Homotopy similarity of maps. Strong similarity

S. S. Podkorytov

Given pointed cellular spaces X and Y, X compact, and an integer $r \ge 0$, we define a relation $\stackrel{r}{\approx}$ on [X,Y] and argue for the conjecture that it always coincides with the r-similarity $\stackrel{r}{\sim}$.

§ 1. Introduction

This paper continues [2]. We adopt notation and conventions thereof. Let X and Y be cellular spaces, X compact. For each $r \ge 0$, we define a relation $\stackrel{r}{\approx}$, called the strong r-similarity, on the set [X,Y]. We will need it in our next paper [4]. We conjecture that strong r-similarity always coincides with r-similarity $\stackrel{r}{\sim}$. It follows immediately from the definition that it implies r-similarity and gets nonstrictly stronger as r grows. We do not know whether the strong r-similarity is always an equivalence. We prove this in the case $X = \Sigma T$ (§ 8). The main results are as follows. Strong 1-similarity coincides with 1-similarity (Theorem 14.2). (We believe that 1-similarity can be given a homological characterization similar to that of homotopy invariants of order at most 1 [1].) If $X = S^1$, the strong r-similarity coincides with the r-similarity (§ 24). All (r+1)-fold Whitehead products are strongly r-similar to zero (Theorem 27.2).

§ 2. Definition of strong similarity

Augmentation. For a set V, introduce the homomorphism

$$\epsilon: \langle V \rangle \to \mathbb{Z}, \qquad \langle v \rangle \mapsto 1,$$

the augmentation. An ensemble $S \in \langle V \rangle$ is called affine if $\epsilon(S) = 1$.

Hash product. Given a wedge

$$T = \bigvee_{i \in (m)} T_i$$

(hereafter, $(m) = \{1, \dots, m\}$) and a space Z, we have the \mathbb{Z} -multilinear operation

$$\underset{i \in (m)}{\sharp}: \prod_{i \in (m)} \langle Z^{T_i} \rangle \to \langle Z^T \rangle, \qquad \underset{i \in (m)}{\sharp} \, {<\!v_i>} = {<\!\bigvee_{i \in (m)} v_i>}.$$

Simplex and its faces. Fix a nonempty finite set E. Let $\mathcal{P}_{\times}(E)$ be the set of nonempty subsets $F \subseteq E$. Let $\mathcal{A}(E)$ be the set of subsets $A \subseteq \mathcal{P}_{\times}(E)$ such that all $F \in A$ are disjoint (layouts).

Let ΔE be the simplex spanned by E. For $F \in \mathcal{P}_{\times}(E)$, $\Delta F \subseteq \Delta E$ is a face. For $A \in \mathcal{A}(E)$, put

$$\Delta[A] = \bigcup_{F \in A} \Delta F \subseteq \Delta E.$$

Fissile ensembles. For $A \in \mathcal{A}(E)$, we have

$$\Delta[A]_+ = \bigvee_{F \in A} (\Delta F)_+.$$

Hereafter, $U_+ = U \sqcup \{ \uparrow \}$. Given a space Z, we call an ensemble $S \in \langle Z^{(\Delta E)_+} \rangle$ fissile if, for each $A \in \mathcal{A}(E)$,

$$S|_{\Delta[A]_{+}} = \underset{F \in A}{\sharp} S|_{(\Delta F)_{+}} \tag{1}$$

in $\langle Z^{\Delta[A]_+} \rangle$.

An ensemble of the form $\langle v \rangle$ is fissile. A fissile ensemble is affine (take $A=\varnothing$ in the definition). An affine ensemble S is fissile if it satisfies (1) for all A with |A|=2. Given a space $\widetilde{Z}\supseteq Z$, we have $\langle \widetilde{Z}^{(\Delta E)_+}\rangle\supseteq\langle Z^{(\Delta E)_+}\rangle$; the ensemble S is fissile as an element of $\langle \widetilde{Z}^{(\Delta E)_+}\rangle$ if and only if it is fissile as an element of $\langle Z^{(\Delta E)_+}\rangle$.

Spaces of maps. Let X and Y be cellular spaces, X compact. Then Y^X is the space of maps $X \to Y$; its basepoint is the constant map \P^X_Y . Given a map $a: X \to Y$, we define the spaces (Y^X, a) as Y^X with the basepoint moved to a and Y^X_a as the basepoint path component of (Y^X, a) . For an unpointed space U, introduce the function

$$\theta_a^U:Y^X\to (Y^X,a)^{U_+}, \qquad \theta_a^U(d)(u)=d \quad (u\in U), \quad \theta_a^U(d)(\Lsh)=a.$$

The filtration $\langle (Y^X, a)^T \rangle_X^{(s)}$. Let T be a space. The function

$$\Box^X: (Y^X,a)^T \to Y^{T\times X}, \qquad \Box^X(v)(t,x) = v(t)(x),$$

induces the homomorphism

$$\langle \Box^X \rangle : \langle (Y^X, a)^T \rangle \to \langle Y^{T \times X} \rangle.$$

The filtration of $\langle Y^{T\times X}\rangle$ (see [2]) induces a filtration of $\langle (Y^X,a)^T\rangle$:

$$\langle (Y^X, a)^T \rangle_X^{(s)} = \langle \Box^X \rangle^{-1} (\langle Y^{T \times X} \rangle^{(s)}).$$

Strong similarity. Let X and Y be as above and $a, b: X \to Y$ be maps. We adopt the inclusion $\langle (Y_a^X)^T \rangle \subseteq \langle (Y^X, a)^T \rangle$. We say that a is strongly r-similar to b,

$$a \stackrel{r}{\approx} b$$
,

if, for any nonempty finite set E, there exists a fissile ensemble $S \in \langle (Y_a^X)^{(\Delta E)_+} \rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - S \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$

We have $a \stackrel{r}{\approx} a$ (put $S = \langle \theta_a^{\Delta E}(a) \rangle$). Clearly, $a \stackrel{r}{\approx} b$ implies $a \stackrel{r}{\sim} b$ (take $E = \{ \bullet \}$). We prove below (Theorem 6.2) that the relation $\stackrel{r}{\approx}$ is homotopy invariant.

§ 3. On the filtration $\langle (Y^X, a)^T \rangle_X^{(s)}$

3.1. Lemma. Let X, Y, T and \widetilde{T} be cellular spaces, X, T and \widetilde{T} compact, and $a: X \to Y$ and $k: \widetilde{T} \to T$ be maps. Then the homomorphism

$$\langle (Y^X, a)^k \rangle : \langle (Y^X, a)^T \rangle \to \langle (Y^X, a)^{\widetilde{T}} \rangle$$

takes $\langle (Y^X, a)^T \rangle_X^{(s)}$ to $\langle (Y^X, a)^{\widetilde{T}} \rangle_X^{(s)}$.

Proof. We have the commutative diagram

$$\begin{array}{c|c} \langle (Y^X,a)^T \rangle & \xrightarrow{\quad \langle \Box^X \rangle \quad} \langle Y^{T \times X} \rangle \\ \\ \langle (Y^X,a)^k \rangle \bigg| & & & & & & & & & \\ \langle (Y^X,a)^{\widetilde{T}} \rangle & \xrightarrow{\quad \langle \Box^X \rangle \quad} \langle Y^{\widetilde{T} \times X} \rangle. \end{array}$$

By the definition of $\langle (Y^X,a)^T \rangle_X^{(s)}, \langle \Box^X \rangle$ takes it to $\langle Y^{T \times X} \rangle^{(s)}$. By [3, Lemma 2.1], $\langle Y^{k \times \mathrm{id}_X} \rangle$ takes the latter to $\langle Y^{\widetilde{T} \times X} \rangle^{(s)}$. By commutativity of the diagram, $\langle (Y^X,a)^k \rangle$ takes $\langle (Y^X,a)^T \rangle_X^{(s)}$ to $\langle \Box^X \rangle^{-1} (\langle Y^{\widetilde{T} \times X} \rangle^{(s)})$, which is $\langle (Y^X,a)^{\widetilde{T}} \rangle_X^{(s)}$ by the definition of the latter.

The case $a = {}^X_Y$.

3.2. Lemma. Let X, Y, and \widetilde{X} be cellular spaces, X and \widetilde{X} compact, and $k:\widetilde{X}\to X$ be a surjective map. Then the homomorphism

$$\langle Y^k \rangle : \langle Y^X \rangle \to \langle Y^{\widetilde{X}} \rangle$$

satisfies

$$\langle Y^X \rangle^{(s)} = \langle Y^k \rangle^{-1} (\langle Y^{\widetilde{X}} \rangle^{(s)}). \tag{2}$$

Proof. By [3, Lemma 2.1], $\langle Y^k \rangle$ preserves the filtration, which yields the inclusion \subseteq in (2). Check the inclusion \supseteq . Take $V \in \langle Y^k \rangle^{-1}(\langle Y^{\widetilde{X}} \rangle^{(s)})$ and show that $V \in \langle Y^X \rangle^{(s)}$. Take $R \in \mathcal{F}_{s-1}(X)$. We should check that $V|_R = 0$. We have R = k(Q) for some $Q \in \mathcal{F}_{s-1}(\widetilde{X})$. Since $\langle Y^k \rangle(V) \in \langle Y^{\widetilde{X}} \rangle^{(s)}$, we have $\langle Y^k \rangle(V)|_Q = 0$. We have the commutative diagram

where $h = k|_{Q \to R}$. Since h is surjective, $\langle Y^h \rangle$ is injective. Thus $V|_R = 0$.

Let X, Y and T be cellular spaces, X and T compact. Let

$$\widehat{\Box}^X: (Y^X)^T \to Y^{T \wedge X}$$

be the standard bijection. Consider the homomorphism

$$\langle \widehat{\square}^X \rangle : \langle (Y^X)^T \rangle \to \langle Y^{T \wedge X} \rangle.$$

Lemma 3.3. One has

$$\langle (Y^X)^T \rangle_X^{(s)} = \langle \widehat{\square}^X \rangle^{-1} (\langle Y^{T \wedge X} \rangle^{(s)}).$$

Proof. We have the commutative diagram

$$\langle (Y^X)^T \rangle \xrightarrow{\langle \widehat{\square}^X \rangle} \langle Y^{T \wedge X} \rangle$$

$$\langle Y^T \times X \rangle,$$

where $k: T \times X \to T \wedge X$ is the projection. By definition,

$$\langle (Y^X)^T \rangle_X^{(s)} = \langle \Box^X \rangle^{-1} (\langle Y^{T \times X} \rangle^{(s)}).$$

By Lemma 3.2,

$$\langle Y^{T \wedge X} \rangle^{(s)} = \langle Y^k \rangle^{-1} (\langle Y^{T \times X} \rangle^{(s)}).$$

The desired equality follows.

§ 4. Primitive transforms

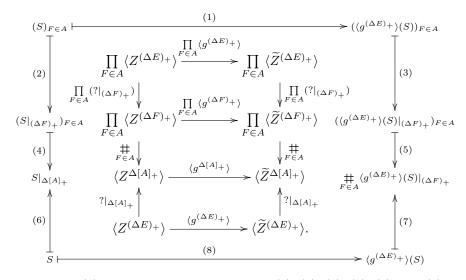
Let Z and \widetilde{Z} be spaces and $g:Z\to\widetilde{Z}$ be a map. For a compact cellular space T, we have the map $g^T:Z^T\to\widetilde{Z}^T$.

Lemma 4.1. Let E be a nonempty finite set. Consider the homomorphism

$$\langle g^{(\Delta E)_+} \rangle : \langle Z^{(\Delta E)_+} \rangle \to \langle \widetilde{Z}^{(\Delta E)_+} \rangle.$$

Then, for any fissile ensemble $S \in \langle Z^{(\Delta E)_+} \rangle$, the ensemble $\langle g^{(\Delta E)_+} \rangle(S)$ is fissile.

Proof. Take $A \in \mathcal{A}(E)$. We have the commutative diagram



The sending (4) is fissility of S. The sendings (1), (2), (3), (5), (6), and (8) are obvious. The sending (7) follows. It is fissility of $\langle g^{(\Delta E)_+} \rangle (S)$.

Primitive case. Let X, Y, \widetilde{X} , and \widetilde{Y} be cellular spaces, X and \widetilde{X} compact, and $g: Y^X \to \widetilde{Y}^{\widetilde{X}}$ be an unbased map (a transform). We suppose that the transform g is primitive: for each point $w \in \widetilde{X}$, there is a point $k(w) \in X$ and an unbased map $h^w: Y \to \widetilde{Y}$ such that

$$g(d)(w) = h^w(d(k(w))), \qquad d \in Y^X.$$

For a map $a:X\to Y,$ we have the map $g:(Y^X,a)\to (\widetilde{Y}^{\widetilde{X}},g(a)).$

Lemma 4.2. For a map $a: X \to Y$ and a compact cellular space T, the homomorphism $\langle g^T \rangle$ takes $\langle (Y^X, a)^T \rangle_X^{(s)}$ to $\langle (\widetilde{Y}^{\widetilde{X}}, g(a))^T \rangle_{\widetilde{Y}}^{(s)}$.

Proof. We may assume that $k(\P_{\widetilde{X}}) = \P_X$ and $h^{\P_{\widetilde{X}}}(\P_Y) = \P_{\widetilde{Y}}$. We have the function

$$K = \mathrm{id} \times k : T \times \widetilde{X} \to T \times X.$$

For $Q \in \mathcal{F}_{s-1}(T \times \widetilde{X})$, we have $K(Q) \in \mathcal{F}_{s-1}(T \times X)$. We have the function

$$H:Y^{K(Q)}\to \widetilde{Y}^Q, \qquad H(u)(t,w)=h^w(u(K(t,w))), \ (t,w)\in Q, \ u\in Y^{K(Q)},$$

and the commutative diagram

$$\begin{array}{c|c} \langle (Y^X,a)^T \rangle \xrightarrow{\langle \Box^X \rangle} \langle Y^{T \times X} \rangle \xrightarrow{?|_{K(Q)}} \langle Y^{K(Q)} \rangle \\ & \downarrow^{\langle g^T \rangle} \downarrow & \downarrow^{\langle H \rangle} \\ \langle (\widetilde{Y}^{\widetilde{X}},g(a))^T \rangle \xrightarrow{\langle \Box^{\widetilde{X}} \rangle} \langle \widetilde{Y}^{T \times \widetilde{X}} \rangle \xrightarrow{?|_Q} \langle \widetilde{Y}^Q \rangle. \end{array}$$

By the definition of $\langle (Y^X,a)^T \rangle_X^{(s)}$, it goes to zero under the composition in the upper row. Thus its image under $\langle g^T \rangle$ goes to zero under the composition in the lower row. Since Q was taken arbitrarily, this image is contained in $\langle (\widetilde{Y}^{\widetilde{X}},g(a))^T \rangle_{\widetilde{X}}^{(s)}$.

Lemma 4.3. Let $a, b: X \to Y$ be maps such that $a \stackrel{r}{\approx} b$. Then $g(a) \stackrel{r}{\approx} g(b)$.

Proof. Take a finite set E. We have a fissile ensemble $S \in \langle (Y_a^X)^{(\Delta E)_+} \rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - S \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$

Consider the homomorphism

$$\langle g^{(\Delta E)_+} \rangle : \langle (Y^X, a)^{(\Delta E)_+} \rangle \to \langle (\widetilde{Y}^{\widetilde{X}}, g(a))^{(\Delta E)_+} \rangle.$$

Since

$$\theta_{g(a)}^{\Delta E}(g(b)) = g^{(\Delta E)_+}(\theta_a^{\Delta E}(b)),$$

we have

$$\langle \theta_{q(a)}^{\Delta E}(g(b)) \rangle - \langle g^{(\Delta E)_+} \rangle(S) = \langle g^{(\Delta E)_+} \rangle (\langle \theta_a^{\Delta E}(b) \rangle - S),$$

which belongs to $\langle (\widetilde{Y}^{\widetilde{X}}, g(a))^{(\Delta E)_+} \rangle_{\widetilde{X}}^{(r+1)}$ by Lemma 4.2. By Lemma 4.1, the ensemble $\langle g^{(\Delta E)_+} \rangle(S)$ is fissile. Since g is continuous, it takes Y_a^X to $\widetilde{Y}_{g(a)}^{\widetilde{X}}$. Thus

$$\langle g^{(\Delta E)_+} \rangle(S) \in \langle (\widetilde{Y}_{g(a)}^{\widetilde{X}})^{(\Delta E)_+} \rangle.$$

We are done. \Box

§ 5. Compositions and smash products

Compositions. Let X, Y, \widetilde{X} , and \widetilde{Y} be cellular spaces, X and \widetilde{X} compact.

Corollary 5.1. Let $k: \widetilde{X} \to X$ and $h: Y \to \widetilde{Y}$ be maps and $a, b: X \to Y$ be maps such that $a \stackrel{r}{\approx} b$. Then $a \circ k \stackrel{r}{\approx} b \circ k$ in $Y^{\widetilde{X}}$ and $h \circ a \stackrel{r}{\approx} h \circ b$ in \widetilde{Y}^X .

Proof. The transforms

$$Y^X \to Y^{\widetilde{X}}, \qquad d \mapsto d \circ k,$$

and

$$Y^X \to \widetilde{Y}^X, \qquad d \mapsto h \circ d$$

are primitive. By Lemma 4.3, they preserve strong r-similarity.

Corollary 5.2. Let $k: \widetilde{X} \to X$ and $h: Y \to \widetilde{Y}$ be maps and $a: X \to Y$ be a map such that $\stackrel{r}{\approx} a$. Then $\stackrel{r}{\approx} a \circ k$ in $Y^{\widetilde{X}}$ and $\stackrel{r}{\approx} h \circ a$ in \widetilde{Y}^X .

Follows from Corollary 5.1.

Smash products. Let X, Y, and T be cellular spaces, X and T compact.

Corollary 5.3. Let $a, b: X \to Y$ be maps such that $a \stackrel{r}{\approx} b$. Then the maps

$$a \wedge \mathrm{id}_T, b \wedge \mathrm{id}_T : X \wedge T \to Y \wedge T$$

satisfy $a \wedge \operatorname{id}_T \stackrel{r}{\approx} b \wedge \operatorname{id}_T$.

Proof. The transform

$$Y^X \to (Y \wedge T)^{X \wedge T}, \qquad d \mapsto d \wedge \mathrm{id}_T,$$

is primitive. By Lemma 4.3, it preserves strong r-similarity.

Corollary 5.4. Let $a: X \to Y$ be a map such that $\stackrel{r}{\approx} a$. Then the map

$$a \wedge \mathrm{id}_T : X \wedge T \to Y \wedge T$$

satisfies $\stackrel{r}{\approx} a \wedge \mathrm{id}_T$.

Follows from Corollary 5.3.

§ 6. Homotopy invariance

Let X and Y be cellular spaces, X compact.

Lemma 6.1. Let maps $a, b, \widetilde{a}: X \to Y$ satisfy

$$\widetilde{a} \sim a \stackrel{r}{\approx} b.$$

Then $\widetilde{a} \stackrel{r}{\approx} b$.

