block to a block of the same rank.

Consider the block (16). Since vj ∈ ⟨P ⟩[sj ]⟨čT j

Z ⟩ and the functions

čT j

Z : ZT j

→ (čZ)čT j

preserve the action of P , we have

⟨čT j

Z ⟩(vj) ∈ ⟨P ⟩[sj ]⟨(čZ)čT j

⟩.

Let
ink

: T k →
∨

j∈(n)

T j

be the canonical insertions. We have the commutative diagram∨
j∈(n)

čT j

e:=
∨

j∈(n)
č inj

��
čT

g
88

čf
// č(

∨
j∈(n)

T j),

where e is an isomorphism (since č preserves wedges) and g is the unique lift
of čf . For arbitrary based morphisms v j : T j → Z, we have the commutative
diagram with sendings

(čZ)
∨

j∈(n) čT j

(čZ)g

ww
(čZ)čT (čZ)č(

∨
j∈(n) T j),

(čZ)čf
oo

(čZ)e

OO
∨

j∈(n)

čv j

2

xx
č(Zf (

∨
j∈(n)

v j)) č(
∨

j∈(n)

v j).
�oo

_

OO

Thus we have the commutative diagram

⟨(čZ)
∨

j∈(n) čT j

⟩
⟨(čZ)g ⟩

uu
⟨(čZ)čT ⟩ ⟨(čZ)č(

∨
j∈(n) T j)⟩

⟨(čZ)čf ⟩
oo

(⟨čZ)e⟩

OO
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and the sendings

⌗
j∈(n)

⟨čTj

Z ⟩(vj)
+

uu
⟨čT

Z ⟩(⟨Zf ⟩( ⌗
j∈(n)

vj)) ⟨č
∨
j∈(n) Tj

Z ⟩( ⌗
j∈(n)

vj)
�oo

_

OO

for our (and arbitrary) ensembles vj . We get

⟨čT
Z ⟩(v) = ⟨čT

Z ⟩
(
⟨Zf ⟩

(
⌗

j∈(n)

vj
))

= ⟨(čZ)g ⟩
(
⌗

j∈(n)

⟨čT j

Z ⟩(vj)
)
,

as promised.

Lemma 17.4. Let T i, i ∈ (m), be pointed simplicial sets and vi ∈ ⟨ZT i⟩[si] be
ensembles. Then

⌗
i∈(m)

vi ∈ ⟨Z
∨

i∈(m) T i

⟩[s1+...+sm].

Fissile and almost fissile ensembles. Let E be a nonempy finite set. An ensemble
q ∈ ⟨ZČβ∆E⟩ is called fissile if, for any layout A ∈ A(E),

q|Čβ∆[A] = ⌗
F∈A

q|Čβ∆F

in ⟨ZČβ∆[A]⟩ (cf. §§ 2, 10). It is called r-almost fissile if, for any layout A ∈ A(E),

⌗
F∈A

q|Čβ∆F − q|Čβ∆[A] ∈ ⟨ZČβ∆[A]⟩[r+1]

(cf. § 13).

§ 18. The wedge W (I)

Fix a finite set I. Consider the pointed simplicial set

W (I) =
∨

J∈P(I)

Σ̂E(I \ J).

Let
inJ : Σ̂E(I \ J)→ W (I)

be the canonical insertions. The lead vertex

⊤W (I) = (inI)0(1Σ̂E∅) ∈ W (I)0

is isolated. W (I) has the pointed simplicial subsets

W ×(I) =
∨

J∈P×(I)

Σ̂E(I \ J)
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and
W L(I) =

∨
J∈P(L)

Σ̂E(I \ J), L ∈ P×(I).

For J,K ∈ P(I), J ⊇ K, let

τ
J
K : Σ̂E(I \ J)→ Σ̂E(I \K)

be the morphism induced by the inclusion I \ J → I \K.
Let the monoid P(I) act on W (I) by the rule

Σ̂E(I \ J)
τ
J
K∩J //

inJ

��

Σ̂E(I \ (K ∩ J))

inK∩J

��
W (I)

K(W (I)) // W (I),

K ∈ P(I). The simplicial subsets W ×(I) and W L(I) are P(I)-invariant.
For L ∈ P×(I) and i ∈ I \ L, we define a retraction σLi by the commutative

diagram

čΣ̂E(I \ J)
č inL

J //

σi

��

čW L(I)

σ
L
i

��
Σ̂E(I \ J)

inL
J // W L(I),

where inL
J are the canonical insertions and σi are the canonical contractions

(see § 11). We call σLi the canonical contraction, too. It follows from Lemma 11.1
that σLi is P(I)-equivariant.

Given a pointed simplicial set T , introduce the filling function

χT
L,i : W L(I)T → W L(I)čT , v 7→ (čT čv−−→ čW L(I)

σ
L
i−−→ W L(I)).

Since σLi is a retraction,
χT
L,i(v )|T = v . (17)

§ 19. The module ⟨W (I)Čβ∆E⟩

Fix a finite set I. We consider the ⟨P(I)⟩-modules ⟨W (I)T ⟩ for a number
of pointed simplicial sets T . For a P(I)-invariant pointed simplicial subset

Z ⊆ W (I), the subgroup ⟨ZT ⟩ ⊆ ⟨W (I)T ⟩ is a ⟨P(I)⟩-submodule. If Z ⊆ Z̃ for

two such subsets, then ⟨ZT ⟩[s] ⊆ ⟨Z̃T ⟩[s] by Lemma 17.2.

Lemma 19.1. For L ∈ P×(I), i ∈ I \ L, and a pointed simplicial set T , the
filling homomorphism

⟨χT
L,i⟩ : ⟨W L(I)T ⟩ → ⟨W L(I)čT ⟩

takes ⟨W L(I)T ⟩[s] to ⟨W L(I)čT ⟩[s].
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Proof. By construction of χT
L,i, we have the decomposition

⟨χT
L,i⟩ : ⟨W L(I)T ⟩

⟨čT
WL(I)

⟩
−−−−−→ ⟨(čW L(I))čT ⟩ ⟨(σLi )čT ⟩−−−−−→ ⟨W L(I)čT ⟩.

By Lemma 17.3, ⟨čT
W L(I)⟩ takes ⟨W L(I)T ⟩[s] to ⟨(čW L(I))čT ⟩[s]. Since σLi

is P(I)-equivariant, ⟨(σLi )čT ⟩ takes the ⟨(čW L(I))čT ⟩[s] to ⟨W L(I)čT ⟩[s] by
Lemma 17.2.