Proof. By definition, the relation $\stackrel{r}{\approx}$ tolerates homotopy of its left argument. In detail. For an unbased space U, we have the bijection

$$e^{U}: (Y^{X}, a)^{U_{+}} \to (Y^{X}, \widetilde{a})^{U_{+}}, \qquad e^{U}(v) = |_{U} v, \quad e^{U}(v)(\P) = \widetilde{a}.$$

Clearly,

$$e^U(\theta^U_a(d)) = \theta^U_{\widetilde{a}}(d), \qquad d \in Y^X. \tag{3}$$

Since $a \sim \tilde{a}$, e^U takes $(Y_a^X)^{U_+}$ to $(Y_{\tilde{a}}^X)^{U_+}$.

The homomorphism

$$\langle e^U \rangle : \langle (Y^X, a)^{U_+} \rangle \to \langle (Y^X, \widetilde{a})^{U_+} \rangle$$

takes $\langle (Y^X,a)^{U_+}\rangle_X^{(s)}$ to $\langle (Y^X,\widetilde{a})^{U_+}\rangle_X^{(s)}$. Indeed, we have the commutative diagram

$$\begin{split} & \langle (Y^X,a)^{U_+} \rangle \xrightarrow{\qquad \qquad \langle e^U \rangle} & \langle (Y^X,\widetilde{a})^{U_+} \rangle \\ & \langle \Box^X \rangle \downarrow & \downarrow \langle \Box^X \rangle \\ & \langle Y^{U_+ \times X} \rangle \xrightarrow{? \sharp < \widetilde{a} >} \langle Y^{(U_+ \times X) \vee X} \rangle \xrightarrow{\langle Y^k \rangle} & \langle Y^{U_+ \times X} \rangle, \end{split}$$

where $k: U_+ \times X \to (U_+ \times X) \vee X$ is given by the rules

$$k(u,x) = \operatorname{in}_1(u,x), \qquad k(\P,x) = \operatorname{in}_2(x), \qquad u \in U, \ x \in X.$$

In the lower row, $\langle Y^{U_+ \times X} \rangle^{(s)}$ goes to $\langle Y^{(U_+ \times X) \vee X} \rangle^{(s)} \rangle$ by [3, Lemma 3.1] and then to $\langle Y^{U_+ \times X} \rangle^{(s)}$ by [3, Lemma 2.1]. This suffices by the definition of $\langle (Y^X, a)^{U_+} \rangle_X^{(s)}$ and $\langle (Y^X, \widetilde{a})^{U_+} \rangle_X^{(s)}$.

Take a nonempty finite set E. For $A \in \mathcal{A}(E)$ and a collection $S_F \in \langle (Y^X, a)^{(\Delta F)_+} \rangle$, $F \in A$, we have

$$\langle e^{\Delta[A]} \rangle (\underset{F \in A}{\sharp} S_F) = \underset{F \in A}{\sharp} e^{\Delta F} (S_F)$$
 (4)

in $\langle (Y^X, \widetilde{a})^{\Delta[F]_+} \rangle$. We have a fissile ensemble $S \in \langle (Y_a^X)^{(\Delta E)_+} \rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - S \in \langle (Y_a^X)^{(\Delta E)_+} \rangle^{(r+1)}.$$
 (5)

We get the ensemble $\langle e^{\Delta E} \rangle(S) \in \langle (Y_{\tilde{a}}^X)^{(\Delta E)_+} \rangle$, which is fissile. Indeed, for $A \in \mathcal{A}(E)$, we have

$$\langle e^{\Delta E} \rangle(S)|_{\Delta[A]_+} \stackrel{(*)}{=} \langle e^{\Delta[A]} \rangle(S|_{\Delta[A]_+}) =$$

(since S is fissile)

$$=\langle e^{\Delta[A]}\rangle \left(\underset{F \in A}{\sharp} S|_{(\Delta F)_+} \right) =$$

(by (4))

$$= \underset{F \in A}{\sharp} \langle e^{\Delta F} \rangle (S|_{(\Delta F)_+}) \stackrel{(*)}{=} \underset{F \in A}{\sharp} \langle e^{\Delta E} \rangle (S)|_{(\Delta F)_+}$$

(the equalities (*) hold by naturality of e^U with respect to U). We have

$$<\!\theta_{\widetilde{a}}^{\Delta E}(b)>-\langle e^{\Delta E}\rangle(S)=(\text{by }(3))=\langle e^{\Delta E}\rangle(<\!\theta_a^{\Delta E}(b)>-S)\in\langle (Y_{\widetilde{a}}^X)^{(\Delta E)_+}\rangle^{(r+1)},$$

where \in follows from (5) because $\langle e^{\Delta E} \rangle$ preserves the filtration. Thus $\tilde{a} \stackrel{r}{\approx} b$. \square

Theorem 6.2. Let maps $a, b, \widetilde{a}, \widetilde{b}: X \to Y$ satisfy

$$\widetilde{a} \sim a \stackrel{r}{\approx} b \sim \widetilde{b}.$$

Then $\widetilde{a} \stackrel{r}{\approx} \widetilde{b}$.

Proof. We crop Y and assume it compact. By [2, Corollary 4.2], we can continuously associate to each path $v:[0,1]\to Y$ an unbased homotopy $E_t(v):Y\to Y$, $t\in[0,1]$, such that $E_0(v)=\operatorname{id}$ and $E_t(v)(v(0))=v(t)$. Let $h_t:X\to Y$, $t\in[0,1]$, be a homotopy such that $h_0=b$ and $h_1=\widetilde{b}$. For $x\in X$, introduce the path $v_x=h_?(x):[0,1]\to Y$. We have $v_x(0)=h_0(x)=b(x)$ and $v_x(1)=h_1(x)=\widetilde{b}(x)$. Introduce the homotopy

$$H_t: X \times Y \to Y, \ t \in [0, 1], \qquad H_t(x, y) = E_t(v_x)(y).$$

We have

$$H_0(x,y) = E_0(v_x)(y) = y$$

and

$$H_1(x, b(x)) = E_1(v_x)(b(x)) = E_1(v_x)(v_x(0)) = v_x(1) = \widetilde{b}(x).$$

Consider the primitive transforms

$$g_t: Y^X \to Y^X, \ t \in [0,1], \qquad g_t(d)(x) = H_t(x, d(x)).$$

We have $d = g_0(d) \sim g_1(d), d \in Y^X$, and $g_1(b) = \tilde{b}$.

We have

$$\widetilde{a} \sim a \sim g_1(a) \stackrel{r}{\approx} g_1(b) = \widetilde{b},$$

where $\stackrel{r}{\approx}$ holds by Lemma 4.3. By Lemma 6.1, $\widetilde{a} \stackrel{r}{\approx} \widetilde{b}$.

Using Theorem 6.2, we define the relation of strong r-similarity on the set [X,Y] by the rule

$$[a] \stackrel{r}{\approx} [b] \quad \Leftrightarrow \quad a \stackrel{r}{\approx} b.$$

§ 7. Joining ensembles

Let X_1, X_2, Y , and T be spaces, X_i and T compact. Consider the \mathbb{Z} -bilinear operation

$$\sharp_T: \langle (Y^{X_1})^T \rangle \times \langle (Y^{X_2})^T \rangle \to \langle (Y^{X_1 \vee X_2})^T \rangle, \qquad \langle v_1 \rangle \not\equiv_T \langle v_2 \rangle = \langle v \rangle,$$
$$v(t) = v_1(t) \ \overline{\vee} \ v_2(t) : X_1 \vee X_2 \to Y, \qquad t \in T.$$

Lemma 7.1. Let E be a finite set and $S_i \in \langle (Y^{X_i})^{(\Delta E)_+} \rangle$, i = 1, 2, be fissile ensembles. Then the ensemble

$$S_1 \ddagger_{(\Delta E)_+} S_2 \in \langle (Y^{X_1 \vee X_2})^{(\Delta E)_+} \rangle$$

is fissile.

Proof. Take $A \in \mathcal{A}(E)$. We have the commutative diagram

$$\prod_{F \in A} (\langle (Y^{X_1})^{(\Delta E)_+} \rangle \times \langle (Y^{X_2})^{(\Delta E)_+} \rangle) \xrightarrow{F \in A}^{\prod_{F \in A} \#(\Delta E)_+} \prod_{F \in A} \langle (Y^{X_1 \vee X_2})^{(\Delta E)_+} \rangle$$

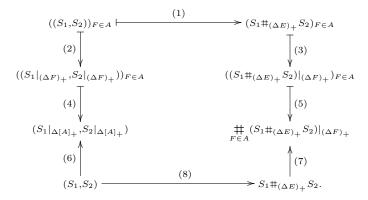
$$\prod_{F \in A} (\langle (Y^{X_1})^{(\Delta F)_+} \times \langle (Y^{X_2})^{(\Delta F)_+} \rangle) \xrightarrow{F \in A}^{\prod_{F \in A} \#(\Delta F)_+} \prod_{F \in A} \langle (Y^{X_1 \vee X_2})^{(\Delta F)_+} \rangle$$

$$\prod_{F \in A} \langle ((Y^{X_1})^{(\Delta F)_+}) \times \langle (Y^{X_2})^{(\Delta F)_+} \rangle) \xrightarrow{F \in A}^{\prod_{F \in A} \#(\Delta F)_+} \prod_{F \in A} \langle (Y^{X_1 \vee X_2})^{(\Delta F)_+} \rangle$$

$$\langle (Y^{X_1})^{\Delta[A]_+} \rangle \times \langle (Y^{X_2})^{\Delta[F]_+} \rangle \xrightarrow{\#(\Delta E)_+} \langle ((Y^{X_1 \vee X_2})^{\Delta[A]_+} \rangle$$

$$\langle ((Y^{X_1})^{(\Delta E)_+}) \times \langle ((Y^{X_2})^{(\Delta E)_+}) \rangle \xrightarrow{\#(\Delta E)_+} \langle ((Y^{X_1 \vee X_2})^{(\Delta E)_+}) \rangle$$

with the sendings



The sending (4) holds by fissility of S_1 and S_2 . The sendings (1), (2), (3), (5), (6), and (8) are obvious. The sending (7) follows. Thus $S_1 \sharp_{(\Delta E)_+} S_2$ is fissile.

Lemma 7.2. We have

$$\langle (Y^{X_1})^T \rangle_{X_1}^{(p)} \, \sharp_T \, \langle (Y^{X_2})^T \rangle_{X_2}^{(q)} \subseteq \langle (Y^{X_1 \vee X_2})^T \rangle_{X_1 \vee X_2}^{(p+q)}.$$

Proof. Take ensembles

$$Z_1 \in \langle (Y^{X_1})^T \rangle_{\mathbf{Y}_2}^{(p)}, \qquad Z_2 \in \langle (Y^{X_2})^T \rangle_{\mathbf{Y}_2}^{(q)}.$$

We have the commutative diagram

$$\begin{split} & \langle (Y^{X_1})^T \rangle \times \langle (Y^{X_2})^T \rangle \xrightarrow{\quad \ \, \sharp_T \quad} \langle (Y^{X_1 \vee X_2})^T \rangle \\ & \langle \widehat{\Box}^{X_1} \rangle \times \langle \widehat{\Box}^{X_2} \rangle \bigg| \qquad \qquad \qquad \bigg| \langle \widehat{\Box}^{X_1 \vee X_2} \rangle \\ & \langle Y^{T \wedge X_1} \rangle \times \langle Y^{T \wedge X_2} \rangle \xrightarrow{\quad \ \, \sharp \quad} \langle Y^{(T \wedge X_1) \vee (T \wedge X_2)} \rangle \end{split}$$

(we used distributivity of smash product over wedge) and the sendings

$$(Z_1, Z_2) \longmapsto Z_1 \sharp_T Z_2$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$(\langle \widehat{\square}^{X_1} \rangle (Z_1), \langle \widehat{\square}^{X_2} \rangle (Z_2)) \longmapsto \langle \widehat{\square}^{X_1 \vee X_2} \rangle (Z_1 \sharp_T Z_2).$$

By Lemma 3.3,

$$(\langle \widehat{\square}^{X_1} \rangle (Z_1), \langle \widehat{\square}^{X_2} \rangle (Z_2)) \in \langle Y^{T \wedge X_1} \rangle^{(p)} \times \langle Y^{T \wedge X_2} \rangle^{(q)}.$$

Thus, by [3, Lemma 3.1],

$$\langle \widehat{\square}^{X_1 \vee X_2} \rangle (Z_1 \sharp_T Z_2) \in \langle Y^{(T \wedge X_1) \vee (T \wedge X_2)} \rangle^{(p+q)}.$$

Thus, by Lemma 3.3,

$$Z_1 \sharp_T Z_2 \in \langle (Y^{X_1 \vee X_2})^T \rangle^{(p+q)}.$$

Corollary 7.3. Let maps $a_i: X_i \to Y$, i = 1, 2, satisfy $\stackrel{r}{\approx} a_i$. Then the map

$$a_1 \ \overline{\lor} \ a_2 : X_1 \lor X_2 \to Y$$

satisfies $\stackrel{r}{\approx} a_1 \ \overline{\lor} \ a_2$.

Proof. Take a finite set E. We have fissile ensembles $S_i \in \langle (Y_{\triangleleft}^{X_i})^{(\Delta E)_+} \rangle$, i = 1, 2, such that

$$\langle \theta \stackrel{\Delta E}{\triangleleft} (a_i) \rangle - S_i \in \langle (Y^{X_i})^{(\Delta E)_+} \rangle_{X_i}^{(r+1)}.$$

By Lemma 7.1, the ensemble

$$S_1 \sharp_{(\Delta E)_+} S_2 \in \langle (Y_{\triangleleft}^{X_1 \vee X_2})^{(\Delta E)_+} \rangle$$

is fissile. We have

$$\begin{split} <&\theta_{\P}^{\Delta E}(a_{1} \overline{\vee} a_{2})> -S_{1} \sharp_{(\Delta E)_{+}} S_{2} = \\ &= <&\theta_{\P}^{\Delta E}(a_{1})> \sharp_{(\Delta E)_{+}} <&\theta_{\P}^{\Delta E}(a_{2})> -S_{1} \sharp_{(\Delta E)_{+}} S_{2} = \\ &= (<&\theta_{\P}^{\Delta E}(a_{1})> -S_{1}) \sharp_{(\Delta E)_{+}} <&\theta_{\P}^{\Delta E}(a_{2})> + \\ &+ S_{1} \sharp_{(\Delta E)_{+}} (<&\theta_{\P}^{\Delta E}(a_{2})> -S_{2}) \in \langle (Y^{X_{1}\vee X_{2}})^{(\Delta E)_{+}} \rangle_{X_{1}\vee X_{2}}^{(r+1)}, \end{split}$$

where \in holds by Lemma 7.2. We are done.

§ 8. Strong similarity for an admissible couple

Let X and Y be cellular spaces, X compact. Let X be equipped with maps $\mu: X \to X \vee X$ (comultiplication) and $\nu: X \to X$ (coinversion). The set Y^X carries the operations

$$(a,b) \mapsto (a*b: X \xrightarrow{\mu} X \vee X \xrightarrow{a \overline{\vee} b} Y)$$

and

$$a \mapsto (a^{\dagger} : X \xrightarrow{\nu} X \xrightarrow{a} Y).$$

We suppose that $(X, \mu, \nu; Y)$ is an admissible couple in the sense of [3], that is, the set [X, Y] is a group with the multiplication

$$[a][b] = [a * b],$$

the inversion

$$[a]^{-1} = [a^{\dagger}],$$

and the identity $1 = [\uparrow_Y^X]$. We are mainly interested in the case of $X = \Sigma T$ with standard μ and ν .

We proceed parallelly to [3]. The subsets

$$[X,Y]^{((r+1))} = \{ \boldsymbol{a} \in [X,Y] \mid 1 \stackrel{r}{\approx} \boldsymbol{a} \}$$

form the filtration

$$[X,Y] = [X,Y]^{((1))} \supseteq [X,Y]^{((2))} \supseteq \dots$$

Theorem 8.1. $[X,Y]^{((r+1))} \subseteq [X,Y]$ is a normal subgroup.

Proof. Take $a,b:X\to Y,\ \stackrel{r}{\approx}a,b.$ Check that $\stackrel{r}{\approx}a*b.$ We have the decomposition

$$a * b : X \xrightarrow{\mu} X \vee X \xrightarrow{a \overline{\vee} b} Y.$$

By Corollary 7.3, $\stackrel{\wedge}{\gamma}_Y^{X\vee X} \stackrel{r}{\approx} a \ \underline{\vee} \ b$. By Corollary 5.2, $\stackrel{\wedge}{\gamma} \stackrel{r}{\approx} a * b$.

Take $a: X \to Y, \stackrel{?}{\approx} a$. Check that $\stackrel{?}{\approx} a^{\dagger}$. We have the decomposition

$$a^{\dagger}: X \xrightarrow{\nu} X \xrightarrow{a} Y.$$

By Corollary 5.2, $\stackrel{r}{\approx} a^{\dagger}$.

Take $a, b: X \to Y, \ \stackrel{r}{\approx} a$. Check that $\ \stackrel{r}{\approx} b^{\dagger} * (a*b)$. Consider the primitive transform

$$Y^X \to Y^X, \qquad d \mapsto b^{\dagger} * (d * b).$$

We have

$$\P^X_Y \sim b^\dagger * (\P^X_Y * b) \stackrel{r}{\approx} b^\dagger * (a * b),$$

where $\stackrel{r}{\approx}$ holds by Lemma 4.3. By Lemma 6.1, $\stackrel{r}{\approx} b^{\dagger} * (a * b)$.

We do not know whether the subgroups $[X,Y]^{(s)}$ form an N-series.

Theorem 8.2. For $a, b \in [X, Y]$, we have

$$\boldsymbol{a} \stackrel{r}{\approx} \boldsymbol{b} \quad \Leftrightarrow \quad \boldsymbol{a}^{-1} \boldsymbol{b} \in [X, Y]^{((r+1))}.$$

Proof. It suffices to check that, for maps $a, b, c: X \to Y$, $a \stackrel{r}{\approx} b$ implies $c*a \stackrel{r}{\approx} c*b$. This follows from Lemma 4.3 for the primitive transform

$$Y^X \to Y^X, \qquad d \mapsto c * d.$$

It follows from Theorems 8.1 and 8.2 that, for an admissible couple $(X, \mu, \nu; Y)$, the relation $\stackrel{r}{\approx}$ on [X, Y] is an equivalence.

§ 9. Presheaves and extenders

Let P be a finite partially ordered set and C be a concrete category. (Concreteness is not essential; we assume it for convenience of notation only.) A cofunctor $S: P \to C$ is called a *presheaf*. For $p, q \in P$, $p \geqslant q$, we have the induced morphism

$$?|_q: S(p) \to S(q)$$

(the restriction morphism).

For a preasheaf $U: P \to \mathbf{Ab}$, we have the isomorphism

$$\nabla_P: \bigoplus_{p \in P} U(p) \to \bigoplus_{p \in P} U(p), \qquad \operatorname{in}_p(u) \mapsto \sum_{q \in P\lceil p \rceil} \operatorname{in}_q(u|_q), \qquad u \in U(p), \ p \in P.$$

Hereafter,

$$P[p] = \{ q \in P \mid p \geqslant q \}$$

and

$$\operatorname{in}_q: U(q) \to \bigoplus_{p \in P} U(p)$$

are the canonical insertions.