Fix a nonempty finite set E. For F ∈ P×(E) and J ∈ P(I), introduce the
based morphism

θ
F
J : (β∆F )+ → W (I)

that sends β∆F to the vertex inI(1Σ̂E(I\J)).

Lemma 19.2. For F ∈ P×(E) and J ∈ P(I),∑
K∈P(J)

(−1)|J|−|K|
<θ

F
K> ∈ ⟨W J(I)(β∆F )+⟩[|J|].

Proof. Since
θ
F
K = K

(W J (I)(β∆F )+ )
(θFJ ),

the ensemble in question equals ωJ<θ
F
J

> and thus belongs to ⟨P(I)⟩[|J|]⟨W J(I)(β∆F )+⟩,
which is contained in ⟨W J(I)(β∆F )+⟩[|J|] by the definition of the latter.

Lemma 19.3. There exist fissile ensembles

pJ ∈ ⟨W ×(I)Čβ∆E⟩, J ∈ P×(I),

satisfying the following conditions for each J ∈ P×(I):

(1) one has
pJ |(β∆E)+ = <θ

E
J >

in ⟨W ×(I)(β∆E)+⟩;
(2) one has ∑

K∈P(J)

(−1)|J|−|K|pK ∈ ⟨W ×(I)Čβ∆E⟩[|J|].

Proof. We will construct ensembles

pFJ ∈ ⟨W J(I)Čβ∆F ⟩, (F, J) ∈ P×(I)× P×(I),

satisfying the following conditions (0FJ ), (1
F
J ), and (2FJ ) for each pair (F, J) ∈

P×(I)× P×(I):

(0FJ ) one has
pFJ |Čβ∆[B] = ⌗

G∈B

pGJ
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in ⟨W J(I)Čβ∆[B]⟩ for all B ∈ A(F );

(1FJ ) one has
pFJ |(β∆F )+ = <θ

F
J >

in ⟨W J(I)(β∆E)+⟩;
(2FJ ) one has ∑

K∈P(J)

(−1)|J|−|K|pFK ∈ ⟨W J(I)Čβ∆F ⟩[|J|].

Note that (0FJ ) implies
pFJ |Čβ∆G = pGJ

for G ∈ P×(F ). Thus (0FJ ) will yield

pFJ |Čβ∆[B] = ⌗
G∈B

pFJ |Čβ∆G

for all B ∈ A(F ), which means that pFJ is fissile. Thus it will remain to put
pJ = pEJ .

Induction on (F, J) ∈ P×(E)× P×(I). Take a pair (F, J). We assume that
pGK are defined and the conditions (0GK)–(2GK) are satisfied for

(G,K) ∈ P×(F )× P(J) \ {(F, J)}.

We construct pFJ and check the conditions (0FJ )–(2
F
J ).

For B ∈ A(F ), put

U(B) = ⟨W J(I)Čβ∆[B]⟩[|J|].

For B,C ∈ A(F ), B ⩾ C, we have, by Lemma 17.1, the restriction homomor-
phism

?|Čβ∆[C] : U(B)→ U(C).

Thus we have a presheaf
U : A(F )→ Ab.

By Lemma 17.1, the canonical retractions

ρ
B
C : Čβ∆[B]→ Čβ∆[C]

induce homomorphisms

λC
B = ⟨W J(I)ρ

B
C ⟩|U(C)→U(B) : U(C)→ U(B),

which form an extender for U , as follows from Corollary 12.1. For B ∈ A×(F ) =

A(F ) \ {{F}}, introduce the ensemble uB ∈ ⟨W J(I)Čβ∆[B]⟩,

uB =
∑

K∈P(J)

(−1)|J|−|K| ⌗
G∈B

pGK .
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By Lemma 15.1,

uB =
∑

l∈R(B,J)

⌗
G∈B

( ∑
K∈P(l(G))

(−1)|l(G)|−|K|pGK
)
.

By (2Gl(G)), the inner sum belongs to ⟨W J(I)Čβ∆G⟩[|l(G)|]. Using Lemma 17.4 and
the inequality ∑

G∈B

|l(G)| ⩾ |J |,

we get that the hash product and thus uB belong to ⟨W J(I)Čβ∆[B]⟩[|J|]. We have
got uB ∈ U(B). For B,C ∈ A×(F ), B ⩾ C, and K ∈ P(J), we have(

⌗
G∈B

pGK
)∣∣

Čβ∆[C]
= (by naturality of ⌗) = ⌗

G∈B

pGK |Čβ∆[C∧{G}] =

(by (0GK)) = ⌗
G∈B

(
⌗

H∈C∧{G}
pHK

)
= ⌗

H∈C

pHK .

It follows that uB |Čβ∆[C] = uC , that is,

(uB)B∈A×(F ) ∈ lim
B∈A×(F )

U(B).

By Lemma 9.2, there exists an ensemble

u ∈ U({F}) = ⟨W J(I)Čβ∆F ⟩[|J|] (18)

such that
u|Čβ∆[B] = uB , B ∈ A×(F ).

Consider the ensembles q, r ∈ ⟨W J(I)Čβ∆F ⟩,

q =
∑

K∈P×(J)

(−1)|J|−1−|K|pFK , r = q + u.

For B ∈ A×(F ), we have

q|Čβ∆[B] =
∑

K∈P×(J)

(−1)|J|−1−|K|pFK |Čβ∆[B] = (by (0FK))

=
∑

K∈P×(J)

(−1)|J|−1−|K| ⌗
G∈B

pGK (19)

and

r|Čβ∆[B] = q|Čβ∆[B] + u|Čβ∆[B] = q|Čβ∆[B] + uB = (by (19))

=
∑

K∈P×(J)

(−1)|J|−1−|K| ⌗
G∈B

pGK +
∑

K∈P(J)

(−1)|J|−|K| ⌗
G∈B

pGK = ⌗
G∈B

pGJ . (20)
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We have

r|(β∆F )+ +
∑

K∈P×(J)

(−1)|J|−|K|
<θ

F
K> = (by (1FK))

= r|(β∆F )+ +
∑

K∈P×(J)

(−1)|J|−|K|pFK |(β∆F )+ = r|(β∆F )+ − q|(β∆F )+ =

= u|(β∆F )+ ∈ (by Lemma 17.1) ∈ ⟨W J(I)(β∆F )+⟩[|J|].

From this and Lemma 19.2,

<θ
F
J >− r|(β∆F )+ ∈ ⟨W J(I)(β∆F )+⟩[|J|]. (21)

Choose i ∈ I \ J . We have the filling homomorphism

⟨χ(β∆F )+
J,i ⟩ : ⟨W J(I)(β∆F )+⟩ → ⟨W J(I)Čβ∆F ⟩.

Put
pFJ = r + ⟨χ(β∆F )+

J,i ⟩(<θFJ >− r|(β∆F )+).

Check of (0FJ ). For B = {F}, the condition is satisfied trivially. Take
B ∈ A×(F ). We have

r|(β∆[B])+ = (by (20) and naturality of ⌗) = ⌗
G∈B

pGJ |(β∆G)+ =

(by (1GJ )) = ⌗
G∈B

<θ
G
J > = <θ

F
J >|(β∆[B])+ . (22)

By naturality of χT
J,i with respect to T , we have the commutative diagram

W J(I)(β∆F )+
χ
(β∆F )+
J,i //

?|(β∆[B])+

��

W J(I)Čβ∆F

?|Čβ∆[B]

��
W J(I)(β∆[B])+

χ
(β∆[B])+
J,i // W J(I)Čβ∆[B].

We get

pFJ |Čβ∆[B] = r|Čβ∆[B] + ⟨χ
(β∆F )+
J,i ⟩(<θFJ >− r|(β∆F )+)|Čβ∆[B] =

(by the diagram) = r|Čβ∆[B] + ⟨χ
(β∆[B])+
J,i ⟩(<θFJ >|(β∆[B])+ − r|(β∆[B])+) =

(by (22)) = r|Čβ∆[B] = (by (20)) = ⌗
G∈B

pGJ .

Check of (1FJ ). We have

pFJ |(β∆F )+ − r|(β∆F )+ = ⟨χ(β∆F )+
J,i ⟩(<θFJ >− r|(β∆F )+)|(β∆F )+ =

(by (17)) = <θ
F
J >− r|(β∆F )+ .
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Thus pFJ |(β∆F )+ = <θ
F
J

>.

Check of (2FJ ). It follows from (21) by Lemma 19.1, that

⟨χ(β∆F )+
J,i ⟩(<θFJ >− r|(β∆F )+) ∈ ⟨W J(I)Čβ∆F ⟩[|J|]. (23)

We have∑
K∈P(J)

(−1)|J|−|K|pFK = pFJ − q = r + ⟨χ(β∆F )+
J,i ⟩(<θFJ >− r|(β∆F )+)− q =

= u+ ⟨χ(β∆F )+
J,i ⟩(<θFJ >− r|(β∆F )+) ∈ ⟨W J(I)Čβ∆F ⟩[|J|],

where ∈ follows from (18) and (23).

Corollary 19.4. There exists an (|I|−1)-almost fissile ensemble q ∈ ⟨W ×(I)Čβ∆E⟩
such that

<θ
E
I >− q|(β∆E)+ ∈ ⟨W (I)(β∆E)+⟩[|I|].

Proof. Lemma 19.3 gives fissile ensembles pJ ∈ ⟨W ×(I)Čβ∆E⟩ satisfying the
conditions (1) and (2) thereof. Put

q =
∑

J∈P×(I)

(−1)|I|−1−|J|pJ .

Check that q is (|I| − 1)-almost fissile. Take A ∈ A(E). We have

⌗
F∈A

q|Čβ∆F − q|Čβ∆[A] = ⌗
F∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|pJ |Čβ∆F

)
−

−
∑

J∈P×(I)

(−1)|I|−1−|J|pJ |Čβ∆[A] = (since pJ are fissile)

= ⌗
F∈A

( ∑
J∈P×(I)

(−1)|I|−1−|J|pJ |Čβ∆F

)
−

∑
J∈P×(I)

(−1)|I|−1−|J| ⌗
F∈A

pJ |Čβ∆F =

(by Lemma 15.2) =
∑

k∈R′(A,I)

⌗
F∈A

( ∑
J∈P(k(F ))

(−1)|k(F )|−|J|pJ |Čβ∆F

)
=

=
∑

k∈R′(A,I)

⌗
F∈A

( ∑
J∈P(k(F ))

(−1)|k(F )|−|J|pJ
)∣∣

Čβ∆F
.

By condition (2), the inner sum of the last expression belongs to ⟨W ×(I)Čβ∆E⟩[|k(F )|].

By Lemma 17.1, its restriction to Čβ∆F belongs to ⟨W ×(I)Čβ∆F ⟩[|k(F )|]. Using
Lemma 17.4 and the inequality∑

F∈A

|k(F )| ⩾ |I|,

we get that the hash product and thus the whole expression belong to ⟨W ×(I)Čβ∆[A]⟩[|I|],
as required.
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We have

<θ
E
I >− q|(β∆E)+ = <θ

E
I >−

∑
J∈P×(I)

(−1)|I|−1−|J|pJ |(β∆E)+ =

(by condition (1)) = <θ
E
I >−

∑
J∈P×(I)

(−1)|I|−1−|J|
<θ

E
J > =

=
∑

J∈P(I)

(−1)|I|−|J|
<θ

E
J > ∈ (by Lemma 19.2) ∈ ⟨W (I)(β∆E)+⟩[|I|].

§ 20. The filtration ⟨(Y X)T ⟩[s]

General case. We give a topological version of the definition of § 17. Let T and
Z be spaces. Let a chained monoid P act on Z (preserving the basepoint). The
set ZT carries the induced action of P . Thus the abelian group ⟨ZT ⟩ becomes
a module over ⟨P ⟩. We define a filtration ⟨ZT ⟩[s]. Let T j , j ∈ (n), be spaces
and

f : T →
∨

j∈(n)

T j

be a map. Take ensembles Vj ∈ ⟨P ⟩[sj ]⟨ZT j ⟩, j ∈ (n), and consider the ensemble
V ∈ ⟨ZT ⟩,

V = ⟨Zf ⟩
(
⌗

j∈(n)

V j
)
. (24)

We call V a block of rank s1 + . . .+ sn. We let ⟨ZT ⟩[s] ⊆ ⟨ZT ⟩ be the subgroup
generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 20.1. Let Z̃ be a space acted on by P and h : Z → Z̃ be a P -equivariant
map. Then the homomorphism

⟨hT ⟩ : ⟨ZT ⟩ → ⟨Z̃T ⟩

takes ⟨ZT ⟩[s] to ⟨Z̃T ⟩[s].