Suppose that P has the infimum operation \wedge and the greatest element \top . It follows that P is a lattice. We put $P^{\times} = P \setminus \{\top\}$. An extender λ for the preasheaf S is a collection of morphisms

$$\lambda_p^q: S(q) \to S(p), \qquad p, q \in P, \ p \geqslant q,$$

such that, for $p, q \in P$ and $s \in S(q)$,

$$\lambda_p^q(s)|_q = s$$
 if $p \geqslant q$

and

$$\lambda^q_{\top}(s)|_p = \lambda^{p \wedge q}_p(s|_{p \wedge q}).$$

In particular,

$$\lambda_p^q(s) = \lambda_{\top}^q(s)|_p.$$

(The extenders we deal with satisfy the identity $\lambda_p^q \circ \lambda_q^r = \lambda_p^r$. We neither check nor use this.)

Consider a preaheaf $U:P\to \mathbf{Ab}$ with an extender λ . The symbol $\overline{\oplus}$ below denotes the homomorphism of a direct sum given by its restrictions to the summands.

Lemma 9.1. For $q \in P$, the diagram

$$\bigoplus_{p \in P} U(p) \longleftarrow \stackrel{\nabla_P}{\cong} \bigoplus_{p \in P} U(p) \stackrel{\bigoplus_{p \in P}}{\longrightarrow} \lambda_{\top}^p \longrightarrow U(\top)$$

$$\bigoplus_{pr} \bigvee_{p \in P\lceil q \rceil} U(p) \longleftarrow \stackrel{\nabla_{P\lceil q \rceil}}{\cong} \bigoplus_{p \in P\lceil q \rceil} U(p) \stackrel{\bigoplus_{p \in P}}{\longrightarrow} \lambda_q^p \bigvee_{q} U(q),$$

where R_q is the homomorphism defined by the rule

$$\operatorname{in}_p(u) \mapsto \operatorname{in}_{p \wedge q}(u|_{p \wedge q}),$$

is commutative.

Direct check.
$$\Box$$

Lemma 9.2. The homomorphism

$$U(\top) \to \lim_{p \in P^{\times}} U(p), \qquad u \mapsto (u|_p)_{p \in P^{\times}},$$

is surjective.

Proof. Take a collection

$$(u_p)_{p \in P^{\times}} \in \lim_{p \in P^{\times}} U(p) \subseteq \bigoplus_{p \in P^{\times}} U(p).$$

Define a collection $(v_p)_{p \in P^{\times}}$ and a section u by the diagram

$$\bigoplus_{p \in P^{\times}} U(p) \longleftarrow^{\nabla_{P^{\times}}} \bigoplus_{p \in P^{\times}} U(p) \xrightarrow{\frac{\bigoplus_{p \in P^{\times}}}{p \in P^{\times}}} \lambda_{\top}^{p}$$

$$(u_{p})_{p \in P^{\times}} \longleftarrow^{\vee} (v_{p})_{p \in P^{\times}} \longmapsto^{\vee} u$$

Take $q \in P^{\times}$. We show that $u|_q = u_q$, which will suffice. In the diagram of Lemma 9.1, we have

$$\begin{aligned} &(u_p)_{p\in P} < & & & & & & & & & \\ &(3) & & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(4) & & & & & & & \\ &(5) & & & & & & \\ &(u_p)_{p\in P\lceil q\rceil} < & & & & & & & \\ &(6) & & & & & & & \\ &(1) & & & & & & \\ &(1) & & & & & & \\ &(2) & & & & & & \\ &(3) & & & & & \\ &(4) & & & & & \\ &(5) & & & & & \\ &(5) & & & & & \\ &(1) & & & & & \\ &(2) & & & & & \\ &(3) & & & & & \\ &(4) & & & & & \\ &(5) & & & & \\ &(4) & & & & & \\ &(5) & & & & \\ &(1) & & & & & \\ &(2) & & & & \\ &(3) & & & & \\ &(4) & & & & \\ &(4) & & & & \\ &(5) & & & & \\ &(4) & & & & \\ &(5) & & & \\ &(4) & & & & \\ &(5) & & & \\ &(5) & & & \\ &(6) & & & & \\ &(1) & & & & \\ &(1) & & & \\ &(2) & & & \\ &(3) & & & \\ &(4) & & & \\ &(5) & & & \\ &(5) & & & \\ &(5) & & & \\ &(6) & & & \\ &(1) & & & \\ &(1) & & & \\ &(1) & & & \\ &(2) & & & \\ &(3) & & & \\ &(4) & & & \\ &(5) & & & \\ &(5) & & & \\ &(6) & & & \\ &(1) & & & \\ &(1) & & & \\ &(1) & & & \\ &(1) & & & \\ &(1) & & & \\ &(2) & & & \\ &(3) & & & \\ &(4) & & & \\ &(4) & & & \\ &(5) & & & \\ &(5) & & & \\ &(5) & & & \\ &(5) & & & \\ &(6) & & & \\ &(1) & & & \\ &(1) & & & \\ &(1) & & & \\ &(2) & & & \\ &(3) & & & \\ &(4) & & & \\ &(5) & & & \\ &(5) & & & \\ &(6) & & & \\ &(6) & & & \\ &(6) & & & \\ &(6) & & & \\ &(6) & & & \\ &(6) & & & \\ &(6) & & & \\ &(7) & & & \\ &($$

where we put $u_{\top} = v_{\top} = 0$ in $U(\top)$. The sendings (1) and (2) follow from the construction of the collections. The sending (6) expresses the equalities $u_q|_p = u_p, \ p \in P\lceil q \rceil$, which hold by the definition of limit. The sending (3) is obvious. The sending (4) follows because the left square is commutative and $\nabla_{P\lceil q \rceil}$ is injective. The sending (7) is the equality $\lambda_q^q = \mathrm{id}$, which follows from the definition of extender. By commutativity of the right square, the sending (5) holds, which is what was to be checked.

§ 10. The abstract fissilizer Φ^E on $\langle \underline{M}(E) \rangle$

Fix a nonempty finite set E. The set $\mathcal{P}_{\times}(E)$ is partially ordered by inclusion. For $A, B \in \mathcal{A}(E)$, we say $A \geqslant B$ if, for each $G \in B$, there is $F \in A$ such that $F \supseteq G$. Such an F is unique; we denote it by (A)G. The set $\mathcal{A}(E)$ becomes a lattice with the infimum operation

$$A \wedge B = \{ F \cap G \mid F \in A, G \in B \} \setminus \{\emptyset\}$$

and the greatest element $\top = \{E\}.$

Let \mathbf{Mg} be the category of sets and $M: \mathcal{P}_{\times}(E) \to \mathbf{Mg}$ be a presheaf. We define a presheaf $\underline{M}: \mathcal{A}(E) \to \mathbf{Mg}$. For $A \in \mathcal{A}(E)$, put

$$\underline{M}(A) = \prod_{F \in A} M(F).$$

For $A, B \in \mathcal{A}(E)$, $A \geqslant B$, define the restriction function

$$\underline{M}(A) \to \underline{M}(B), \qquad \underline{m} \mapsto \underline{m}|_B,$$

by putting, for $\underline{m} = (m_F)_{F \in A}$

$$\underline{m}|_B = (m_{(A)G}|_G)_{G \in B}.$$

Clearly, $\underline{M}(\{E\}) = M(E)$.

Taking composition with the functor $\langle ? \rangle : \mathbf{Mg} \to \mathbf{Ab}$, we get the presheaves

$$\mathcal{P}_{\times}(E) \to \mathbf{Ab}, \qquad F \mapsto \langle M(F) \rangle,$$

and

$$\mathcal{A}(E) \to \mathbf{Ab}, \qquad A \mapsto \langle \underline{M}(A) \rangle.$$
 (6)

For $A \in \mathcal{A}(E)$, we have the \mathbb{Z} -multilinear operation

$$\underset{F \in A}{\ddagger} : \prod_{F \in A} \langle M(F) \rangle \to \langle \underline{M}(A) \rangle, \qquad \underset{F \in A}{\ddagger} \langle m_F \rangle = \langle (m_F)_{F \in A} \rangle \tag{7}$$

(cf. § 2). For $Q \in \langle M(E) \rangle$ and $A \in \mathcal{A}(E)$, put

$$Q^{\sharp}(A) = \underset{F \in A}{\sharp} Q|_F \in \langle \underline{M}(A) \rangle.$$

We call an ensemble $R \in \langle M(E) \rangle$ fissile if, for any layout $A \in \mathcal{A}(E)$,

$$R|_A = R^{\ddagger \ddagger}(A)$$

in $\langle \underline{M}(A) \rangle$.

We suppose that the presheaf \underline{M} has an extender

$$\lambda_A^B : \underline{M}(B) \to \underline{M}(A), \qquad A, B \in \mathcal{A}(E), \ A \geqslant B.$$

Then the preasheaf (6) has the extender

$$\langle \lambda_A^B \rangle : \langle \underline{M}(B) \rangle \to \langle \underline{M}(A) \rangle, \qquad A, B \in \mathcal{A}(E), \ A \geqslant B.$$

For $Q \in \langle M(E) \rangle$, define an ensemble $\Phi^E(Q) \in \langle M(E) \rangle$ by the rule

$$\bigoplus_{A \in \mathcal{A}(E)} \langle \underline{M}(A) \rangle \overset{\nabla_{\mathcal{A}(E)}}{\cong} \bigoplus_{A \in \mathcal{A}(E)} \langle \underline{M}(A) \rangle \xrightarrow{\bigoplus_{A \in \mathcal{A}(E)}} \langle \lambda_{\{E\}}^A \rangle \\ Q^{\sharp} \overset{}{\longleftrightarrow} \nabla_{\mathcal{A}(E)}^{-1}(Q^{\sharp}) \longmapsto \Phi^E(Q)$$

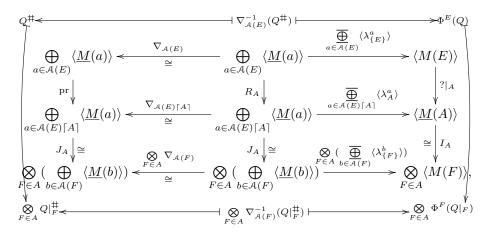
We get a function (not a homomorphism)

$$\Phi^E : \langle M(E) \rangle \to \langle M(E) \rangle,$$

which we call the *fissilizer*.

Lemma 10.1. For any ensemble $Q \in \langle M(E) \rangle$, the ensemble $\Phi^{E}(Q)$ is fissile.

Proof. Take $A \in \mathcal{A}(E)$. We have the commutative diagram



where the upper half comes from Lemma 9.1, I_A is the isomorphism defined by the rule

$$\langle (m_F)_{F \in A} \rangle \mapsto \bigotimes_{F \in A} \langle m_F \rangle,$$

and J_A is the isomorphism defined by the rule

$$\operatorname{in}_a(\langle \underline{m} \rangle) \mapsto \bigotimes_{F \in A} \operatorname{in}_{a \wedge \{F\}}(\langle \underline{m} | a \wedge \{F\} \rangle)$$

(note that $a \wedge \{F\} \in \mathcal{A}(F) \subseteq \mathcal{A}(E)$). Commutativity of the lower half is checked directly. The sendings in the upper row hold by the definition of Φ^E . The sendings in the lower row hold by the definition of $\Phi^F : \langle M(F) \rangle \to \langle M(F) \rangle$. The sending in the left column is checked directly. The sending in the right column follows. Since

$$I_A: \underset{F \in A}{\sharp} q_F \mapsto \bigotimes_{F \in A} q_F$$

for $q_F \in \langle M(F) \rangle$, $F \in A$, we get

$$\Phi^E(Q)|_A = \underset{F \in A}{\sharp} \Phi^F(Q|_F).$$

In particular, for $A = \{F\}$, this gives

$$\Phi^E(Q)|_F = \Phi^F(Q|_F).$$

Thus, for arbitrary A,

$$\Phi^E(Q)|_A = \underset{F \in A}{\sharp} \Phi^E(Q)|_F.$$

Thus $\Phi^E(Q)$ is fissile.

Let $N(A) \subseteq \langle \underline{M}(A) \rangle$, $A \in \mathcal{A}(E)$, be a collection of subgroups preserved by the restriction homomorphisms and the homomorphisms $\langle \lambda_A^B \rangle$.

Lemma 10.2. Let an ensemble $Q \in \langle M(E) \rangle$ satisfy

$$Q^{\sharp\sharp}(A) - Q|_A \in N(A)$$

for all $A \in \mathcal{A}(E)$. Then

$$\Phi^E(Q) - Q \in N(\{E\}).$$

Proof. We have the presheaf

$$\mathcal{A}(E) \to \mathbf{Ab}, \qquad A \mapsto \langle \underline{M}(A) \rangle / N(A),$$

with the induced restriction homomorphisms. We have the commutative diagram

$$(Q|_{A})_{A\in\mathcal{A}(E)} \longleftarrow \operatorname{in}_{\{E\}}(Q) \longmapsto Q$$

$$Q^{\#} \longleftarrow \nabla_{A(E)}^{-1}(Q^{\#}) \longmapsto \Phi^{E}(Q)$$

$$\bigoplus_{A\in\mathcal{A}(E)} \langle \underline{M}(A) \rangle \stackrel{\nabla_{A(E)}}{\cong} \bigoplus_{A\in\mathcal{A}(E)} \langle \underline{M}(A) \rangle \stackrel{\bigoplus_{A\in\mathcal{A}(E)}}{\longrightarrow} \langle M(E) \rangle$$

$$\underset{Pr}{\bigoplus} \bigvee_{Pr} \bigvee_{Pr} \bigvee_{Pr} \bigvee_{A\in\mathcal{A}(E)} \langle \underline{M}(A) \rangle / N(A) \stackrel{\nabla_{A(E)}}{\cong} \bigoplus_{A\in\mathcal{A}(E)} \langle \underline{M}(A) \rangle / N(A) \longrightarrow \langle M(E) \rangle / N(\{E\}).$$

The upper line of sendings is obvious. The lower line of sendings holds by the definition of Φ^E . By hypothesis, the difference of the elements in the upper-left corner descends to zero. Since $\nabla_{\mathcal{A}(E)}$ in the lower row is an isomorphism, the difference of elements in the upper-right corner also descends to zero.

§ 11. Topological and simplicial constructions

Topological cones. Take $s \in \{0,1\}$. Given an unpointed space U, form the space

$$C^s U = (U \times [0,1])/(U \times \{s\}),$$

the *cone* over U. The innate basepoint (where $U \times \{s\}$ is projected) is called the *apex*. Using the "base" embedding

$$U \xrightarrow{u \mapsto (u,1-s)} U \times [0,1] \xrightarrow{\mathrm{pr}} \mathrm{C}^s U,$$

we adopt the inclusion $U \subseteq \mathcal{C}^sU$ and the based one $U_+ \subseteq \mathcal{C}^sU$. A path of the form

$$[0,1] \xrightarrow{t \mapsto (u,t)} U \times [0,1] \xrightarrow{\mathrm{pr}} \mathbf{C}^s U$$

is called a generating path. For an unpointed subspace $V \subseteq U$, we have $C^s V \subseteq C^s U$.

Notation: $\check{C} = C^0$, $\hat{C} = C^1$.

Topological suspensions. For an unpointed space U, the unreduced suspension $\overline{\Sigma}U$ is the colimit of the diagram

$$\{0,1\} \stackrel{\text{pr}}{\longleftarrow} U \times \{0,1\} \stackrel{\text{in}}{\longrightarrow} U \times [0,1].$$

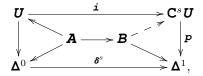
Let $s_{\overline{\Sigma}U} \in \overline{\Sigma}U$ be the point coming from $s \in \{0,1\}$. We appoint $0_{\overline{\Sigma}U}$ to be the basepoint of $\overline{\Sigma}U$.

We use also the usual reduced suspension Σ .

Unreduced Kan cones. Let Δ^n be "the *n*-simplex", the simplicial set represented (as a cofunctor) by the object [n] of the simplex category. Take $s \in \{0,1\}$. Let $\delta^s : \Delta^0 \to \Delta^1$ be the morphism induced by the function $\delta^s : [0] \to [1], 0 \mapsto 1-s$. Given a simplicial set U, we define its *cone* C^sU . There is a unique (up to an isomorphism) Cartesian square

$$\begin{array}{ccc}
\mathbf{U} & \xrightarrow{\mathbf{i}} & \mathbf{C}^{s} \mathbf{U} \\
\downarrow & & \downarrow \mathbf{p} \\
\mathbf{\Delta}^{0} & \xrightarrow{\boldsymbol{\delta}^{s}} & \mathbf{\Delta}^{1}
\end{array}$$

with the universal property expressed by the diagram

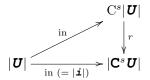


where the lower trapeze is assumed to be Cartesian. The morphism $\boldsymbol{\delta}^{1-s}: \boldsymbol{\Delta}^0 \to \boldsymbol{\Delta}^1$ lifts along \boldsymbol{p} uniquely. This yields a morphism $\boldsymbol{\Delta}^0 \to \boldsymbol{C}^s \boldsymbol{U}$, which makes $\boldsymbol{C}^s \boldsymbol{U}$ a pointed simplicial set. The basepoint is called the *apex*. The morphism \boldsymbol{i} is injective. Using it, we adopt the inclusion $\boldsymbol{U} \subseteq \boldsymbol{C}^s \boldsymbol{U}$ and the based one $\boldsymbol{U}_+ \subseteq \boldsymbol{C}^s \boldsymbol{U}$. We call \boldsymbol{p} the *projection*.

All constructions are covariant/natural in \boldsymbol{U} . The functor \mathbf{C}^s preserves injective morphisms. Using this, we adopt the inclusion $\mathbf{C}^s\boldsymbol{V}\subseteq\mathbf{C}^s\boldsymbol{U}$ for a simplicial subset $\boldsymbol{V}\subseteq\boldsymbol{U}$.

Notation: $\mathbf{\tilde{C}} = \mathbf{C}^0$, $\mathbf{\hat{C}} = \mathbf{C}^1$.

There is a unique natural map $r: C^s[\boldsymbol{U}] \to |\boldsymbol{C}^s\boldsymbol{U}|$ such that the diagram



is commutative and each generating path of $C^s|\mathbf{U}|$ is sent to an affine path in some simplex of $|\mathbf{C}^s\mathbf{U}|$. The map r is a homeomorphism. Using it, we adopt that $|\mathbf{C}^s\mathbf{U}| = C^s|\mathbf{U}|$.

Reduced Kan cone. For a pointed simplicial set \mathbf{T} , introduce the pointed simplicial set $\check{\mathbf{C}}\mathbf{T} = \check{\mathbf{C}}\mathbf{T}/\check{\mathbf{C}}(\P)$, where $(\P) \subseteq \mathbf{T}$ is the simplicial subset generated by the basepoint $\P \in \mathbf{T}_0$ (so, $(\P) \cong \mathbf{\Delta}^0$). We adopt the obvious inclusion $\mathbf{T} \subseteq \check{\mathbf{C}}\mathbf{T}$ and identification $\check{\mathbf{C}}(\mathbf{U}_+) = \check{\mathbf{C}}\mathbf{U}$. $\check{\mathbf{C}}$ is a functor; it preserves wedges.

Unreduced Kan suspension. For a simplicial set \mathbf{U} , introduce the pointed simplicial set $\hat{\mathbf{Z}}\mathbf{U} = \hat{\mathbf{C}}\mathbf{U}/\mathbf{U}$. It has two vertices: the top $1_{\hat{\mathbf{Z}}\mathbf{U}}$, which is the image of the apex of the cone $\hat{\mathbf{C}}\mathbf{U}$ under the projection $\hat{\mathbf{C}}\mathbf{U} \to \hat{\mathbf{Z}}\mathbf{U}$, and the basepoint $0_{\hat{\mathbf{Z}}\mathbf{U}}$ (where the base $\mathbf{U} \subseteq \hat{\mathbf{C}}\mathbf{U}$ is sent). We have

$$|\hat{\mathbf{\Sigma}}\mathbf{U}| = |\hat{\mathbf{C}}\mathbf{U}|/|\mathbf{U}| = \hat{\mathbf{C}}|\mathbf{U}|/|\mathbf{U}| = \overline{\Sigma}|\mathbf{U}|.$$

Thick simplex. For a set U, let $\mathbf{E}U$ be the simplicial set with $(\mathbf{E}U)_n = U^{[n]}$ $(=U^{n+1})$ and obvious structure functions.

For each $u \in U$, there is a unique retraction $\tilde{\boldsymbol{\sigma}}_u : \check{\mathbf{C}}\check{\mathbf{E}}U \to \hat{\mathbf{C}}\check{\mathbf{E}}U$ sending the apex to the vertex $u \in U = (\mathbf{E}U)_0 \subseteq (\hat{\mathbf{C}}\mathbf{E}U)_0$. Define retractions $\overline{\boldsymbol{\sigma}}_u$ and $\boldsymbol{\sigma}_u$ by the commutative diagram

$$\overset{\check{\mathbf{C}}\hat{\mathbf{C}}\mathbf{E}U}{\longrightarrow}\overset{\check{\mathbf{C}}\mathbf{q}}{\overset{\check{\mathbf{C}}\hat{\mathbf{D}}\mathbf{E}U}}\xrightarrow{\mathbf{r}}\overset{\check{\mathbf{C}}\hat{\mathbf{D}}\mathbf{E}U}{\overset{\check{\boldsymbol{\sigma}}_{u}}{\bigvee}}$$

$$\overset{\check{\boldsymbol{\sigma}}_{u}}{\downarrow}\overset{\check{\boldsymbol{\sigma}}_{u}}{\bigvee}\overset{\check{\boldsymbol{\sigma}}_{u}}{\downarrow}\overset{\check{\boldsymbol{\sigma}}_{u}}{\bigvee}$$

$$\overset{\check{\mathbf{C}}\mathbf{E}U}{\longrightarrow}\overset{\check{\mathbf{P}}\mathbf{E}U},$$

where \boldsymbol{q} and \boldsymbol{r} are projections. We call $\boldsymbol{\sigma}_u$ the canonical contraction.

Lemma 11.1. Let $V \subseteq U$ be a subset. Then, for $u \in V$, the diagram

$$\begin{array}{c|c}
\tilde{\mathbf{C}}\tilde{\mathbf{\Sigma}}\mathbf{E}V & \longrightarrow \tilde{\mathbf{C}}\tilde{\mathbf{\Sigma}}\mathbf{E}U \\
 & & \downarrow \sigma_{u} \\
 & \downarrow \sigma_{u} \\
 & \hat{\mathbf{\Sigma}}\mathbf{E}V & \longrightarrow \hat{\mathbf{\Sigma}}\mathbf{E}U,
\end{array}$$

where the horizontal arrows are induced by the inclusion $V \to U$, is commutative.

If
$$U$$
 is finite, let

$$\xi_U : |\mathbf{E}U| \to \Delta U \tag{8}$$

be the unbased map that sends, for each $u \in U$, the corresponding vertex |u| of $|\mathbf{E}U|$ to the corresponding vertex $\langle u \rangle$ of ΔU and is affine on simplices. Hereafter, we put $\Delta \varnothing = \varnothing$.

Barycentric subdivision. Let K be an (abstract simplicial) complex. We order the set of simplices of K by reverse inclusion. Define the simplicial set βK as the nerve of this partially ordered set. For a subcomplex $L \subseteq K$, we have $\beta L \subseteq \beta K$.

There is a homeomorphism $|\mathbf{\beta}K| \to |K|$ that sends the vertex of $|\mathbf{\beta}K|$ corresponding to a simplex k of K to the barycentre of the simplex $|k| \subseteq |K|$ and takes each simplex of $|\mathbf{\beta}K|$ to some simplex of |K| affinely. Using it, we adopt that $|\mathbf{\beta}K| = |K|$.

Canonical retractions. Given a complex K and a subcomplex $L \subseteq K$, we have $\mathbf{\check{C}\beta}L \subseteq \mathbf{\check{C}\beta}K$ and define the based morphism

$$\boldsymbol{\rho}_L^K : \check{\mathbf{C}}\boldsymbol{\beta}K \to \check{\mathbf{C}}\boldsymbol{\beta}L$$

as the retraction that sends all vertices outside $\check{\mathbf{C}}\boldsymbol{\beta}L$ to the apex of $\check{\mathbf{C}}\boldsymbol{\beta}L$. We call $\boldsymbol{\rho}_L^K$ the *canonical retraction*.

Lemma 11.2. For two subcomplexes $L, M \subseteq K$, the diagram

$$\begin{split} \check{\mathbf{C}} \boldsymbol{\beta} L & \xrightarrow{\quad \mathbf{in} \quad} \check{\mathbf{C}} \boldsymbol{\beta} K \\ \boldsymbol{\rho}_{L \cap M}^{L} & & & & & & & & & \\ \boldsymbol{\rho}_{M}^{L} & & & & & & & & \\ \check{\mathbf{C}} \boldsymbol{\beta} (L \cap M) & \xrightarrow{\quad \mathbf{in} \quad} \check{\mathbf{C}} \boldsymbol{\beta} M \end{split}$$

is commutative.

§ 12. Canonical retractions in the cones $\check{\mathbf{C}}\boldsymbol{\beta}\Delta E$ and $\check{\mathbf{C}}\Delta E$

Fix a nonempty finite set E.

The simplex ΔE and its subcomplexes. Let the ΔE be the complex whose set of vertices is E and set of simplices is $\mathcal{P}_{\times}(E)$. For $F \in \mathcal{P}_{\times}(E)$, we have the subcomplex $\Delta F \subseteq \Delta E$. For $A \in \mathcal{A}(E)$, introduce the subcomplex $\Delta[A] \subseteq \Delta E$,

$$\Delta[A] = \bigcup_{F \in A} \Delta F.$$

For $A, B \in \mathcal{A}(E)$, we have

$$A \geqslant B \Rightarrow \Delta[A] \supseteq \Delta[B]$$

and $\Delta[A \wedge B] = \Delta[A] \cap \Delta[B]$. Moreover, $\Delta[\{E\}] = \Delta E$. For $A, B \in \mathcal{A}(E)$, $A \geqslant B$, we have the canonical retraction

$${\pmb \rho}^A_B = {\pmb \rho}^{\vartriangle[A]}_{\vartriangle[B]} : \check{\pmb C} {\pmb \beta} \vartriangle[A] \to \check{\pmb C} {\pmb \beta} \vartriangle[B].$$

Corollary 12.1. For two layouts $A, B \in \mathcal{A}(E)$, the diagram

$$\begin{split} \check{\mathbf{C}} \boldsymbol{\beta} \triangle[A] & \stackrel{\text{in}}{\longrightarrow} \check{\mathbf{C}} \boldsymbol{\beta} \triangle E \\ \boldsymbol{\rho}_{A \wedge B}^{A} \bigg| & & & & & & & \\ \boldsymbol{\rho}_{B}^{A} \ge & & & & & & \\ \check{\mathbf{C}} \boldsymbol{\beta} \triangle[A \wedge B] & \stackrel{\text{in}}{\longrightarrow} \check{\mathbf{C}} \boldsymbol{\beta} \triangle[B] \end{split}$$

is commutative.

Follows from Lemma 11.2.

Geometric realization. We adopt the obvious identification $|\Delta E| = \Delta E$. For $F \in \mathcal{P}_{\times}(E)$, $|\Delta F| = \Delta F$ as subsets of ΔE . For $A \in \mathcal{A}(E)$, $|\Delta[A]| = \Delta[A]$ in the same sense. For $A, B \in \mathcal{A}(E)$, $A \geqslant B$, we have $\Delta[A] \supseteq \Delta[B]$ and the retraction ρ_B^A ,

$$\overset{\bullet}{\mathsf{C}}\Delta[A] \xrightarrow{\rho_B^A} \overset{\bullet}{\mathsf{C}}\Delta[B] \\
|| \overset{\bullet}{\mathsf{C}}\beta\Delta[A]| \xrightarrow{|\rho_B^A|} |\overset{\bullet}{\mathsf{C}}\beta\Delta[B]|.$$

We call ρ_B^A the canonical retraction, too.

Corollary 12.2. For two layouts $A, B \in \mathcal{A}(E)$, the diagram

$$\begin{split} \check{\mathbf{C}}\Delta[A] & \xrightarrow{\quad \text{in} \quad} \check{\mathbf{C}}\Delta E \\ \rho_{A\wedge B}^A & & & & & & \\ \check{\mathbf{C}}\Delta[A\wedge B] & \xrightarrow{\quad \text{in} \quad} \check{\mathbf{C}}\Delta[B] \end{split}$$

is commutative.

Follows from Corollary 12.1.

§ 13. The fissilizer Φ^E on $\langle (Y_a^X)^{\check{\mathbf{C}}\Delta E} \rangle$

Fix a space Z and a finite set E. Consider the presheaf $M: \mathcal{P}_{\times}(E) \to \mathbf{Mg}$, $F \mapsto Z^{\check{\mathsf{C}}\Delta F}$ (with the obvious restriction functions). For $A \in \mathcal{A}(E)$, we have

$$\check{\mathbf{C}}\Delta[A] = \check{\mathbf{C}}\big(\bigcup_{F \in A} \Delta F\big) = \bigvee_{F \in A} \check{\mathbf{C}}\Delta F.$$

We identify the presheaf $\underline{M}: \mathcal{A}(E) \to \mathbf{Mg}$ (see § 10) with the presheaf $A \mapsto Z^{\check{\mathbf{C}}\Delta[A]}$ by the chain of equalities/obvious identifications

$$\underline{M}(A) = \prod_{F \in A} M(F) = \prod_{F \in A} Z^{\check{\mathbf{C}}\Delta F} = Z^{\bigvee_{F \in A} \check{\mathbf{C}}\Delta F} = Z^{\check{\mathbf{C}}\Delta[A]}.$$

The operation (7) in our case coincides with the operation

$$\underset{F \in A}{\sharp}: \prod_{F \in A} \langle Z^{\check{\mathbf{C}}\Delta F} \rangle \rightarrow \langle Z^{\check{\mathbf{C}}\Delta [A]} \rangle,$$

which we have by § 2. We will need the following formulas:

$$\epsilon \left(\underset{F \in A}{\ddagger} Q_F \right) = \prod_{F \in A} \epsilon(Q_F) \tag{9}$$

and

$$\left(\underset{F \in A}{\ddagger} Q_F \right) \big|_{\check{\mathbf{C}}\Delta G} = \left(\prod_{F \in A \setminus \{G\}} \epsilon(Q_F) \right) Q_G. \tag{10}$$

For $A, B \in \mathcal{A}(E), A \geqslant B$, let $\lambda_A^B : \underline{M}(B) \to \underline{M}(A)$ be the function

$$Z^{\rho_B^A}: Z^{\check{\mathcal{C}}\Delta[B]} \to Z^{\check{\mathcal{C}}\Delta[A]},$$

where $\rho_B^A: \check{\mathcal{C}}\Delta[A] \to \check{\mathcal{C}}\Delta[B]$ is the canonical retraction. It follows from Corollary 12.2 that the functions λ_A^B form an extender. By § 10, we get the fissilizer

$$\Phi^E: \langle Z^{\check{\mathbf{C}}\Delta E} \rangle \to \langle Z^{\check{\mathbf{C}}\Delta E} \rangle.$$

Corollary 13.1. For any ensemble $Q \in \langle Z^{\check{C}\Delta E} \rangle$, the ensemble $\Phi^E(Q)$ is fissile.

Follows from Lemma 10.1.

We set $Z=Y_a^X$, where X and Y are cellular spaces, X compact, and $a:X\to Y$ is a map. For a space T, we have the inclusion $\langle (Y_a^X)^T\rangle\subseteq \langle (Y^X,a)^T\rangle$. An ensemble $Q\in \langle (Y_a^X)^{\check{\mathbf{C}}\Delta E}\rangle$ is called (X,r)-almost fissile if, for any layout $A\in \mathcal{A}(E)$,

$$\underset{F \in A}{\sharp} Q|_{\check{\mathbf{C}}\Delta F} - Q|_{\check{\mathbf{C}}\Delta [A]} \in \langle (Y^X, a)^{\check{\mathbf{C}}\Delta [A]} \rangle_X^{(r+1)}.$$

Lemma 13.2. Any affine ensemble $Q \in \langle (Y_a^X)^{\check{\mathbb{C}}\Delta E} \rangle$ is (X,1)-almost fissile.

Proof. Take $A \in \mathcal{A}(E)$. Consider the quantity $D \in \langle (Y_a^X)^{\check{C}\Delta[A]} \rangle$,

$$D = \underset{F \in A}{\sharp} Q|_{\check{\mathbf{C}}\Delta F} - Q|_{\check{\mathbf{C}}\Delta[A]}.$$

We should show that $D \in \langle (Y^X, a)^{\check{C}\Delta[A]} \rangle_X^{(2)}$. Consider the homomorphism

$$\langle \Box^X \rangle : \langle (Y^X, a)^{\check{\mathbf{C}}\Delta[A]} \rangle \to \langle Y^{\check{\mathbf{C}}\Delta[A] \times X} \rangle.$$

We should show that $\langle \Box^X \rangle(D) \in \langle Y^{\check{\mathbf{C}}\Delta[A] \times X} \rangle^{(2)}$. Take $R \in \mathcal{F}_1(\check{\mathbf{C}}\Delta[A] \times X)$. We check that $\langle \Box^X \rangle(D)|_R = 0$. We are in (at least) one of the two following cases.

Case θ : $R = \{ \uparrow \}$. We have

$$\begin{split} \epsilon(\langle \Box^X \rangle(D)) &= \epsilon(D) = \qquad \text{(using (9))} \qquad = \prod_{F \in A} \epsilon(Q|_{\check{\mathbf{C}}\Delta F}) - \epsilon(Q|_{\check{\mathbf{C}}\Delta[A]}) = \\ &= \prod_{F \in A} \epsilon(Q) - \epsilon(Q) = \qquad \qquad \text{(since } \epsilon(Q) = 1) \qquad \qquad = 0, \end{split}$$

which suffices in this case.

Case 1: $R \subseteq \check{\mathcal{C}}\Delta G \times X$ for some $G \in A$. It suffices to check that $\langle \Box^X \rangle(D)|_{\check{\mathcal{C}}\Delta G \times X} = 0$. We have the commutative diagram

$$\begin{split} & \langle (Y^X,a)^{\check{\mathbf{C}}\Delta[A]} \rangle \xrightarrow{\quad \langle \Box^X \rangle \quad} \langle Y^{\check{\mathbf{C}}\Delta[A]\times X} \rangle \\ & \stackrel{?|_{\check{\mathbf{C}}\Delta G} \downarrow}{\qquad \qquad } \bigvee_{\stackrel{?|_{\check{\mathbf{C}}\Delta G\times X}}{}} \langle (Y^X,a)^{\check{\mathbf{C}}\Delta G} \rangle \xrightarrow{\quad \langle \Box^X \rangle \quad} \Rightarrow \langle Y^{\check{\mathbf{C}}\Delta G\times X} \rangle. \end{split}$$

Thus it suffices to check that $D|_{\check{\mathbf{C}}\Delta G}=0$. We have

$$D|_{\check{\mathsf{C}}\Delta G} = \left(\text{using (10)}\right) = \left(\prod_{F \in A \setminus \{G\}} \epsilon(Q|_{\check{\mathsf{C}}\Delta F})\right) Q|_{\check{\mathsf{C}}\Delta G} - Q|_{\check{\mathsf{C}}\Delta G} =$$

(since
$$\epsilon(Q|_{\check{C}\Delta F}) = \epsilon(Q) = 1$$
) = 0. \square

Corollary 13.3. Let $Q \in \langle (Y_a^X)^{\check{\mathbf{C}}\Delta E} \rangle$ be an (X,r)-almost fissile ensemble. Then

$$\Phi^E(Q) - Q \in \langle (Y^X, a)^{\check{C}\Delta E} \rangle_X^{(r+1)}.$$

Proof. For $A \in \mathcal{A}(E)$, introduce the subgroup

$$N(A) = \langle (Y_a^X)^{\check{\mathbf{C}}\Delta[A]} \rangle \cap \langle (Y^X, a)^{\check{\mathbf{C}}\Delta[A]} \rangle_X^{(r+1)} \subseteq \langle (Y_a^X)^{\check{\mathbf{C}}\Delta[A]} \rangle = \langle \underline{M}(A) \rangle.$$

By Lemma 3.1, this family is preserved by the restriction homomorphisms of the presheaf $A \mapsto \langle \underline{M}(A) \rangle$ and the homomorphisms $\langle \lambda_A^B \rangle$. Since the ensemble Q is (X,r)-almost fissile, it satisfies the hypothesis of Lemma 10.2. Thus $\Phi^E(Q) - Q \in N(\{E\})$, as required. \square

Given maps $a,b:X\to Y$, let us say that a is firmly r-similar to b, $a\stackrel{r}{\approx}b$, if, for any nonempty finite set E, there is a fissile ensemble $R\in\langle (Y_a^X)^{\check{\mathbb{C}}\Delta E}\rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - R|_{(\Delta E)_+} \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$
 (11)

Lemma 13.4. Let $a, b: X \to Y$ be maps. Then $a \stackrel{r}{\approx} b$ implies $a \stackrel{r}{\approx} b$.

We do not know whether the converse holds.

Proof. Take a nonempty finite set E. We have a fissile ensemble $R \in \langle (Y_a^X)^{\check{C}\Delta E} \rangle$ satisfying (11). We seek a fissile ensemble $S \in \langle (Y_a^X)^{(\Delta E)_+} \rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - S \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$
 (12)

Put $S = R|_{(\Delta E)_+}$.