Lemma 20.2. Let T and Z be pointed simplicial sets. Let P act on Z and
thus on |Z|. Consider the geometric realization function

γ : ZT → |Z||T |, v 7→ |v |,

and the homomorphism
⟨γ⟩ : ⟨ZT ⟩ → ⟨|Z||T |⟩.

Then ⟨γ⟩ takes ⟨ZT ⟩[s] to ⟨|Z||T |⟩[s].
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The case Z = Y X . Let I be a finite set and Y be space acted on by the chained
monoid P = P(I). We suppose that the action is special :

Y =
⋃
i∈I

Fix{i}(Y ).

Let X be a space. Consider the space Z = Y X . It carries the induced action of
P(I).

Lemma 20.3. In the ⟨P(I)⟩-module ⟨Y X⟩, the inclusion holds

⟨P(I)⟩[s]⟨Y X⟩ ⊆ ⟨Y X⟩(s).

Proof. Take a map a ∈ Y X and a subset J ∈ P(I), |J | ⩾ s. The ensembles
of the form ωJ<a> generate the subgroup ⟨P(I)⟩[s]⟨Y X⟩. Thus we should show
that ωJ<a> ∈ ⟨Y X⟩(s). Take a subspace R ∈ Fs−1(X). We should check that
ωJ<a>|R = 0 in ⟨Y R⟩. Since the action is special, for each x ∈ X, there is ix ∈ I
such that a(x) ∈ Fix{ix}(Y ). Consider the subset

K = { ix | x ∈ R \ {<|}} ∈ P(I).

Clearly, |K| < s. For x ∈ R \ {<|}, we have

K(Y )(a(x)) = K(Y )({ix}(Y )(a(x))) =

= (K ∩ {ix})(Y )(a(x)) = {ix}(Y )(a(x)) = a(x).

Thus K(Y ) ◦ a =|R a. Thus <K><a> =|R <a> in ⟨Y R⟩. Since |K| < s, we have
K ⊉ J . It follows that ωJ<K> = 0 in ⟨P(I)⟩. We get

ωJ<a> =|R ωJ<K><a> = 0.

Lemma 20.4. Let T be a space. Then

⟨(Y X)T ⟩[s] ⊆ ⟨(Y X)T ⟩(s)X .

Proof. Take a block V ∈ ⟨(Y X)T ⟩ of rank at least s. We should show that

V ∈ ⟨(Y X)T ⟩(s)X . Consider the homomorphism

⟨(Y X)T ⟩ ⟨□̂X⟩−−−→ ⟨Y T∧X⟩.

By Lemma 3.3, we should show that ⟨□̂X⟩(V ) ∈ ⟨Y T∧X⟩(s). We have the

equality (24) for some spaces T j , map f and ensembles V j ∈ ⟨P(I)⟩[sj ]⟨(Y X)T
j ⟩,

where s1 + . . . sn ⩾ s. Since the function

□̂X : (Y X)T
j

→ Y T j∧X

is P(I)-equivariant, ⟨□̂X⟩(V j) ∈ ⟨P(I)⟩[sj ]⟨Y T j∧X⟩. By Lemma 20.3,

⟨□̂X⟩(V j) ∈ ⟨Y T j∧X⟩(sj).
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Consider the commutative diagram

(V j)j∈(n)

� //
_

��

(⟨□̂X⟩(V j))j∈(n)_

��

∏
j∈(n)

⟨(Y X)T
j ⟩

∏
j∈(n)

⟨□̂X⟩
//

⌗
j∈(n) ��

∏
j∈(n)

⟨Y T j∧X⟩

⌗
j∈(n)��

⌗
j∈(n)

V j

_

��

⟨(Y X)
∨

j∈(n) T
j

⟩
⟨□̂X⟩ //

⟨(Y X)f ⟩
��

⟨Y
∨

j∈(n) T
j∧X⟩

⟨Y f∧idX ⟩
��

⌗
j∈(n)

⟨□̂X⟩(V j)

_

(∗)

��
⟨(Y X)T ⟩

⟨□̂X⟩ // ⟨Y T∧X⟩.

V
� // ⟨□̂X⟩(V )

(We used distributivity of smash product over wedge.) All the sendings are
obvious except (∗), which follows by commutativity of the diagram. By [3,
Lemma 3.1],

⌗
j∈(n)

⟨□̂X⟩(V j) ∈ ⟨Y
∨

j∈(n) T
j∧X⟩(s).

By [3, Lemma 2.1], ⟨□̂X⟩(V ) ∈ ⟨Y T∧X⟩(s), as was to be shown.

§ 21. The wedge V (I) and a P(I)-equivariant map h : V (I)→ Z

Let I be a finite set. We give a topological version of W (I). Consider the
space

V (I) =
∨

J∈P(I)

Σ∆(I \ J).

Let
inJ : Σ∆(I \ J)→ V (I)

be the canonical insertions. V (I) consists of the isolated lead point

⊤V (I) = inI(1Σ∆∅)

and the subspace

V ×(I) =
∨

J∈P×(I)

Σ∆(I \ J),

which is contractible.
For J,K ∈ P(I), J ⊇ K, let

τJK : Σ∆(I \ J)→ Σ∆(I \K)

be the map induced by the inclusion I \ J → I \K.
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Let the monoid P(I) act on V (I) by the rule

Σ∆(I \ J)
τJ
K∩J //

inJ

��

Σ∆(I \ (K ∩ J))

inK∩J

��
V (I)

K(V (I)) // V (I),

K ∈ P(I). The subspace V ×(I) is P(I)-invariant.
For J ∈ P(I), we have the map

eJ : |Σ̂E(I \ J)| = Σ|E(I \ J)|
ΣξI\J−−−−→ Σ∆(I \ J)

(see (8) for ξI\J). These eJ form the map

e =
∨

J∈P(I)

eJ : |W (I)| → V (I). (25)

It is P(I)-equivariant, sends the point |⊤W (I)| to ⊤V (I), and takes the subspace
|W ×(I)| to V ×(I).

Lemma 21.1. Let Z be a space acted on by P(I). Suppose that the basepoint
path component Z<| ⊆ Z is weakly contractible. Let ⊤Z ∈ Z be a point such that

K(Z)(⊤Z) ∈ Z<|

for all K ∈ P×(I). Then there exists a P(I)-equivariant map h : V (I) → Z
such that h(⊤V (I)) = ⊤Z .