For a layout $A \in \mathcal{A}(E)$, we have

$$\begin{split} S|_{\Delta[A]_+} &= R|_{\check{\mathbf{C}}\Delta[A]}|_{\Delta[A]_+} = & \text{ (since R is fissile)} &= \left(\underset{F \in A}{\sharp} R|_{\check{\mathbf{C}}\Delta F} \right) \big|_{\Delta[A]_+} = \\ & \text{ (by naturality of \sharp)} &= \underset{F \in A}{\sharp} R|_{(\Delta F)_+} = \underset{F \in A}{\sharp} S|_{(\Delta F)_+}. \end{split}$$

Thus S is fissile.

The condition (12) is just the equality (11).

Proposition 13.5. Let $a, b: X \to Y$ be maps. Suppose that, for any finite set E, there is an (X, r)-almost fissile ensemble $Q^E \in \langle (Y_a^X)^{\check{\mathsf{C}}\Delta E} \rangle$ such that

$$\langle \theta_a^{\Delta E}(b) \rangle - Q^E|_{(\Delta E)_+} \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$
 (13)

Then $a \stackrel{r}{\approx} b$ and, moreover, $a \stackrel{r}{\approx} b$.

Proof. Take a nonempty finite set E. Put $Q=Q^E$ and $R=\Phi^E(Q)\in\langle (Y_a^X)^{\check{\mathbf{C}}\Delta E}\rangle$. By Corollary 13.1, R is fissile. By Corollary 13.3,

$$R-Q \in \langle (Y^X,a)^{\check{\mathbf{C}}\Delta E} \rangle_X^{(r+1)}.$$

By Lemma 3.1,

$$R|_{(\Delta E)_+} - Q|_{(\Delta E)_+} \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$

Using (13), we get

$$\langle \theta_a^{\Delta E}(b) \rangle - R|_{(\Delta E)_+} \in \langle (Y^X, a)^{(\Delta E)_+} \rangle_X^{(r+1)}.$$

Thus $a \stackrel{r}{\approx} b$. By Lemma 13.4, $a \stackrel{r}{\approx} b$.

§ 14. Strong 1-similarity

Let X and Y be spaces and $a: X \to Y$ be a map.

Lemma 14.1. Let U be an unpointed space. Then the homomorphism

$$\langle \theta_a^U \rangle : \langle Y^X \rangle \to \langle (Y^X, a)^{U_+} \rangle$$

takes $\langle Y^X \rangle^{(s)}$ to $\langle (Y^X, a)^{U_+} \rangle_X^{(s)}$.

Proof. Introduce the map

$$p: U_+ \times X \to X \vee X, \qquad (u, x) \mapsto \operatorname{in}_1(x), \ (\Lsh, x) \mapsto \operatorname{in}_2(x).$$

 $(u \in U, x \in X)$. We have the commutative diagram

$$\begin{array}{c|c} \langle Y^X \rangle & \xrightarrow{\langle \theta^U_a \rangle} & \langle (Y^X, a)^{U_+} \rangle \\ & & \downarrow & \downarrow \\ \langle e \rangle & & \downarrow \langle \Box^X \rangle \\ & \langle Y^{X \vee X} \rangle & \xrightarrow{\langle Y^P \rangle} & \langle Y^{U_+ \times X} \rangle, \end{array}$$

where $e = ? \overline{\lor} a : Y^X \to Y^{X \lor X}$.

We show that $\langle e \rangle$ sends $\langle Y^X \rangle^{(s)}$ to $\langle Y^{X \vee X} \rangle^{(s)}$. Indeed, $\langle e \rangle$ equals the composition

$$\langle Y^X\rangle \xrightarrow{? \otimes } \langle Y^X\rangle \otimes \langle Y^X\rangle \xrightarrow{\(\overline{\bigcirc}\)} \langle Y^{X\vee X}\rangle$$

(see [3, § 3] for $(\overline{\bigcirc})$). Here $\langle Y^X \rangle^{(s)}$ goes to $\langle Y^X \rangle^{(s)} \otimes \langle Y^X \rangle^{(0)}$, which goes to $\langle Y^{X \vee X} \rangle^{(s)}$ by [3, Lemma 3.1].

The homomorphism $\langle Y^p \rangle$ takes $\langle Y^{X \vee X} \rangle^{(s)}$ to $\langle Y^{U_+ \times X} \rangle^{(s)}$ by [3, Lemma 2.1]. Thus, by the diagram, $\langle \theta^U_a \rangle$ takes $\langle Y^X \rangle^{(s)}$ to $\langle \Box^X \rangle^{-1} (\langle Y^{U_+ \times X} \rangle^{(s)})$, which is $\langle (Y^X, a)^{U_+} \rangle_X^{(r+1)}$ by definition.

Theorem 14.2. Let $a, b: X \to Y$ be maps such that $a \stackrel{1}{\sim} b$. Then $a \stackrel{1}{\approx} b$.

Proof. We have an ensemble $A \in \langle Y_a^X \rangle$,

$$A = \sum_{i} u_i \langle a_i \rangle,$$

such that $\langle b \rangle - A \in \langle Y^X \rangle^{(2)}$. For each i, choose a path $h_i : [0,1] \to Y_a^X$ from a to a_i and consider the composition

$$q_i : \check{\mathbf{C}}\Delta E \xrightarrow{\text{projection}} [0,1] \xrightarrow{h_i} Y_a^X.$$

Consider the ensemble $Q \in \langle (Y_a^X)^{\check{C}\Delta E} \rangle$,

$$Q = \sum_{i} u_i < q_i > .$$

We have

$$\epsilon(Q) = \epsilon(A) = (\text{since } \langle b \rangle - A \in \langle Y^X \rangle^{(1)}) = \epsilon(\langle b \rangle) = 1.$$

By Lemma 13.2, Q is (X,1)-almost fissile. Clearly, $q_i|_{(\Delta E)_+} = \theta_a^{\Delta E}(a_i)$. Thus $Q|_{(\Delta E)_+} = \langle \theta_a^{\Delta E} \rangle(A)$. We get

$$<\!\theta_a^{\Delta E}(b)\!> - Q|_{(\Delta E)_+} = \langle \theta_a^{\Delta E} \rangle (<\!b> - A) \in \langle (Y^X,a)^{(\Delta E)_+} \rangle^{(2)},$$

where \in holds by Lemma 14.1. By Proposition 13.5, $a \stackrel{1}{\approx} b$.

§ 15. Two identities

Let A and I be finite sets. Let $\mathcal{P}(I)$ be the set of subsets of I. Consider the set $\mathcal{P}(I)^A$ of functions $k: A \to \mathcal{P}(I)$. For $k \in \mathcal{P}(I)^A$, put

$$U(k) = \bigcup_{a \in A} k(a) \in \mathcal{P}(I).$$

Let $\mathcal{R}(A, I)$ be the set of $k \in \mathcal{P}(I)^A$ such that U(k) = I (covers).

Lemma 15.1. In the group $\langle \mathfrak{P}(I) \rangle^{\otimes A}$, the equality holds

$$\sum_{J \in \mathcal{P}(I)} (-1)^{|I| - |J|} \bigotimes_{a \in A} {\scriptscriptstyle <} J {\scriptscriptstyle >} = \sum_{k \in \mathcal{R}(A,I)} \ \bigotimes_{a \in A} \left(\sum_{J \in \mathcal{P}(k(a))} (-1)^{|k(a)| - |J|} {\scriptscriptstyle <} J {\scriptscriptstyle >} \right).$$

Proof. We have

$$\begin{split} \sum_{J \in \mathcal{P}(I)} (-1)^{|I| - |J|} \bigotimes_{a \in A} \left(\sum_{K \in \mathcal{P}(J)} \langle K \rangle \right) &= \\ &= \sum_{J \in \mathcal{P}(I)} (-1)^{|I| - |J|} \sum_{k \in \mathcal{P}(I)^A: \atop U(k) \subseteq J} \bigotimes_{a \in A} \langle k(a) \rangle = \\ &= \sum_{k \in \mathcal{P}(I)^A} \left(\sum_{\substack{J \in \mathcal{P}(I): \atop J \supset U(k)}} (-1)^{|I| - |J|} \right) \bigotimes_{a \in A} \langle k(a) \rangle \stackrel{(*)}{=} \sum_{k \in \mathcal{R}(A,I)} \bigotimes_{a \in A} \langle k(a) \rangle, \end{split}$$

where (*) holds because the inner sum on the left equals 1 if U(k) = I and 0 otherwise. The set $\mathcal{P}(I)$ is partially ordered by inclusion. We have the isomorphism

$$\nabla^{-1}_{\mathcal{P}(I)}: \langle \mathcal{P}(I) \rangle \to \langle \mathcal{P}(I) \rangle$$

(see § 9), under which

$$\sum_{K \in \mathcal{P}(J)} \langle K \rangle \mapsto \langle J \rangle, \qquad J \in \mathcal{P}(I),$$

and

$$<\!\!K\!\!>\mapsto \sum_{J\in\mathcal{P}(K)} (-1)^{|K|-|J|} <\!\!J\!\!>, \qquad K\in\mathcal{P}(I).$$

Applying it to each factor of the summands in the left and right sides of the calculation, we get the required equality. \Box

Put $\mathcal{P}^{\times}(I) = \mathcal{P}(I) \setminus \{I\}$. We adopt the inclusion $\mathcal{P}^{\times}(I)^A \subseteq \mathcal{P}(I)^A$. Let $\mathcal{R}'(A,I)$ be the set of $k \in \mathcal{P}^{\times}(I)^A$ such that U(k) = I.

Lemma 15.2. In the group $\langle \mathbb{P}^{\times}(I) \rangle^{\otimes A}$, the equality holds

$$\begin{split} \bigotimes_{a \in A} \Big(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} < J > \Big) - \sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} \bigotimes_{a \in A} < J > = \\ = \sum_{k \in \mathcal{R}'(A,I)} \bigotimes_{a \in A} \Big(\sum_{J \in \mathcal{P}(k(a))} (-1)^{|k(a)|-|J|} < J > \Big). \end{split}$$

Proof. We use the inclusion $\langle \mathcal{P}^{\times}(I) \rangle^{\otimes A} \subseteq \langle \mathcal{P}(I) \rangle^{\otimes A}$. Put

$$T(k) = \bigotimes_{a \in A} \left(\sum_{J \in \mathcal{P}(k(a))} (-1)^{|k(a)| - |J|} \langle J \rangle \right), \qquad k \in \mathcal{P}(I)^A.$$

We have

$$\sum_{k \in \mathcal{P}(I)^{A}} T(k) = \bigotimes_{a \in A} \left(\sum_{K \in \mathcal{P}(I)} \sum_{J \in \mathcal{P}(K)} (-1)^{|K| - |J|} \langle J \rangle \right) = \\
= \bigotimes_{a \in A} \left(\sum_{J \in \mathcal{P}(I)} \left(\sum_{K \in \mathcal{P}(I): K \supseteq J} (-1)^{|K| - |J|} \right) \langle J \rangle \right) \stackrel{(*)}{=} \bigotimes_{a \in A} \langle I \rangle, \quad (14)$$

where (*) holds because the inner sum on the left equals 1 if J=I and 0 otherwise. We have also

$$\sum_{k \in \mathcal{P}^{\times}(I)^{A}} T(k) = \bigotimes_{a \in A} \left(\sum_{K \in \mathcal{P}^{\times}(I)} \sum_{J \in \mathcal{P}(K)} (-1)^{|K| - |J|} \langle J \rangle \right) = \\
= \bigotimes_{a \in A} \left(\sum_{J \in \mathcal{P}^{\times}(I)} \left(\sum_{K \in \mathcal{P}^{\times}(I): K \supseteq J} (-1)^{|K| - |J|} \right) \langle J \rangle \right) = \bigotimes_{a \in A} \left(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I| - 1 - |J|} \langle J \rangle \right). \tag{15}$$

Note that

$$\mathcal{R}(A,I) \supseteq \mathcal{R}'(A,I), \qquad \mathcal{P}(I)^A \supseteq \mathcal{P}^{\times}(I)^A$$

and

$$\mathcal{R}(A,I) \setminus \mathcal{R}'(A,I) = \mathcal{P}(I)^A \setminus \mathcal{P}^{\times}(I)^A$$

as subsets of $\mathcal{P}(I)^A$. Thus

$$\sum_{k \in \mathcal{R}'(A,I)} T(k) = \sum_{k \in \mathcal{R}(A,I)} T(k) - \sum_{k \in \mathcal{P}(I)^A} T(k) + \sum_{k \in \mathcal{P}^\times(I)^A} T(k) =$$

(by Lemma 15.1 and equalities (14) and (15))

$$\begin{split} &= \sum_{J \in \mathcal{P}(I)} (-1)^{|I| - |J|} \bigotimes_{a \in A} < J > - \bigotimes_{a \in A} < I > + \bigotimes_{a \in A} \Big(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I| - 1 - |J|} < J > \Big) = \\ &= - \sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I| - 1 - |J|} \bigotimes_{a \in A} < J > + \bigotimes_{a \in A} \Big(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I| - 1 - |J|} < J > \Big), \end{split}$$

as required.

§ 16. Chained monoids

Let P be a monoid. Then $\langle P \rangle$ is its monoid ring. We call the monoid P chained if $\langle P \rangle$ is equipped with a chain of left ideals $\langle P \rangle^{[s]}$,

$$\langle P \rangle = \langle P \rangle^{[0]} \supseteq \langle P \rangle^{[1]} \supseteq \dots$$

Given a finite set I, we consider $\mathcal{P}(I)$ as a monoid with respect to intersection and chain it by letting $\langle \mathcal{P}(I) \rangle^{[s]}$ be the subgroup generated by elements

$$\omega_J = \sum_{K \in \mathcal{P}(J)} (-1)^{|J| - |K|} \langle K \rangle,$$

where $J \in \mathcal{P}(I)$, $|J| \geqslant s$.

§ 17. The filtration $\langle \mathbf{Z}^T \rangle^{[s]}$

Let P be a chained monoid. Let \mathbf{T} and \mathbf{Z} be pointed simplicial sets. Let $\mathbf{Z}^{\mathbf{T}}$ denote the set of based morphisms $\mathbf{T} \to \mathbf{Z}$. Let P act on \mathbf{Z} (on the left; preserving the basepoint). For an element $p \in P$, let $p_{(\mathbf{Z})} : \mathbf{Z} \to \mathbf{Z}$ be its action. (We will use this notation for all actions.) The set $\mathbf{Z}^{\mathbf{T}}$ carries the induced action of P. Thus the abelian group $\langle \mathbf{Z}^{\mathbf{T}} \rangle$ becomes a (left) module over $\langle P \rangle$. We define a filtration

$$\langle {m Z}^{m T}
angle = \langle {m Z}^{m T}
angle^{[0]} \supseteq \langle {m Z}^{m T}
angle^{[1]} \supseteq \dots$$

Let \mathbf{T}^{j} , $j \in (n)$, be pointed simplicial sets and

$$oldsymbol{f}: oldsymbol{T}
ightarrow igvee_{j \in (n)} oldsymbol{T}^j$$

be a based morphism. We have the \mathbb{Z} -multilinear operation

$$\underset{j \in (n)}{ \ddagger}: \prod_{j \in (n)} \langle \boldsymbol{Z}^{\boldsymbol{T}^j} \rangle \rightarrow \langle \boldsymbol{Z}^{\bigvee_{j \in (n)} \boldsymbol{T}^j} \rangle, \qquad \underset{j \in (n)}{ \ddagger} \langle \boldsymbol{v}^j \rangle = \langle \bigvee_{j \in (n)} \boldsymbol{v}^j \rangle,$$

and the homomorphism

$$\langle \boldsymbol{Z^f} \rangle : \langle \boldsymbol{Z^{\bigvee}}_{j \in (n)} | \boldsymbol{T^j} \rangle \to \langle \boldsymbol{Z^T} \rangle.$$

Take ensembles $v_j \in \langle P \rangle^{[s_j]} \langle \boldsymbol{Z}^{\boldsymbol{T}^j} \rangle$, $j \in (n)$, and consider the ensemble $v \in \langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle$,

$$v = \langle \mathbf{Z}^{\mathbf{f}} \rangle \Big(\underset{j \in (n)}{\sharp} v^j \Big). \tag{16}$$

We call v a block of rank $s_1 + \ldots + s_n$. We let $\langle \mathbf{Z}^{\mathbf{T}} \rangle^{[s]} \subseteq \langle \mathbf{Z}^{\mathbf{T}} \rangle$ be the subgroup generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 17.1. Let $\widetilde{\boldsymbol{T}}$ be a pointed simplicial set and $\boldsymbol{k}:\widetilde{\boldsymbol{T}}\to\boldsymbol{T}$ be a based simplicial morphism. Then the homomorphism

$$\langle \boldsymbol{Z^k} \rangle : \langle \boldsymbol{Z^T} \rangle o \langle \boldsymbol{Z^{\widetilde{T}}} \rangle$$

$$takes \langle \boldsymbol{Z^T} \rangle^{[s]} to \langle \boldsymbol{Z^{\widetilde{T}}} \rangle^{[s]}.$$

Lemma 17.2. Let \vec{Z} be a pointed simplicial set acted on by P and $h: Z \to Z$ be a P-equivariant based simplicial morphism. Then the homomorphism

$$\langle \boldsymbol{h^T} \rangle : \langle \boldsymbol{Z^T} \rangle \rightarrow \langle \widetilde{\boldsymbol{Z}^T} \rangle$$

$$takes \langle \boldsymbol{Z^T} \rangle^{[s]} to \langle \widetilde{\boldsymbol{Z}^T} \rangle^{[s]}.$$

The cone $\boldsymbol{\check{c}}\boldsymbol{Z}$ carries the induced action of P. We have the function

$$\check{\mathbf{c}}_{\boldsymbol{z}}^{\boldsymbol{T}}:\boldsymbol{Z}^{\boldsymbol{T}}\to (\check{\mathbf{c}}\boldsymbol{Z})^{\check{\mathbf{c}}\boldsymbol{T}},\qquad \boldsymbol{v}\mapsto \check{\mathbf{c}}\boldsymbol{v}.$$

Lemma 17.3. The homomorphism

$$\langle \check{\mathbf{c}}_{\boldsymbol{z}}^{\boldsymbol{T}} \rangle : \langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle \rightarrow \langle (\check{\mathbf{c}}\boldsymbol{Z})^{\check{\mathbf{c}}\boldsymbol{T}} \rangle$$

takes $\langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle^{[s]}$ to $\langle (\check{\mathbf{C}} \boldsymbol{Z})^{\check{\mathbf{C}} \boldsymbol{T}} \rangle^{[s]}$.