Proof. We crop Z and assume that Z = Z<| ∪ {⊤Z}. We will construct maps

hJ : Σ∆(I \ J)→ Z, J ∈ P(I),

satisfying the following conditions (1) and (2KJ ) for J,K ∈ P(I), J ⊆ K:

(1) one has hI(1Σ∆∅) = ⊤Z ;

(2KJ ) the diagram

Σ∆(I \K)
hK
//

τK
J

��

Z

J(Z)

��
Σ∆(I \ J) hJ

// Z

is commutative.

Note that the condition (2JJ) is the equality J(Z) ◦ hJ = hJ .
Induction on J ∈ P(I). We define the map hI by the condition (1). The

condition (2II) is satisfied trivially. Take J ∈ P×(I). We assume that the maps
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hK are defined for K ⊋ J and the conditions (2LK) are satisfied for L ⊇ K ⊋ J .
We construct hJ and check (2KJ ) for K ⊇ J .

For K ⊋ J , put

BK = Im(Σ∆(I \K)
τK
J−−→ Σ∆(I \ J)).

Since τKJ is an embedding, there is a map fK : BK → Z<| such that

fK(τKJ (t)) = J(Z)(h
K(t)), t ∈ Σ∆(I \K),

(we use here that Im J(Z) ⊆ Z<|). We show that

fK =|BK∩BL
fL

for K,L ⊋ J . Take s ∈ BK ∩BL. Since BK ∩BL = BK∪L, we have s = τK∪L
J (t)

for some t ∈ Σ∆(I \ (K ∪ L)). We have the commutative diagram

t7

{{

Σ∆(I \ (K ∪ L))
hK∪L

//

τK∪L
J

vv
τK∪L
K

��

Z

K(Z)

��
s Σ∆(I \ J) Σ∆(I \K)

τK
Joo hK

// Z

(the square is commutative by (2K∪L
K )). Using the diagram, we get

fK(s) = fK(τK∪L
J (t)) = fK(τKJ (τK∪L

K (t))) = J(Z)(h
K(τK∪L

K (t))) =

= J(Z)(K(Z)(h
K∪L(t))) = (J ∩K)(Z)(h

K∪L(t)) = J(Z)(h
K∪L(t)).

Similarly, fL(s) = J(Z)(h
K∪L(t)). Thus fK(s) = fL(s), as promised.

We have ⋃
K⊋J

BK = Σ∂∆(I \ J) ⊆ Σ∆(I \ J),

where ∂∆(I \ J) denotes the boundary of the simplex ∆(I \ J). Since BK are
closed, there is a map

f : Σ∂∆(I \ J)→ Z<|

such that f |BK
= fK for all K ⊋ J . Since Σ∂∆(I \ J) is the boundary of the

ball Σ∆(I \ J) and Z<| is weakly contractible, f extends to a map

g : Σ∆(I \ J)→ Z<|.

We put
hJ(s) = J(Z)(g(s)), s ∈ Σ∆(I \ J).

Clearly, J(Z) ◦hJ = hJ , which is the condition (2JJ). We check the condition

(2KJ ) for K ⊋ J . For t ∈ Σ∆(I \K), we have

hJ(τKJ (t)) = J(Z)(g(τ
K
J (t))) = J(Z)(f(τ

K
J (t))) = J(Z)(f

K(τKJ (t))) =

= J(Z)(J(Z)(h
K(t))) = J(Z)(h

K(t)),
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as required.
We join all the hJ into the desired h:

h =
∨

J∈P(I)

hJ .

Since ⊤V (I) = inI(1Σ∆∅), we have

h(⊤V (I)) = hI(1Σ∆∅) = (by (1)) = ⊤Z .

To show that d is P(I)-equivariant, we should check that, for K,J ∈ P(I), the
diagram

Σ∆(I \ J) hJ
//

τJ
K∩J

��

Z

K(Z)

��
Σ∆(I \ (K ∩ J))

hK∩J
// Z

is commutative. Indeed,

K(Z) ◦ hJ = (by (2JJ)) = K(Z) ◦ J(Z) ◦ hJ =

= (K ∩ J)(Z) ◦ hJ = (by (2JK∩J)) = hK∩J ◦ τJK∩J .

§ 22. The realization ΥT
h : W (I)T → (Y X)|T |

Let X and Y be cellular spaces, X compact. Let I be a finite set and Y carry
a special action of the monoid P(I). Let h : V (I)→ Y X be a P(I)-equivariant
map. Let T be a pointed simplicial set. Introduce the function

ΥT
h : W (I)T → (Y X)|T |, v 7→ (|T | |v|−→ |W (I)| e−→ V (I)

h−→ Y X),

(see (25) for e), the realization.

Lemma 22.1. The function ΥT
h takes W ×(I)T to (Y X

<| )
|T |.

Proof. The map e takes |W ×(I)| to V ×(I). Since V ×(I) is path connected, d
takes it to Y X

<| .

Consider the homomorphism

⟨ΥT
h ⟩ : ⟨W (I)T ⟩ → ⟨(Y X)|T |⟩.

Lemma 22.2. The homomorphism ⟨ΥT
h ⟩ takes ⟨W (I)T ⟩[s] to ⟨(Y X)|T |⟩(s)X .

Proof. We have the decomposition

⟨ΥT
h ⟩ : ⟨W (I)T ⟩ ⟨γ⟩−−→ ⟨|W (I)||T |⟩ ⟨(h◦e)|T|⟩−−−−−−→ ⟨(Y X)|T |⟩,

where γ : W (I)T → |W (I)||T | is the geometric realization function. By Lemma 20.2,
⟨γ⟩ takes ⟨W (I)T ⟩[s] to ⟨|W (I)||T |⟩[s]. By Lemma 20.1, ⟨(h◦e)|T |⟩ takes ⟨|W (I)||T |⟩[s]

to ⟨(Y X)|T |⟩[s], which is contained in ⟨(Y X)|T |⟩(s)X by Lemma 20.4.
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Lemma 22.3. Let E be a nonempty finite set and q ∈ ⟨W (I)Čβ∆E⟩ be an r-

almost fissile ensemble. Then the ensemble ⟨ΥČβ∆E
h ⟩(q) ∈ ⟨(Y X)Č∆E⟩ is (X, r)-

almost fissile.

Proof. Take A ∈ A(E). The diagram

∏
F∈A

W (I)Čβ∆E

∏
F∈A

ΥČβ∆E
h

//

∏
F∈A

?|Čβ∆F

��

∏
F∈A

(Y X)Č∆E

∏
F∈A

?|Č∆F

��∏
F∈A

W (I)Čβ∆F

∏
F∈A

ΥČβ∆F
h

//

∨
F∈A ��

∏
F∈A

(Y X)Č∆F

∨
F∈A��

W (I)Čβ∆[A]
Υ

Čβ∆[A]
h // (Y X)Č∆[A]

W (I)Čβ∆E

?|Čβ∆[A]

OO

ΥČβ∆E
h // (Y X)Č∆E

?|Č∆[A]

OO

is commutative because ΥT
h is natural with respect to T . Thus the diagram

∏
F∈A

⟨W (I)Čβ∆E⟩

∏
F∈A

⟨ΥČβ∆E
h ⟩

//

∏
F∈A

?|Čβ∆F

��

∏
F∈A

⟨(Y X)Č∆E⟩

∏
F∈A

?|Č∆F

��∏
F∈A

⟨W (I)Čβ∆F ⟩

∏
F∈A

⟨ΥČβ∆F
h ⟩

//

⌗
F∈A ��

∏
F∈A

⟨(Y X)Č∆F ⟩

⌗
F∈A��

⟨W (I)Čβ∆[A]⟩
⟨ΥČβ∆[A]

h ⟩ // ⟨(Y X)Č∆[A]⟩

⟨W (I)Čβ∆E

?|Čβ∆[A]

OO

⟨ΥČβ∆E
h ⟩ // ⟨(Y X)Č∆E⟩

?|Č∆[A]

OO
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is also commutative. In it, we have

(q)F∈A
� //

_

��

(Q)F∈A_

��
(q|Čβ∆F )F∈A_

��

(Q|Č∆F )F∈A_

��
⌗F∈A q|Čβ∆F

� (1) // ⌗
F∈A

Q|Č∆F

q|Čβ∆[A]

� (2) // Q|Č∆[A]

q
_

OO

� // Q,
_

OO

where Q = ⟨ΥČβ∆E
h ⟩(q). All the sendings are obvious except (1) and (2), which

follow by commutativity of the diagram. Since q is r-almost fissile,

⌗
F∈A

q|Čβ∆F − q|Čβ∆[A] ∈ ⟨W (I)Čβ∆[A]⟩[r+1].

By Lemma 22.2,

⌗
F∈A

Q|Č∆F −Q|Č∆[A] ∈ ⟨(Y
X)Č∆[A]⟩(r+1)

X .

Thus Q is (X, r)-almost fissile.

§ 23. Brunnian loops in a wedge of circles

Fix a finite set I of cardinality r+1. Put X = S1 and Y = I+∧S1 (a wedge
of r + 1 circles). Let the monoid P(I) act on the space I+ by putting

J(I+)(i) =

{
i if i ∈ J ,
<| otherwise,

for i ∈ I+, J ∈ P(I). This action induces one on Y . A map b : X → Y (a loop)
is called Brunnian if the composition

X
b−→ Y

J(Y )−−−→ Y

is null-homotopic for all J ∈ P×(I).

Lemma 23.1. Let b : X → Y be a Brunnian loop. Then <|
r
≈ b.

Proof. Take a finite set E. Consider the loop space Y X . It carries the induced
action of the monoid P(I). The path component Y X

<| is weakly contractible.

Since b is Brunnian, J(Y X)(b) (= J(Y ) ◦ b) ∈ Y X
<| for all J ∈ P×(I). Therefore,
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Lemma 21.1 yields a P(I)-equivariant map h : V (I)→ Y X such that d(⊤) = b.
We get the realization homomorphism

⟨ΥČβ∆E
h ⟩ : ⟨W (I)Čβ∆E⟩ → ⟨(Y X)Č∆E⟩.

By Corollary 19.4, there is an r-almost fissile ensemble q ∈ ⟨W (I)Čβ∆E⟩ such
that

<θ
β∆E
⊤ >− q|(β∆E)+ ∈ ⟨W (I)(β∆E)+⟩[r]. (26)

Put Q = ⟨ΥČβ∆E
h ⟩(q). By Lemma 22.1, Q ∈ ⟨(Y X

<| )
Č∆E⟩. By Lemma 22.3, Q is

(X, r)-almost fissile. We have

ΥČβ∆E
h (θEI ) = by construction = θ∆E

<| (h(⊤)) = θ∆E
<| (b)

and

Q|(∆E)+ = ⟨ΥČβ∆E
h ⟩(q)|(∆E)+ = by naturality of Υ = ⟨Υ(β∆E)+

h ⟩(q|(β∆E)+).

Thus

<θ∆E
b >−Q|(∆E)+ = ⟨Υ(β∆E)+

h ⟩(<θβ∆E
⊤ >− q|(β∆E)+) ∈ ⟨(Y

X)(∆E)+⟩(r)X ,

where ∈ follows from (26) by Lemma 22.2. By Proposition 13.5 <|
r
≈ b.

§ 24. Loops in an arbitrary space

Nested commutators. A nesting t of weight |t| ⩾ 1 is either the atom • if |t| = 1,
or a pair (t′, t′′) of nestings with |t′|+ |t′′| = |t|. Given elements g1, . . . , gs of a
group G, and a nesting t of weight s, the t-nested commutator

tJgiKsi=1 ∈ G

is defined to be either g1 if s = 1, or

Jt
′
JgiK

|t′|
i=1,

t′′JgiKsi=|t′+|1K

if t = (t′, t′′). Nested commutators of weight s in G generate γsG, the sth term
of the lower central series of G.

Loops. Put X = S1 and let Y be a cellular space. We consider the group
π1(Y ) = [X,Y ] with the filtration π1(Y )((s)) = [X,Y ]((s)) (see § 8).

Theorem 24.1. One has

π1(Y )((s)) = γsπ1(Y ).

Recall [3, Theorem 13.2]:

π1(Y )(s) = γsπ1(Y ). (27)

Thus, by Theorem 8.2 and [3, Theorem 4.2], the strong r-similarity on π1(Y )
coincides with the r-similarity.
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Proof. The inclusion π1(Y )((s)) ⊆ γsπ1(Y ) follows from the comparisons π1(Y )((s)) ⊆
π1(Y )(s) (immediate from the definitions) and (27).