Proof. It suffices to show that $\langle \mathbf{\check{c}}_{\mathbf{Z}}^{\mathbf{T}} \rangle$ sends any block to a block of the same rank. Consider the block (16). Since $v^j \in \langle P \rangle^{[s_j]} \langle \mathbf{\check{c}}_{\mathbf{Z}}^{\mathbf{T}^j} \rangle$ and the functions

$$\check{\mathbf{C}}_{\boldsymbol{z}}^{\boldsymbol{T}^{j}}:\boldsymbol{Z}^{\boldsymbol{T}^{j}}\to(\check{\mathbf{C}}\boldsymbol{Z})^{\check{\mathbf{C}}\boldsymbol{T}^{j}}$$

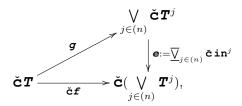
preserve the action of P, we have

$$\langle \check{\mathbf{c}}_{\mathbf{Z}}^{\mathbf{T}^{j}} \rangle (v^{j}) \in \langle P \rangle^{[s_{j}]} \langle (\check{\mathbf{c}}\mathbf{Z})^{\check{\mathbf{c}}\mathbf{T}^{j}} \rangle.$$

Let

$$extbf{in}^k: extbf{ extit{T}}^k
ightarrow igvee_{j \in (n)} extbf{ extit{T}}^j$$

be the canonical insertions. We have the commutative diagram



where \boldsymbol{e} is an isomorphism (since $\check{\boldsymbol{c}}$ preserves wedges) and \boldsymbol{g} is the unique lift of $\check{\boldsymbol{c}}\boldsymbol{f}$. For arbitrary based morphisms $\boldsymbol{v}^j:\boldsymbol{T}^j\to\boldsymbol{Z}$, we have the commutative diagram with sendings

$$(\check{\mathbf{C}}\mathbf{Z})^{\bigvee_{j\in(n)}\check{\mathbf{C}}\mathbf{T}^{j}} \qquad \qquad \underbrace{\bigvee_{j\in(n)}\check{\mathbf{C}}\mathbf{v}^{j}}_{(\check{\mathbf{C}}\mathbf{Z})^{\check{\mathbf{C}}}} (\check{\mathbf{C}}\mathbf{Z})^{\check{\mathbf{C}}}} (\check{\mathbf{C}}\mathbf{Z})^{\check{\mathbf{C}}} \qquad \qquad \underbrace{\bigvee_{j\in(n)}\check{\mathbf{C}}\mathbf{v}^{j}}_{(\check{\mathbf{C}}\mathbf{Z})\check{\mathbf{C}}^{f}} (\check{\mathbf{C}}\mathbf{Z})^{\check{\mathbf{C}}(\bigvee_{j\in(n)}\mathbf{T}^{j})}, \qquad \check{\mathbf{C}}(\mathbf{Z}^{f}(\bigvee_{j\in(n)}\mathbf{v}^{j})) \longleftarrow \check{\mathbf{C}}(\bigvee_{j\in(n)}\mathbf{v}^{j}).$$

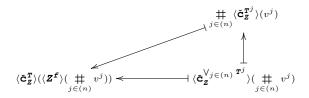
Thus we have the commutative diagram

$$\langle (\check{\mathbf{C}} \boldsymbol{Z})^{\bigvee_{j \in (n)} \check{\mathbf{C}} \boldsymbol{T}^{j}} \rangle$$

$$\langle (\check{\mathbf{C}} \boldsymbol{Z})^{g} \rangle \qquad \qquad \langle (\check{\mathbf{C}} \boldsymbol{Z})^{e} \rangle$$

$$\langle (\check{\mathbf{C}} \boldsymbol{Z})^{\check{\mathbf{C}} \boldsymbol{T}} \rangle \qquad \langle (\check{\mathbf{C}} \boldsymbol{Z})^{\check{\mathbf{C}} (\bigvee_{j \in (n)} \boldsymbol{T}^{j})} \rangle$$

and the sendings



for our (and arbitrary) ensembles v^{j} . We get

$$\langle\check{\mathbf{c}}_{\pmb{Z}}^{\pmb{T}}\rangle(v) = \langle\check{\mathbf{c}}_{\pmb{Z}}^{\pmb{T}}\rangle\big(\langle\pmb{Z}^{\pmb{f}}\rangle\big(\mathop{\sharp}_{j\in(n)}v^j\big)\big) = \langle(\check{\mathbf{c}}\pmb{Z})^{\pmb{g}}\rangle\big(\mathop{\sharp}_{j\in(n)}\langle\check{\mathbf{c}}_{\pmb{Z}}^{\pmb{T}^j}\rangle(v^j)\big),$$

as promised.

Lemma 17.4. Let \mathbf{T}^i , $i \in (m)$, be pointed simplicial sets and $v^i \in \langle \mathbf{Z}^{\mathbf{T}^i} \rangle^{[s_i]}$ be ensembles. Then

$$\underset{i \in (m)}{\text{\downarrow}} v^i \in \langle \boldsymbol{Z}^{\bigvee_{i \in (m)} \boldsymbol{T}^i} \rangle^{[s_1 + \dots + s_m]}.$$

Fissile and almost fissile ensembles. Let E be a nonempy finite set. An ensemble $q \in \langle \mathbf{Z}^{\mathbf{\check{c}}\mathbf{\beta}\Delta E} \rangle$ is called fissile if, for any layout $A \in \mathcal{A}(E)$,

$$q|_{\check{\mathbf{C}}\mathbf{\beta} \triangle [A]} = \mathop{\sharp}_{F \in A} q|_{\check{\mathbf{C}}\mathbf{\beta} \triangle F}$$

in $\langle \mathbf{Z}^{\check{\mathbf{C}}\beta\Delta[A]}\rangle$ (cf. §§ 2, 10). It is called *r-almost fissile* if, for any layout $A \in \mathcal{A}(E)$,

(cf. § 13).

§ 18. The wedge W(I)

Fix a finite set I. Consider the pointed simplicial set

$$\mathbf{W}(I) = \bigvee_{J \in \mathcal{P}(I)} \mathbf{\hat{\Sigma}} \mathbf{E}(I \setminus J).$$

Let

$$\operatorname{in}_J: \widehat{\mathbf{\Sigma}}\mathbf{E}(I\setminus J) \to \mathbf{W}(I)$$

be the canonical insertions. The lead vertex

$$\top_{\mathbf{W}(I)} = (\mathbf{in}_I)_0(1_{\mathbf{\hat{\Sigma}E}\varnothing}) \in \mathbf{W}(I)_0$$

is isolated. $\mathbf{W}(I)$ has the pointed simplicial subsets

$$\mathbf{W}^{\times}(I) = \bigvee_{J \in \mathcal{P}^{\times}(I)} \hat{\mathbf{\Sigma}} \mathbf{E}(I \setminus J)$$

and

$$\mathbf{W}^L(I) = \bigvee_{J \in \mathcal{P}(L)} \mathbf{\hat{\Sigma}E}(I \setminus J), \qquad L \in \mathcal{P}^\times(I).$$

For $J, K \in \mathcal{P}(I)$, $J \supseteq K$, let

$$\tau_K^J: \hat{\Sigma} \mathbf{E}(I \setminus J) \to \hat{\Sigma} \mathbf{E}(I \setminus K)$$

be the morphism induced by the inclusion $I \setminus J \to I \setminus K$. Let the monoid $\mathcal{P}(I)$ act on $\mathbf{W}(I)$ by the rule

$$\begin{split} \hat{\pmb{\Sigma}} \mathbf{E}(I \setminus J) & \xrightarrow{\pmb{\tau}_{K \cap J}^{J}} \hat{\pmb{\Sigma}} \mathbf{E}(I \setminus (K \cap J)) \\ & \text{in}_{J} \Big| & \text{in}_{K \cap J} \\ & \pmb{W}(I) & \xrightarrow{K_{(\pmb{W}(I))}} \pmb{W}(I), \end{split}$$

 $K \in \mathcal{P}(I)$. The simplicial subsets $\mathbf{W}^{\times}(I)$ and $\mathbf{W}^{L}(I)$ are $\mathcal{P}(I)$ -invariant.

For $L \in \mathcal{P}^{\times}(I)$ and $i \in I \setminus L$, we define a retraction σ_i^L by the commutative diagram

$$\begin{split} \check{\mathbf{C}} \hat{\mathbf{\Sigma}} \mathbf{E}(I \setminus J) & \xrightarrow{\check{\mathbf{C}} \, \mathbf{in}_J^L} \check{\mathbf{C}} \, \mathbf{W}^L(I) \\ \mathbf{\sigma}_i \bigg| & & \bigg| \, \mathbf{\sigma}_i^L \\ \hat{\mathbf{\Sigma}} \mathbf{E}(I \setminus J) & \xrightarrow{\quad \mathbf{in}_J^L} & \mathbf{W}^L(I), \end{split}$$

where \mathbf{in}_J^L are the canonical insertions and $\boldsymbol{\sigma}_i$ are the canonical contractions (see § 11). We call $\boldsymbol{\sigma}_i^L$ the canonical contraction, too. It follows from Lemma 11.1 that $\boldsymbol{\sigma}_i^L$ is $\mathcal{P}(I)$ -equivariant.

Given a pointed simplicial set T, introduce the filling function

$$\chi_{L,i}^{\pmb{T}}: \pmb{\mathsf{W}}^L(I)^{\pmb{T}} \to \pmb{\mathsf{W}}^L(I)^{\check{\mathbf{c}}\pmb{T}}, \qquad \pmb{v} \mapsto (\check{\mathbf{c}}\pmb{T} \xrightarrow{\check{\mathbf{c}}\pmb{v}} \check{\mathbf{c}}\pmb{\mathsf{W}}^L(I) \xrightarrow{\pmb{\sigma}_i^L} \pmb{\mathsf{W}}^L(I)).$$

Since σ_i^L is a retraction,

$$\chi_{L,i}^{\mathbf{T}}(\mathbf{v})|_{\mathbf{T}} = \mathbf{v}. \tag{17}$$

§ 19. The module $\langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle E}\rangle$

Fix a finite set I. We consider the $\langle \mathcal{P}(I) \rangle$ -modules $\langle \boldsymbol{W}(I)^{\boldsymbol{T}} \rangle$ for a number of pointed simplicial sets \boldsymbol{T} . For a $\mathcal{P}(I)$ -invariant pointed simplicial subset $\boldsymbol{Z} \subseteq \boldsymbol{W}(I)$, the subgroup $\langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle \subseteq \langle \boldsymbol{W}(I)^{\boldsymbol{T}} \rangle$ is a $\langle \mathcal{P}(I) \rangle$ -submodule. If $\boldsymbol{Z} \subseteq \boldsymbol{\widetilde{Z}}$ for two such subsets, then $\langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle^{[s]} \subseteq \langle \boldsymbol{\widetilde{Z}}^{\boldsymbol{T}} \rangle^{[s]}$ by Lemma 17.2.

Lemma 19.1. For $L \in \mathcal{P}^{\times}(I)$, $i \in I \setminus L$, and a pointed simplicial set \mathbf{T} , the filling homomorphism

$$\langle \chi_{L\,i}^{\mathbf{T}} \rangle : \langle \mathbf{W}^L(I)^{\mathbf{T}} \rangle \to \langle \mathbf{W}^L(I)^{\check{\mathbf{c}}\mathbf{T}} \rangle$$

 $takes \ \langle \mathbf{W}^L(I)^{\mathbf{T}} \rangle^{[s]} \ to \ \langle \mathbf{W}^L(I)^{\check{\mathbf{c}}\mathbf{T}} \rangle^{[s]}.$

Proof. By construction of $\chi_{L,i}^{\mathbf{T}}$, we have the decomposition

$$\langle \chi_{L,i}^{\boldsymbol{T}} \rangle : \langle \boldsymbol{W}^L(I)^{\boldsymbol{T}} \rangle \xrightarrow{\langle \check{\mathbf{c}}_{\boldsymbol{W}^L(I)}^{\boldsymbol{T}} \rangle} \langle (\check{\mathbf{c}} \boldsymbol{W}^L(I))^{\check{\mathbf{c}} \boldsymbol{T}} \rangle \xrightarrow{\langle (\boldsymbol{\sigma}_i^L)^{\check{\mathbf{c}} \boldsymbol{T}} \rangle} \langle \boldsymbol{W}^L(I)^{\check{\mathbf{c}} \boldsymbol{T}} \rangle.$$

By Lemma 17.3, $\langle \check{\mathbf{C}}_{\mathbf{W}^L(I)}^{\mathbf{T}} \rangle$ takes $\langle \mathbf{W}^L(I)^{\mathbf{T}} \rangle^{[s]}$ to $\langle (\check{\mathbf{C}}\mathbf{W}^L(I))^{\check{\mathbf{c}}\mathbf{T}} \rangle^{[s]}$. Since $\boldsymbol{\sigma}_i^L$ is $\mathcal{P}(I)$ -equivariant, $\langle (\boldsymbol{\sigma}_i^L)^{\check{\mathbf{c}}\mathbf{T}} \rangle$ takes the $\langle (\check{\mathbf{C}}\mathbf{W}^L(I))^{\check{\mathbf{c}}\mathbf{T}} \rangle^{[s]}$ to $\langle \mathbf{W}^L(I)^{\check{\mathbf{c}}\mathbf{T}} \rangle^{[s]}$ by Lemma 17.2.

Fix a nonempty finite set E. For $F \in \mathcal{P}_{\times}(E)$ and $J \in \mathcal{P}(I)$, introduce the based morphism

$$\boldsymbol{\theta}_{I}^{F}:(\boldsymbol{\beta}\Delta F)_{+}\rightarrow\boldsymbol{W}(I)$$

that sends $\beta \Delta F$ to the vertex $\mathbf{in}_I(1_{\widehat{\Sigma}\mathbf{E}(I \setminus J)})$.

Lemma 19.2. For $F \in \mathcal{P}_{\times}(E)$ and $J \in \mathcal{P}(I)$,

$$\sum_{K\in\mathcal{P}(J)}(-1)^{|J|-|K|} {<} \pmb{\theta}_K^F {>} \in \langle \pmb{W}^J(I)^{(\pmb{\beta}\triangle F)_+} \rangle^{[|J|]}.$$

Proof. Since

$$\mathbf{\theta}_{K}^{F} = K_{(\mathbf{W}^{J}(I)^{(\mathbf{\beta} \triangle F)}+)}(\mathbf{\theta}_{J}^{F}),$$

the ensemble in question equals $\omega_{J} < \boldsymbol{\theta}_{J}^{F} >$ and thus belongs to $\langle \mathcal{P}(I) \rangle^{[|J|]} \langle \boldsymbol{W}^{J}(I)^{(\boldsymbol{\beta} \triangle F)_{+}} \rangle$, which is contained in $\langle \boldsymbol{W}^{J}(I)^{(\boldsymbol{\beta} \triangle F)_{+}} \rangle^{[|J|]}$ by the definition of the latter. \square

Lemma 19.3. There exist fissile ensembles

$$p_J \in \langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\mathbf{\beta}\triangle E} \rangle, \qquad J \in \mathcal{P}^{\times}(I),$$

satisfying the following conditions for each $J \in \mathcal{P}^{\times}(I)$:

(1) one has

$$p_J|_{(\mathbf{\beta} \Delta E)_+} = \langle \boldsymbol{\theta}_J^E \rangle$$

 $in \langle \mathbf{W}^{\times}(I)^{(\mathbf{\beta} \triangle E)_{+}} \rangle;$

(2) one has

$$\sum_{K\in\mathcal{P}(J)} (-1)^{|J|-|K|} p_K \in \langle \mathbf{W}^\times(I)^{\mathbf{\check{C}}\mathbf{\beta}\triangle E} \rangle^{[|J|]}.$$

Proof. We will construct ensembles

$$p_J^F \in \langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\mathbf{\beta}\triangle F} \rangle, \qquad (F,J) \in \mathcal{P}_{\times}(I) \times \mathcal{P}^{\times}(I),$$

satisfying the following conditions (0_J^F) , (1_J^F) , and (2_J^F) for each pair $(F,J) \in \mathcal{P}_{\times}(I) \times \mathcal{P}^{\times}(I)$:

 (0_I^F) one has

$$p_J^F|_{reve{f C}{f B}f \Delta[B]}=\mathop{\sharp\sharp}_{G\in B}p_J^G$$

in $\langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle[B]} \rangle$ for all $B \in \mathcal{A}(F)$;

 (1_I^F) one has

$$p_J^F|_{(\mathbf{B} \triangle F)_\perp} = \langle \mathbf{\theta}_J^F \rangle$$

in $\langle \mathbf{W}^J(I)^{(\mathbf{\beta} \triangle E)_+} \rangle$;

 (2_J^F) one has

$$\sum_{K\in\mathcal{P}(J)} (-1)^{|J|-|K|} p_K^F \in \langle \mathbf{W}^J(I)^{\mathbf{\check{C}}\mathbf{\beta}\triangle F} \rangle^{[|J|]}.$$

Note that (0_J^F) implies

$$p_J^F|_{\check{\mathbf{C}}\mathbf{B}\Delta G}=p_J^G$$

for $G \in \mathcal{P}_{\times}(F)$. Thus (0_I^F) will yield

$$p_J^F|_{reve{f C}{f B}{f f \Delta}[B]}=\mathop{\sharp\sharp}_{G\in B}p_J^F|_{reve{f C}{f B}{f \Delta}G}$$

for all $B \in \mathcal{A}(F)$, which means that p_J^F is fissile. Thus it will remain to put $p_J = p_J^E$.

Induction on $(F, J) \in \mathcal{P}_{\times}(E) \times \mathcal{P}^{\times}(I)$. Take a pair (F, J). We assume that p_K^G are defined and the conditions (0_K^G) – (2_K^G) are satisfied for

$$(G, K) \in \mathcal{P}_{\times}(F) \times \mathcal{P}(J) \setminus \{(F, J)\}.$$

We construct p_J^F and check the conditions (0_J^F) – (2_J^F) . For $B \in \mathcal{A}(F)$, put

$$U(B) = \langle \mathbf{W}^J(I)^{\mathbf{\check{C}}\boldsymbol{\beta}\Delta[B]} \rangle^{[|J|]}.$$

For $B,C\in\mathcal{A}(F),\,B\geqslant C,$ we have, by Lemma 17.1, the restriction homomorphism

$$?|_{\check{\mathbf{C}}\mathbf{B}\triangle[C]}:U(B)\to U(C).$$

Thus we have a presheaf

$$U: \mathcal{A}(F) \to \mathbf{Ab}$$
.