Check that γsπ1(Y ) ⊆ π1(Y )((s)). Since π1(Y )((s)) is a subgroup (by The-
orem 8.1), it suffices to show that, for any nesting t of weight s and any maps
a1, . . . , as : X → Y , one has

tJ[ai]Ksi=1 ∈ π1(Y )((s)).

Put

Bs =
∨

i∈(s)

X and a =
∨

i∈(s)

ai : Bs → Y.

Let ini : X → Bs be the canonical insertions. Choose a loop e : S1 → Bs with

[e] = tJ[ini]Ksi=1

in π1(Bs). So tJ[ai]Ksi=1 = [a ◦ e]. Clearly, the loop e is Brunnian. By
Lemma 23.1, [e] ∈ π1(Bs)

((s)). By Corollary 5.1, [a ◦ e] ∈ π1(Y )((s)), as was
to be shown.

§ 25. Whitehead products

Whitehead product. Let Ti, i = 1, 2, be compact cellular spaces and

Ti
pi←− T1 × T2

k−→ T1 ∧ T2

be the projections. The map

Σ(T1 × T2)
Σk−−→ Σ(T1 ∧ T2)

is homotopy right-invertible (because there is a canonical map r of the join
T1 ∗ T2 to Σ(T1 × T2) such that Σk ◦ r is a homotopy equivalence). Let Y be a
space. Given homotopy classes ai ∈ [ΣTi, Y ], i = 1, 2, consider the homotopy
classes

ai ◦ Σpi : Σ(T1 × T2)
Σpi−−→ ΣTi

ai−→ Y, i = 1, 2,

and their commutator

Ja1 ◦ Σp1,a2 ◦ Σp2K ∈ [Σ(T1 × T2), Y ].

The Whitehead product

⌊a1,a2⌉ ∈ [Σ(T1 ∧ T2), Y ]

is uniquely defined by (homotopy) commutativity of the diagram

Σ(T1 × T2)
Ja1◦Σp1,a2◦Σp2K //

Σk

��

Y

Σ(T1 ∧ T2).

⌊a1,a2⌉

44
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see [5, Section 7.8].

Nested Whitehead products. Let Ti, i ∈ (s), be compact cellular spaces and

Ti
pi←− T1 × . . .× Ts

k−→ T1 ∧ . . . ∧ Ts

be the projections.

Lemma 25.1. The map

Σ(T1 × . . .× Ts)
Σk−−→ Σ(T1 ∧ . . . ∧ Ts)

is homotopy right-invertible.

Proof. Induction on s. If s = 1, k is the identity. Take s > 1. Put

T ′ = T1 × . . .× Ts−1, Z ′ = T1 ∧ . . . ∧ Ts−1.

Let

T ′ × Ts
K−→ T ′ ∧ Ts and T ′ k′

−→ Z ′

be the projections. We have the decomposition

Σk : Σ(T ′ × Ts)
ΣK−−→ Σ(T ′ ∧ Ts)

Σ(k′∧idTs )−−−−−−−→ Σ(Z ′ ∧ Ts),

where ΣK is right-invertible (as noted above) and the second arrow is because
it coincides with

ΣT ′ ∧ Ts
Σk′∧idTs−−−−−−→ ΣZ ′ ∧ Ts,

which is right-invertible because Σk′ is by the induction hypothesis.

Let Y be space, and ai ∈ [ΣTi, Y ] be homotopy classes. Given a nesting t
of weight s, define the t-nested Whitehead product

t⌊ai⌉si=1 ∈ ⌊Σ(T1 ∧ . . . ∧ Ts), Y ]

by induction on s putting
t⌊ai⌉si=1 = a1

for s = 1 and
t⌊ai⌉si=1 = ⌊t

′
⌊ai⌉|t

′|
i=1,

t′′⌊ai⌉si=|t′|+1⌉
for t = (t′, t′′).

Lemma 25.2. For a nesting t of weght s, the diagram

Σ(T1 × . . .× Ts)
c:=tJai◦ΣpiKsi=1 //

Σk

��

Y

Σ(T1 ∧ . . . ∧ Ts)

w:=t⌊ai⌉si=1

44

is (homotopy) commutative.
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Proof. Induction on s. If s = 1, Σk is the identity and c = w = a1. Take s > 1.
We have t = (t′, t′′). Put s′ = |t′|, s′′ = |t′′|, and

T ′ = T1 × . . .× Ts′ , T ′′ = Ts′+1 × . . .× Ts,

Z ′ = T1 ∧ . . . ∧ Ts′ , Z ′′ = Ts′+1 ∧ . . . ∧ Ts,

We have the commutative diagrams of projections

T ′ × T ′′

P ′

��

pi

{{
Ti T ′p′

ioo k′
// Z ′,

T ′ × T ′′

P ′′

��

pi

{{
Ti T ′′p′′

ioo k′′
// Z ′′.

Consider the diagram

Σ(T ′ × T ′′)

ΣP ′

��

c̃′:=tJai◦ΣpiKs
′

i=1

**ΣT ′
tJai◦Σp′

iK
s′
i=1 //

Σk′

��

Y

ΣZ ′.
w′:=t⌊ai⌉s

′
i=1

44

(28)

The upper triangle is commutative because the function

[ΣT ′, Y ]→ [Σ(T ′ × T ′′), Y ]

induced by ΣP ′ is a homomorphism and sends ai ◦ Σp′i to ai ◦ Σpi. The lower
triangle is commutative by the induction hypothesis. Similarly, we have the
commutative diagram

Σ(T ′ × T ′′)

ΣP ′′

��

c̃′′:=tJai◦ΣpiKsi=s′+1

**ΣT ′′
tJai◦Σp′′

i Ks
i=s′+1 //

Σk′′

��

Y

ΣZ ′′.
w′′:=t⌊ai⌉si=s′+1

44

(29)

We have the commutative diagram of projections

T ′

k′

��

T ′ × T ′′P ′
oo P ′′

//

k′×k′′

��

k
$$

T ′′

k′′

��
Z ′ Z ′ × Z ′′Q′
oo Q′′

//

K

��

Z ′′

Z ′ ∧ Z ′′.
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Consider the diagram

Σ(T ′ × T ′′)

Σ(k′×k′′)

��

c=Jc̃′,c̃′′K

++
Σk

))

Σ(Z ′ × Z ′′)
Jw′◦ΣQ′,w′′◦ΣQ′′K //

ΣK

��

Y

Σ(Z ′ ∧ Z ′′).

w=⌊w′,w′′⌉

33

The upper triangle is commutative because the function

[Σ(Z ′ × Z ′′), Y ]→ [Σ(T ′ × T ′′), Y ]

induced by Σ(k′ × k′′) is a homomorphism under which

w′ ◦ ΣQ′ 7→ w′ ◦ Σk′ ◦ ΣP ′ = by diagram (28) = c̃′

and
w′′ ◦ ΣQ′′ 7→ w′′ ◦ Σk′′ ◦ ΣP ′′ = by diagram (29) = c̃′′.