By Lemma 17.1, the canonical retractions

$$\rho_C^B : \check{\mathbf{C}}\boldsymbol{\beta}\Delta[B] \to \check{\mathbf{C}}\boldsymbol{\beta}\Delta[C]$$

induce homomorphisms

$$\lambda_B^C = \langle \mathbf{W}^J(I)^{\mathbf{\rho}_C^B} \rangle|_{U(C) \to U(B)} : U(C) \to U(B),$$

which form an extender for U, as follows from Corollary 12.1. For $B \in \mathcal{A}^{\times}(F) = \mathcal{A}(F) \setminus \{\{F\}\}$, introduce the ensemble $u_B \in \langle \mathbf{W}^J(I)^{\mathbf{\check{C}}\boldsymbol{\beta}\triangle[B]} \rangle$,

$$u_B = \sum_{K \in \mathcal{P}(J)} (-1)^{|J| - |K|} \underset{G \in B}{\sharp} p_K^G.$$

By Lemma 15.1,

$$u_B = \sum_{l \in \mathcal{R}(B,J)} \ \ \underset{G \in B}{\sharp \sharp} \left(\sum_{K \in \mathcal{P}(l(G))} (-1)^{|l(G)| - |K|} p_K^G \right).$$

By $(2_{l(G)}^G)$, the inner sum belongs to $\langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle G}\rangle^{[|l(G)|]}$. Using Lemma 17.4 and the inequality

$$\sum_{G \in B} |l(G)| \geqslant |J|,$$

we get that the hash product and thus u_B belong to $\langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle[B]}\rangle^{[|J|]}$. We have got $u_B \in U(B)$. For $B, C \in \mathcal{A}^{\times}(F)$, $B \geqslant C$, and $K \in \mathcal{P}(J)$, we have

$$(\underset{G \in B}{\ddagger} p_K^G) \big|_{\check{\mathbf{C}}\mathbf{\beta}\triangle[C]} =$$
 (by naturality of $\#$)
$$= \underset{G \in B}{\ddagger} p_K^G \big|_{\check{\mathbf{C}}\mathbf{\beta}\triangle[C \land \{G\}]} =$$
 (by (0_K^G))
$$= \underset{G \in B}{\ddagger} (\underset{H \in C \land \{G\}}{\ddagger} p_K^H) = \underset{H \in C}{\ddagger} p_K^H.$$

It follows that $u_B|_{\mathbf{\check{C}}\boldsymbol{\beta}\triangle[C]}=u_C$, that is,

$$(u_B)_{B \in \mathcal{A}^{\times}(F)} \in \lim_{B \in \mathcal{A}^{\times}(F)} U(B).$$

By Lemma 9.2, there exists an ensemble

$$u \in U(\{F\}) = \langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} \rangle^{[|J|]} \tag{18}$$

such that

$$u|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]}=u_B, \qquad B\in\mathcal{A}^{\times}(F).$$

Consider the ensembles $q, r \in \langle \mathbf{W}^J(I)^{\mathbf{\check{C}}\mathbf{\beta}\triangle F} \rangle$,

$$q = \sum_{K \in \mathcal{P}^{\times}(J)} (-1)^{|J|-1-|K|} p_K^F, \qquad r = q + u.$$

For $B \in \mathcal{A}^{\times}(F)$, we have

$$q|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle[B]} = \sum_{K\in\mathcal{P}^{\times}(J)} (-1)^{|J|-1-|K|} p_K^F|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle[B]} = \tag{by } (0_K^F))$$

$$= \sum_{K \in \mathcal{P}^{\times}(J)} (-1)^{|J|-1-|K|} \underset{G \in B}{\sharp} p_K^G \quad (19)$$

and

$$r|_{\mathbf{\check{C}}\mathbf{\beta}\Delta[B]} = q|_{\mathbf{\check{C}}\mathbf{\beta}\Delta[B]} + u|_{\mathbf{\check{C}}\mathbf{\beta}\Delta[B]} = q|_{\mathbf{\check{C}}\mathbf{\beta}\Delta[B]} + u_B =$$

$$= \sum_{K \in \mathcal{P}^{\times}(J)} (-1)^{|J|-1-|K|} \underset{G \in B}{\text{#}} p_K^G + \sum_{K \in \mathcal{P}(J)} (-1)^{|J|-|K|} \underset{G \in B}{\text{#}} p_K^G = \underset{G \in B}{\text{#}} p_J^G.$$
 (20)

We have

$$\begin{split} r|_{(\mathbf{\beta}\triangle F)_{+}} + \sum_{K\in\mathcal{P}^{\times}(J)} (-1)^{|J|-|K|} < & \mathbf{\theta}_{K}^{F} > = \\ & = r|_{(\mathbf{\beta}\triangle F)_{+}} + \sum_{K\in\mathcal{P}^{\times}(J)} (-1)^{|J|-|K|} p_{K}^{F}|_{(\mathbf{\beta}\triangle F)_{+}} = r|_{(\mathbf{\beta}\triangle F)_{+}} - q|_{(\mathbf{\beta}\triangle F)_{+}} = \\ & = u|_{(\mathbf{\beta}\triangle F)_{+}} \in & \text{(by Lemma 17.1)} & \in \langle \mathbf{W}^{J}(I)^{(\mathbf{\beta}\triangle F)_{+}} \rangle^{[|J|]}. \end{split}$$

From this and Lemma 19.2,

$$\langle \boldsymbol{\theta}_{J}^{F} \rangle - r|_{(\boldsymbol{\beta} \wedge F)_{+}} \in \langle \boldsymbol{W}^{J}(I)^{(\boldsymbol{\beta} \wedge F)_{+}} \rangle^{[|J|]}.$$
 (21)

Choose $i \in I \setminus J$. We have the filling homomorphism

$$\langle \chi_{J,i}^{(\mathbf{\beta}\triangle F)_+} \rangle : \langle \mathbf{W}^J(I)^{(\mathbf{\beta}\triangle F)_+} \rangle \to \langle \mathbf{W}^J(I)^{\check{\mathbf{C}}\mathbf{\beta}\triangle F} \rangle.$$

Put

$$p_J^F = r + \langle \chi_{J,i}^{(\mathbf{\beta} \triangle F)_+} \rangle (\langle \mathbf{\theta}_J^F \rangle - r|_{(\mathbf{\beta} \triangle F)_+}).$$

Check of (0_J^F) . For $B=\{F\}$, the condition is satisfied trivially. Take $B\in\mathcal{A}^\times(F)$. We have

$$r|_{(\beta \Delta[B])_{+}} =$$
 (by (20) and naturality of \sharp) $= \underset{G \in B}{\sharp} p_{J}^{G}|_{(\beta \Delta G)_{+}} =$ (by (1 $_{J}^{G}$)) $= \underset{G \in B}{\sharp} \langle \boldsymbol{\theta}_{J}^{G} \rangle = \langle \boldsymbol{\theta}_{J}^{F} \rangle|_{(\beta \Delta[B])_{+}}.$ (22)

By naturality of $\chi_{J,i}^{\mathbf{T}}$ with respect to \mathbf{T} , we have the commutative diagram

$$\begin{split} & \mathbf{W}^{J}(I)^{(\mathbf{\beta} \triangle F)_{+}} \xrightarrow{\chi_{J,i}^{(\mathbf{\beta} \triangle F)_{+}}} \mathbf{W}^{J}(I)^{\mathbf{\check{C}} \mathbf{\beta} \triangle F} \\ ?|_{(\mathbf{\beta} \triangle [B])_{+}} \bigvee_{\downarrow} & \qquad \qquad & \qquad & \qquad & \qquad & \qquad & \\ \mathcal{W}^{J}(I)^{(\mathbf{\beta} \triangle [B])_{+}} & \chi_{J,i}^{(\mathbf{\beta} \triangle [B])_{+}} & \mathbf{W}^{J}(I)^{\mathbf{\check{C}} \mathbf{\beta} \triangle [B]}. \end{split}$$

We get

$$p_{J}^{F}|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]} = r|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]} + \langle \chi_{J,i}^{(\boldsymbol{\beta}\Delta F)+} \rangle (\langle \boldsymbol{\theta}_{J}^{F} \rangle - r|_{(\boldsymbol{\beta}\Delta F)+})|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]} =$$
(by the diagram)
$$= r|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]} + \langle \chi_{J,i}^{(\boldsymbol{\beta}\Delta[B])+} \rangle (\langle \boldsymbol{\theta}_{J}^{F} \rangle|_{(\boldsymbol{\beta}\Delta[B])+} - r|_{(\boldsymbol{\beta}\Delta[B])+}) =$$
(by (22))
$$= r|_{\check{\mathbf{C}}\boldsymbol{\beta}\Delta[B]} = \text{(by (20))} = \underset{G \in B}{\text{#}} p_{J}^{G}.$$

Check of (1_I^F) . We have

$$\begin{aligned} p_J^F|_{(\beta \triangle F)_+} - r|_{(\beta \triangle F)_+} &= \langle \chi_{J,i}^{(\beta \triangle F)_+} \rangle (\langle \boldsymbol{\theta}_J^F \rangle - r|_{(\beta \triangle F)_+})|_{(\beta \triangle F)_+} = \\ &\text{(by (17))} &= \langle \boldsymbol{\theta}_J^F \rangle - r|_{(\beta \triangle F)_+}. \end{aligned}$$

Thus $p_J^F|_{(\mathbf{\beta} \triangle F)_+} = \langle \mathbf{\theta}_J^F \rangle$.

Check of (2_{J}^{F}) . It follows from (21) by Lemma 19.1, that

$$\langle \chi_{Ii}^{(\beta \Delta F)_{+}} \rangle (\langle \boldsymbol{\theta}_{I}^{F} \rangle - r|_{(\beta \Delta F)_{+}}) \in \langle \boldsymbol{W}^{J}(I)^{\check{\mathbf{C}}\beta \Delta F} \rangle^{[|J|]}.$$
 (23)

We have

$$\begin{split} \sum_{K \in \mathcal{P}(J)} (-1)^{|J| - |K|} p_K^F &= p_J^F - q = r + \langle \chi_{J,i}^{(\mathbf{\beta} \triangle F)_+} \rangle (\langle \mathbf{\theta}_J^F \rangle - r|_{(\mathbf{\beta} \triangle F)_+}) - q = \\ &= u + \langle \chi_{J,i}^{(\mathbf{\beta} \triangle F)_+} \rangle (\langle \mathbf{\theta}_J^F \rangle - r|_{(\mathbf{\beta} \triangle F)_+}) \in \langle \mathbf{W}^J(I)^{\check{\mathbf{C}} \mathbf{\beta} \triangle F} \rangle^{[|J|]}, \end{split}$$

where \in follows from (18) and (23).

Corollary 19.4. There exists an (|I|-1)-almost fissile ensemble $q \in \langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle E} \rangle$ such that

$$\langle \boldsymbol{\theta}_{I}^{E} \rangle - q|_{(\mathbf{B} \wedge E)_{\perp}} \in \langle \boldsymbol{W}(I)^{(\mathbf{B} \triangle E)_{+}} \rangle^{[|I|]}$$

Proof. Lemma 19.3 gives fissile ensembles $p_J \in \langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} \rangle$ satisfying the conditions (1) and (2) thereof. Put

$$q = \sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} p_J.$$

Check that q is (|I| - 1)-almost fissile. Take $A \in \mathcal{A}(E)$. We have

$$\begin{split} & \underset{F \in A}{ +} q|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} - q|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} = \underset{F \in A}{ +} \Big(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} p_J|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} \Big) - \\ & - \sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} p_J|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} = \qquad \qquad \text{(since } p_J \text{ are fissile)} \\ & = \underset{F \in A}{ +} \Big(\sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} p_J|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} \Big) - \sum_{J \in \mathcal{P}^{\times}(I)} (-1)^{|I|-1-|J|} \underset{F \in A}{ +} p_J|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} = \\ & \text{(by Lemma 15.2)} & = \sum_{k \in \mathcal{R}'(A,I)} \underset{F \in A}{ +} \Big(\sum_{J \in \mathcal{P}(k(F))} (-1)^{|k(F)|-|J|} p_J|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} \Big) = \\ & = \sum_{k \in \mathcal{R}'(A,I)} \underset{F \in A}{ +} \Big(\sum_{J \in \mathcal{P}(k(F))} (-1)^{|k(F)|-|J|} p_J\Big)|_{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F}. \end{split}$$

By condition (2), the inner sum of the last expression belongs to $\langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle E}\rangle^{[|k(F)|]}$. By Lemma 17.1, its restriction to $\check{\mathbf{C}}\boldsymbol{\beta}\triangle F$ belongs to $\langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F}\rangle^{[|k(F)|]}$. Using Lemma 17.4 and the inequality

$$\sum_{F \in A} |k(F)| \geqslant |I|,$$

we get that the hash product and thus the whole expression belong to $\langle \mathbf{W}^{\times}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle[A]}\rangle^{[|I|]}$, as required.

We have

$$\begin{split} &<\boldsymbol{\theta}_{I}^{E}>-q|_{(\boldsymbol{\beta}\Delta E)_{+}}=<\boldsymbol{\theta}_{I}^{E}>-\sum_{J\in\mathcal{P}^{\times}(I)}(-1)^{|I|-1-|J|}p_{J}|_{(\boldsymbol{\beta}\Delta E)_{+}}=\\ &(\text{by condition }(1))\\ &=<\boldsymbol{\theta}_{I}^{E}>-\sum_{J\in\mathcal{P}^{\times}(I)}(-1)^{|I|-1-|J|}<\boldsymbol{\theta}_{J}^{E}>=\\ &=\sum_{J\in\mathcal{P}(I)}(-1)^{|I|-|J|}<\boldsymbol{\theta}_{J}^{E}>\in \qquad \text{(by Lemma 19.2)}\\ &\in\langle\boldsymbol{W}(I)^{(\boldsymbol{\beta}\Delta E)_{+}}\rangle^{[|I|]}. \end{split}$$

§ 20. The filtration $\langle (Y^X)^T \rangle^{[s]}$

General case. We give a topological version of the definition of § 17. Let T and Z be spaces. Let a chained monoid P act on Z (preserving the basepoint). The set Z^T carries the induced action of P. Thus the abelian group $\langle Z^T \rangle$ becomes a module over $\langle P \rangle$. We define a filtration $\langle Z^T \rangle^{[s]}$. Let T^j , $j \in (n)$, be spaces and

$$f: T \to \bigvee_{j \in (n)} T^j$$

be a map. Take ensembles $V_j \in \langle P \rangle^{[s_j]} \langle Z^{T^j} \rangle$, $j \in (n)$, and consider the ensemble $V \in \langle Z^T \rangle$,

$$V = \langle Z^f \rangle \Big(\underset{j \in (n)}{\sharp} V^j \Big). \tag{24}$$

We call V a block of rank $s_1 + \ldots + s_n$. We let $\langle Z^T \rangle^{[s]} \subseteq \langle Z^T \rangle$ be the subgroup generated by all blocks of rank at least s. One easily sees that it is a submodule.

Lemma 20.1. Let \widetilde{Z} be a space acted on by P and $h: Z \to \widetilde{Z}$ be a P-equivariant map. Then the homomorphism

$$\langle h^T \rangle : \langle Z^T \rangle \to \langle \widetilde{Z}^T \rangle$$

takes
$$\langle Z^T \rangle^{[s]}$$
 to $\langle \widetilde{Z}^T \rangle^{[s]}$.

Lemma 20.2. Let \mathbf{T} and \mathbf{Z} be pointed simplicial sets. Let P act on \mathbf{Z} and thus on $|\mathbf{Z}|$. Consider the geometric realization function

$$\gamma: \boldsymbol{Z}^{\boldsymbol{T}} \to |\boldsymbol{Z}|^{|\boldsymbol{T}|}, \qquad \boldsymbol{v} \mapsto |\boldsymbol{v}|,$$

and the homomorphism

$$\langle \gamma \rangle : \langle \boldsymbol{Z}^{\boldsymbol{T}} \rangle \to \langle |\boldsymbol{Z}|^{|\boldsymbol{T}|} \rangle.$$

Then
$$\langle \gamma \rangle$$
 takes $\langle \mathbf{Z}^{\mathbf{T}} \rangle^{[s]}$ to $\langle |\mathbf{Z}|^{|\mathbf{T}|} \rangle^{[s]}$.

The case $Z = Y^X$. Let I be a finite set and Y be space acted on by the chained monoid $P = \mathcal{P}(I)$. We suppose that the action is *special*:

$$Y = \bigcup_{i \in I} \operatorname{Fix}\{i\}_{(Y)}.$$

Let X be a space. Consider the space $Z = Y^X$. It carries the induced action of $\mathfrak{P}(I)$.

Lemma 20.3. In the $\langle \mathcal{P}(I) \rangle$ -module $\langle Y^X \rangle$, the inclusion holds

$$\langle \mathcal{P}(I) \rangle^{[s]} \langle Y^X \rangle \subseteq \langle Y^X \rangle^{(s)}.$$

Proof. Take a map $a \in Y^X$ and a subset $J \in \mathcal{P}(I)$, $|J| \geqslant s$. The ensembles of the form $\omega_J < a >$ generate the subgroup $\langle \mathcal{P}(I) \rangle^{[s]} \langle Y^X \rangle$. Thus we should show that $\omega_J < a > \in \langle Y^X \rangle^{(s)}$. Take a subspace $R \in \mathcal{F}_{s-1}(X)$. We should check that $\omega_J < a > |_R = 0$ in $\langle Y^R \rangle$. Since the action is special, for each $x \in X$, there is $i_x \in I$ such that $a(x) \in \text{Fix}\{i_x\}_{\langle Y \rangle}$. Consider the subset

$$K = \{ i_x \mid x \in R \setminus \{ \uparrow \} \} \in \mathcal{P}(I).$$

Clearly, |K| < s. For $x \in R \setminus \{ \uparrow \}$, we have

$$K_{(Y)}(a(x)) = K_{(Y)}(\{i_x\}_{(Y)}(a(x))) =$$

$$= (K \cap \{i_x\}_{(Y)}(a(x)) = \{i_x\}_{(Y)}(a(x)) = a(x).$$

Thus $K_{(Y)} \circ a = \mid_R a$. Thus $\langle K \rangle \langle a \rangle = \mid_R \langle a \rangle$ in $\langle Y^R \rangle$. Since $|K| \langle s$, we have $K \not\supseteq J$. It follows that $\omega_J \langle K \rangle = 0$ in $\langle \mathcal{P}(I) \rangle$. We get

$$\omega_{J} < a > = |_{R} \omega_{J} < K > < a > = 0.$$

Lemma 20.4. Let T be a space. Then

$$\langle (Y^X)^T \rangle^{[s]} \subseteq \langle (Y^X)^T \rangle_X^{(s)}.$$

Proof. Take a block $V \in \langle (Y^X)^T \rangle$ of rank at least s. We should show that $V \in \langle (Y^X)^T \rangle_X^{(s)}$. Consider the homomorphism

$$\langle (Y^X)^T \rangle \xrightarrow{\langle \widehat{\square}^X \rangle} \langle Y^{T \wedge X} \rangle.$$

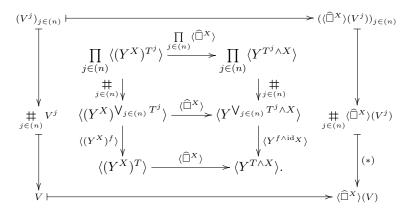
By Lemma 3.3, we should show that $\langle \widehat{\square}^X \rangle(V) \in \langle Y^{T \wedge X} \rangle^{(s)}$. We have the equality (24) for some spaces T^j , map f and ensembles $V^j \in \langle \mathcal{P}(I) \rangle^{[s_j]} \langle (Y^X)^{T^j} \rangle$, where $s_1 + \ldots s_n \geqslant s$. Since the function

$$\widehat{\square}^X: (Y^X)^{T^j} \to Y^{T^j \wedge X}$$

is $\mathcal{P}(I)$ -equivariant, $\langle \widehat{\square}^X \rangle (V^j) \in \langle \mathcal{P}(I) \rangle^{[s_j]} \langle Y^{T^j \wedge X} \rangle$. By Lemma 20.3,

$$\langle \widehat{\square}^X \rangle (V^j) \in \langle Y^{T^j \wedge X} \rangle^{(s_j)}.$$

Consider the commutative diagram



(We used distributivity of smash product over wedge.) All the sendings are obvious except (*), which follows by commutativity of the diagram. By [3, Lemma 3.1],

$$\underset{j \in (n)}{+} \langle \widehat{\square}^X \rangle (V^j) \in \langle Y^{\bigvee_{j \in (n)} T^j \wedge X} \rangle^{(s)}.$$

By [3, Lemma 2.1], $\langle \widehat{\square}^X \rangle (V) \in \langle Y^{T \wedge X} \rangle^{(s)}$, as was to be shown.