The lower triangle is commutative by the definition of Whitehead product. We
are done.

Corollary 25.3. Let R be a homotopy right-inverse of Σk:

Σ(T1 × . . .× Ts)
Σk // Σ(T1 ∧ . . . ∧ Ts),

R

ii
Σk ◦R ∼ id.

Then, for any nesting t of weght s, the diagram

Σ(T1 × . . .× Ts)
c:=tJai◦ΣpiKsi=1 // Y

Σ(T1 ∧ . . . ∧ Ts).

R

OO

w:=t⌊ai⌉si=1

44

is (homotopy) commutative.

Proof. We have

c̃ ◦R = (by Lemma 25.2) = w ◦ Σk ◦R = (since Σk ◦R ∼ id) = w.

§ 26. Loops and Whitehead products

Consider the wedge

Bs =
∨

i∈(s)

S1.
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Given a map v : S1 → Bs (a loop) and a space T , introduce the map vΣ:

ΣT
vΣ

// ∨
i∈(s) ΣT

S1 ∧ T
v∧idT // Bs ∧ T.

Let
ini : S

1 → Bs and inTi : ΣT →
∨

i∈(s)

ΣT

be the canonical insertions.

Lemma 26.1. The function

π1(Bs)→ [T,
∨

i∈(s)

ΣT ], [v] 7→ [vΣ],

is a homomorhism, under which [ini] 7→ [inTi ].

Let Ti, i ∈ (s), be spaces and

Ti
pi←− T1 × . . .× Ts

k−→ T1 ∧ . . . ∧ Ts

be the projections. Let Y be a space and ai : ΣTi → Y be maps. We have the
compositions

ai ◦ Σpi : Σ(T1 × . . .× Ts)
Σpi−−→ ΣTi

ai−→ Y.

Lemma 26.2. Let t be a nesting of weight s. Let e : S1 → Bs be a loop with

[e] = tJ[ini]Ksi=1

in π1(Bs). Then the diagram

Σ(T1 × . . .× Ts)
eΣ //

c:=tJ[ai]◦ΣpiKsi=1

++

∨
i∈(s) Σ(T1 × . . .× Ts)

A:=
∨

i∈(s)

(ai◦Σpi)

��
Y.

is (homotopy) commutative.

Proof. Put T = T1 × . . . Ts. By Lemma, the function

π1(Bs)→ [T,
∨

i∈(s)

ΣT ], [v] 7→ [vΣ],

is a homomorhism, under which [ini] 7→ [inTi ]. Thus

[eΣ] = tJ[inTi ]K
s
i=1.
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The map A induces a homomorphism

[ΣT, Y ]→ [ΣT,
∨

i∈(s)

ΣT ],

under which [inTi ] 7→ [ai ◦ Σpi] and thus

[eΣ] = tJ[inTi ]K
s
i=1 7→ tJ[ai] ◦ ΣpiKsi=1 = c,

which is what was to be shown.

By Lemma 25.1, we have the diagram

Σ(T1 × . . .× Ts)
Σk // Σ(T1 ∧ . . . ∧ Ts),

R

ii

where Σk ◦R ∼ id. Introduce the composition Mv
R(ai)

s
i=1:

Σ(T1 × . . .× Ts)
vΣ

// ∨
i∈(s) Σ(T1 × . . .× Ts)

A:=
∨

i∈(s)

(ai◦Σpi)

��
Σ(T1 ∧ . . . ∧ Ts)

R

OO

Mv
R(ai)

s
i=1 // Y.

Lemma 26.3. Let t be a nesting of weight s. Let e : S1 → Bs be a loop with

[e] = tJ[ini]Ksi=1

in π1(Bs). Then
[Me

R(ai)
s
i=1] =

t⌊[ai]⌉si=1

in [Σ(T1 ∧ . . . ∧ Ts), Y ].

Proof. Recall the homotopy class

Σ(T1 × . . .× Ts)
c:=tJ[ai]◦ΣpiKsi=1−−−−−−−−−−−→ Y.

We have

[Me
R(ai)

s
i=1] = [A◦eΣ◦R] = (by Lemma 26.2) = c◦R = (by Corollary 25.3) = t⌊[ai]⌉si=1.

§ 27. Strong nullarity of Whitehead products

Let ai : ΣTi → Y , etc., be as in the previous section.

Lemma 27.1. Let v : S1 → Bs be a loop such that <|
r
≈ v. Then

<|
r
≈Mv

R(ai)
s
i=1.
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Proof. We have
Mv

R(ai)
s
i=1 = A ◦ vΣ ◦R

(see the construction). By Corollary 5.4, <|
r
≈ vΣ. By Corollary 5.2, <|

r
≈

A ◦ vΣ ◦R.

Given a nesting t of weight s and homotopy classes ai ∈ [ΣTi, Y ], i ∈ (s),
consider the t-nested Whitehead product

t⌊ai⌉si=1 ∈ [Σ(T1 ∧ . . . Ts), Y ].

Theorem 27.2. One has

t⌊ai⌉si=1 ∈ [Σ(T1 ∧ . . . Ts), Y ]((s)).

Proof. For each i, choose a representative ai : ΣTi → Y of ai. Choose a loop
e : S1 → Bs with

[e] = tJ[ini]Ksi=1

in π1(Bs). Clearly, the loop e is Brunnian. By Lemma 23.1, <|
s−1
≈ e. By

Lemma 27.1,
<|

s−1
≈ Me

R(ai)
s
i=1.

By Lemma 26.3,
[Me

R(ai)
s
i=1] =

t⌊ai⌉si=1.

Thus
t⌊ai⌉si=1 ∈ [Σ(T1 ∧ . . . Ts), Y ]((s)).
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