§ 21. The wedge V(I) and a $\mathcal{P}(I)$ -equivariant map $h:V(I)\to Z$

Let I be a finite set. We give a topological version of $\mathbf{W}(I)$. Consider the space

$$V(I) = \bigvee_{J \in \mathcal{P}(I)} \overline{\Sigma} \Delta(I \setminus J).$$

Let

$$\operatorname{in}_J: \overline{\Sigma}\Delta(I\setminus J) \to V(I)$$

be the canonical insertions. V(I) consists of the isolated lead point

$$\top_{V(I)} = \operatorname{in}_I(1_{\overline{\Sigma} \wedge \varnothing})$$

and the subspace

$$V^{\times}(I) = \bigvee_{J \in \mathcal{P}^{\times}(I)} \overline{\Sigma} \Delta(I \setminus J),$$

which is contractible.

For $J, K \in \mathcal{P}(I)$, $J \supseteq K$, let

$$\tau_K^J: \overline{\Sigma}\Delta(I\setminus J) \to \overline{\Sigma}\Delta(I\setminus K)$$

be the map induced by the inclusion $I \setminus J \to I \setminus K$.

Let the monoid $\mathcal{P}(I)$ act on V(I) by the rule

$$\overline{\Sigma}\Delta(I \setminus J) \xrightarrow{\tau_{K \cap J}^{J}} > \overline{\Sigma}\Delta(I \setminus (K \cap J))$$

$$\downarrow_{\text{in}_{J}} \qquad \qquad \downarrow_{\text{in}_{K \cap J}}$$

$$V(I) \xrightarrow{K_{(V(I))}} > V(I),$$

 $K \in \mathcal{P}(I)$. The subspace $V^{\times}(I)$ is $\mathcal{P}(I)$ -invariant. For $J \in \mathcal{P}(I)$, we have the map

$$e_J: |\widehat{\mathbf{\Sigma}}\mathbf{E}(I\setminus J)| = \overline{\Sigma}|\mathbf{E}(I\setminus J)| \xrightarrow{\overline{\Sigma}\xi_{I\setminus J}} \overline{\Sigma}\Delta(I\setminus J)$$

(see (8) for $\xi_{I\setminus J}$). These e_J form the map

$$e = \bigvee_{J \in \mathcal{P}(I)} e_J : |\mathbf{W}(I)| \to V(I). \tag{25}$$

It is $\mathcal{P}(I)$ -equivariant, sends the point $|\top_{\mathbf{W}(I)}|$ to $\top_{V(I)}$, and takes the subspace $|\mathbf{W}^{\times}(I)|$ to $V^{\times}(I)$.

Lemma 21.1. Let Z be a space acted on by $\mathfrak{P}(I)$. Suppose that the basepoint path component $Z_{\P} \subseteq Z$ is weakly contractible. Let $\top_Z \in Z$ be a point such that

$$K_{(Z)}(\top_Z) \in Z_{\triangleleft}$$

for all $K \in \mathcal{P}^{\times}(I)$. Then there exists a $\mathcal{P}(I)$ -equivariant map $h : V(I) \to Z$ such that $h(\top_{V(I)}) = \top_Z$.

Proof. We crop Z and assume that $Z = Z_{\triangleleft} \cup {\top_Z}$. We will construct maps

$$h^J: \overline{\Sigma}\Delta(I \setminus J) \to Z, \qquad J \in \mathfrak{P}(I),$$

satisfying the following conditions (1) and (2_J^K) for $J, K \in \mathcal{P}(I), J \subseteq K$:

- (1) one has $h^I(1_{\overline{\Sigma}\Delta\varnothing}) = \top_Z$;
- (2_J^K) the diagram

$$\begin{split} \overline{\Sigma}\Delta(I \setminus K) & \xrightarrow{-h^K} Z \\ \tau_J^K \bigg| & \bigg| J_{(Z)} \\ \overline{\Sigma}\Delta(I \setminus J) & \xrightarrow{-h^J} Z \end{split}$$

is commutative.

Note that the condition (2_J^J) is the equality $J_{(Z)} \circ h^J = h^J$.

Induction on $J \in \mathcal{P}(I)$. We define the map h^I by the condition (1). The condition (2_I^I) is satisfied trivially. Take $J \in \mathcal{P}^{\times}(I)$. We assume that the maps

 h^K are defined for $K \supseteq J$ and the conditions (2_K^L) are satisfied for $L \supseteq K \supseteq J$. We construct h^J and check (2_I^K) for $K \supseteq J$.

For $K \supseteq J$, put

$$B_K = \operatorname{Im}(\overline{\Sigma}\Delta(I \setminus K) \xrightarrow{\tau_J^K} \overline{\Sigma}\Delta(I \setminus J)).$$

Since τ_I^K is an embedding, there is a map $f^K: B_K \to Z_{\triangleleft}$ such that

$$f^K(\tau_J^K(t)) = J_{(Z)}(h^K(t)), \qquad t \in \overline{\Sigma}\Delta(I \setminus K),$$

(we use here that $\operatorname{Im} J_{(Z)} \subseteq Z_{\triangleleft}$). We show that

$$f^K = \mid_{B_K \cap B_L} f^L$$

for $K, L \supseteq J$. Take $s \in B_K \cap B_L$. Since $B_K \cap B_L = B_{K \cup L}$, we have $s = \tau_J^{K \cup L}(t)$ for some $t \in \overline{\Sigma} \Delta(I \setminus (K \cup L))$. We have the commutative diagram

(the square is commutative by $(2_K^{K \cup L})$). Using the diagram, we get

$$\begin{split} f^K(s) &= f^K(\tau_J^{K \cup L}(t)) = f^K(\tau_J^K(\tau_K^{K \cup L}(t))) = J_{(Z)}(h^K(\tau_K^{K \cup L}(t))) = \\ &= J_{(Z)}(K_{(Z)}(h^{K \cup L}(t))) = (J \cap K)_{(Z)}(h^{K \cup L}(t)) = J_{(Z)}(h^{K \cup L}(t)). \end{split}$$

Similarly, $f^L(s) = J_{(Z)}(h^{K \cup L}(t))$. Thus $f^K(s) = f^L(s)$, as promised.

We have

$$\bigcup_{K \supsetneq J} B_K = \overline{\Sigma} \partial \Delta(I \setminus J) \subseteq \overline{\Sigma} \Delta(I \setminus J),$$

where $\partial \Delta(I \setminus J)$ denotes the boundary of the simplex $\Delta(I \setminus J)$. Since B_K are closed, there is a map

$$f: \overline{\Sigma}\partial\Delta(I\setminus J) \to Z_{\triangleleft}$$

such that $f|_{B_K}=f^K$ for all $K\supsetneq J$. Since $\overline{\Sigma}\partial\Delta(I\setminus J)$ is the boundary of the ball $\overline{\Sigma}\Delta(I\setminus J)$ and Z_{\triangleleft} is weakly contractible, f extends to a map

$$g: \overline{\Sigma}\Delta(I\setminus J) \to Z_{\triangleleft}.$$

We put

$$h^J(s) = J_{(Z)}(g(s)), \qquad s \in \overline{\Sigma} \Delta(I \setminus J).$$

Clearly, $J_{(Z)} \circ h^J = h^J$, which is the condition (2_J^K) . We check the condition (2_J^K) for $K \supsetneq J$. For $t \in \overline{\Sigma} \Delta(I \setminus K)$, we have

$$h^{J}(\tau_{J}^{K}(t)) = J_{(Z)}(g(\tau_{J}^{K}(t))) = J_{(Z)}(f(\tau_{J}^{K}(t))) = J_{(Z)}(f^{K}(\tau_{J}^{K}(t))) =$$

$$= J_{(Z)}(J_{(Z)}(h^{K}(t))) = J_{(Z)}(h^{K}(t)),$$

as required.

We join all the h^J into the desired h:

$$h = \overline{\sum_{J \in \mathcal{P}(I)}} h^J.$$

Since $\top_{V(I)} = \operatorname{in}_I(1_{\overline{\Sigma}\Delta\varnothing})$, we have

$$h(\top_{V(I)}) = h^{I}(1_{\overline{\Sigma} \wedge \varnothing}) =$$
 (by (1))
$$= \top_{Z}.$$

To show that d is $\mathcal{P}(I)$ -equivariant, we should check that, for $K,J\in\mathcal{P}(I)$, the diagram

$$\begin{array}{c|c} \overline{\Sigma}\Delta(I\setminus J) & \xrightarrow{h^J} & Z \\ & \downarrow^{J} & \downarrow & \downarrow^{K(Z)} \\ \overline{\Sigma}\Delta(I\setminus (K\cap J)) & \xrightarrow{h^{K\cap J}} & Z \end{array}$$

is commutative. Indeed,

$$\begin{array}{ll} K_{(Z)} \circ h^J = & \text{ (by } (2_J^J)) & = K_{(Z)} \circ J_{(Z)} \circ h^J = \\ = (K \cap J)_{(Z)} \circ h^J = & \text{ (by } (2_{K \cap J}^J)) & = h^{K \cap J} \circ \tau_{K \cap J}^J. \quad \Box \end{array}$$

§ 22. The realization $\Upsilon_h^T : \mathbf{W}(I)^T \to (Y^X)^{|T|}$

Let X and Y be cellular spaces, X compact. Let I be a finite set and Y carry a special action of the monoid $\mathcal{P}(I)$. Let $h:V(I)\to Y^X$ be a $\mathcal{P}(I)$ -equivariant map. Let T be a pointed simplicial set. Introduce the function

$$\Upsilon_h^{\mathbf{T}}: \mathbf{W}(I)^{\mathbf{T}} \to (Y^X)^{|\mathbf{T}|}, \qquad \mathbf{v} \mapsto (|\mathbf{T}| \xrightarrow{|v|} |\mathbf{W}(I)| \xrightarrow{e} V(I) \xrightarrow{h} Y^X),$$

(see (25) for e), the realization.

Lemma 22.1. The function Υ_h^T takes $\mathbf{W}^{\times}(I)^T$ to $(Y_{\triangleleft}^X)^{|T|}$.

Proof. The map e takes $|\mathbf{W}^{\times}(I)|$ to $V^{\times}(I)$. Since $V^{\times}(I)$ is path connected, d takes it to Y_{\triangleleft}^{X} .

Consider the homomorphism

$$\langle \boldsymbol{\Upsilon}_h^{\boldsymbol{T}} \rangle : \langle \boldsymbol{W}(I)^{\boldsymbol{T}} \rangle \to \langle (Y^X)^{|\boldsymbol{T}|} \rangle.$$

Lemma 22.2. The homomorphism $\langle \Upsilon_h^T \rangle$ takes $\langle \mathbf{W}(I)^T \rangle_X^{[s]}$ to $\langle (Y^X)^{|T|} \rangle_X^{(s)}$.

Proof. We have the decomposition

$$\langle \Upsilon_h^{\mathbf{T}} \rangle : \langle \mathbf{W}(I)^{\mathbf{T}} \rangle \xrightarrow{\langle \gamma \rangle} \langle |\mathbf{W}(I)|^{|\mathbf{T}|} \rangle \xrightarrow{\langle (h \circ e)^{|\mathbf{T}|} \rangle} \langle (Y^X)^{|\mathbf{T}|} \rangle,$$

where $\gamma: \boldsymbol{W}(I)^{\boldsymbol{T}} \to |\boldsymbol{W}(I)|^{|\boldsymbol{T}|}$ is the geometric realization function. By Lemma 20.2, $\langle \gamma \rangle$ takes $\langle \boldsymbol{W}(I)^{\boldsymbol{T}} \rangle^{[s]}$ to $\langle |\boldsymbol{W}(I)|^{|\boldsymbol{T}|} \rangle^{[s]}$. By Lemma 20.1, $\langle (h \circ e)^{|\boldsymbol{T}|} \rangle$ takes $\langle |\boldsymbol{W}(I)|^{|\boldsymbol{T}|} \rangle^{[s]}$ to $\langle (Y^X)^{|\boldsymbol{T}|} \rangle^{[s]}$, which is contained in $\langle (Y^X)^{|\boldsymbol{T}|} \rangle^{(s)}_X$ by Lemma 20.4.

Lemma 22.3. Let E be a nonempty finite set and $q \in \langle \mathbf{W}(I)^{\check{\mathbf{C}}\mathbf{\beta}\triangle E} \rangle$ be an r-almost fissile ensemble. Then the ensemble $\langle \Upsilon_h^{\check{\mathbf{C}}\mathbf{\beta}\triangle E} \rangle (q) \in \langle (Y^X)^{\check{\mathbf{C}}\Delta E} \rangle$ is (X, r)-almost fissile.

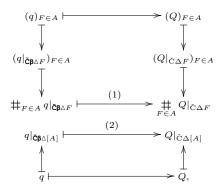
Proof. Take $A \in \mathcal{A}(E)$. The diagram

$$\begin{array}{c} \prod\limits_{F\in A}\mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle E} & \prod\limits_{F\in A}\Upsilon_{h}^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle E} \\ \prod\limits_{F\in A}?|\check{\mathbf{c}}_{\boldsymbol{\beta}\triangle F}| & \prod\limits_{F\in A}\Upsilon_{h}^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} & \bigvee\limits_{F\in A}(Y^{X})^{\check{\mathbf{C}}\triangle E} \\ \prod\limits_{F\in A}?|\check{\mathbf{c}}_{\boldsymbol{\beta}\triangle F}| & \prod\limits_{F\in A}\Upsilon_{h}^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} & \bigvee\limits_{F\in A}?|\check{\mathbf{C}}\triangle F \\ & \bigvee\limits_{F\in A}\mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle F} & \longrightarrow\limits_{F\in A}(Y^{X})^{\check{\mathbf{C}}\triangle F} \\ & \bigvee\limits_{F\in A}\bigvee\limits_{F\in A}\bigvee\limits_{F\in A}\bigvee\limits_{F\in A} & \bigvee\limits_{F\in A}(Y^{X})^{\check{\mathbf{C}}\triangle F} \\ & \bigvee\limits_{F\in A}\bigvee\limits_{F\in A}\bigvee\limits_{F\in A}\bigvee\limits_{F\in A}\bigvee\limits_{F\in A}(Y^{X})^{\check{\mathbf{C}}\triangle F} \\ & \bigvee\limits_{F\in A}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} & \bigvee\limits_{F\in A}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} & \bigvee\limits_{F\in A}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} \\ & \bigvee\limits_{F\in A}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\triangle [A]} &$$

is commutative because $\Upsilon_h^{\mathbf{T}}$ is natural with respect to \mathbf{T} . Thus the diagram

$$\begin{array}{c} \prod\limits_{F \in A} \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} \rangle & \xrightarrow{\prod\limits_{F \in A} \langle \Upsilon_h^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} \rangle} & \prod\limits_{F \in A} \langle (Y^X)^{\check{\mathbf{C}}\Delta E} \rangle \\ \prod\limits_{F \in A} ?|\check{\mathbf{c}}_{\boldsymbol{\beta}\Delta F}| & \prod\limits_{F \in A} \langle \Upsilon_h^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta F} \rangle & \bigvee_{F \in A} ?|\check{\mathbf{C}}\Delta F \\ \prod\limits_{F \in A} \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta F} \rangle & \xrightarrow{F \in A} \langle (Y^X)^{\check{\mathbf{C}}\Delta F} \rangle \\ \downarrow^{\sharp}_{F \in A} & \bigvee_{F \in A} \langle (Y^X)^{\check{\mathbf{C}}\Delta F} \rangle \\ \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta [A]} \rangle & \xrightarrow{\langle \Upsilon_h^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta [A]} \rangle} & \langle (Y^X)^{\check{\mathbf{C}}\Delta [A]} \rangle \\ ?|\check{\mathbf{c}}_{\boldsymbol{\beta}\Delta [A]}| & & & & & & & & & & & & \\ \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} & & & & & & & & & & & \\ & \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} & & & & & & & & & & & \\ \end{pmatrix}^{?}[\check{\mathbf{c}}\Delta [A]} \\ \langle \mathbf{W}(I)^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} & & & & & & & & & & & \\ \end{array}$$

is also commutative. In it, we have



where $Q = \langle \Upsilon_h^{\mathbf{C}\mathbf{\beta}\Delta E} \rangle(q)$. All the sendings are obvious except (1) and (2), which follow by commutativity of the diagram. Since q is r-almost fissile,

$$\underset{F\in A}{\sharp} q|_{\check{\mathbf{C}}\mathbf{\beta}\triangle F} - q|_{\check{\mathbf{C}}\mathbf{\beta}\triangle [A]} \in \langle \mathbf{W}(I)^{\check{\mathbf{C}}\mathbf{\beta}\triangle [A]}\rangle^{[r+1]}.$$

By Lemma 22.2,

$$\underset{F \in A}{\ddagger} Q|_{\check{\mathbf{C}}\Delta F} - Q|_{\check{\mathbf{C}}\Delta [A]} \in \langle (Y^X)^{\check{\mathbf{C}}\Delta [A]} \rangle_X^{(r+1)}.$$

Thus Q is (X, r)-almost fissile.

§ 23. Brunnian loops in a wedge of circles

Fix a finite set I of cardinality r+1. Put $X=S^1$ and $Y=I_+ \wedge S^1$ (a wedge of r+1 circles). Let the monoid $\mathcal{P}(I)$ act on the space I_+ by putting

$$J_{(I_{+})}(i) = \begin{cases} i & \text{if } i \in J, \\ \gamma & \text{otherwise,} \end{cases}$$

for $i \in I_+$, $J \in \mathcal{P}(I)$. This action induces one on Y. A map $b: X \to Y$ (a loop) is called Brunnian if the composition

$$X \xrightarrow{b} Y \xrightarrow{J_{(Y)}} Y$$

is null-homotopic for all $J \in \mathcal{P}^{\times}(I)$.

Lemma 23.1. Let $b: X \to Y$ be a Brunnian loop. Then $\stackrel{r}{\sim} b$.

Proof. Take a finite set E. Consider the loop space Y^X . It carries the induced action of the monoid $\mathcal{P}(I)$. The path component Y^X_{\P} is weakly contractible. Since b is Brunnian, $J_{(Y^X)}(b)$ (= $J_{(Y)} \circ b$) $\in Y^X_{\P}$ for all $J \in \mathcal{P}^{\times}(I)$. Therefore,

Lemma 21.1 yields a $\mathcal{P}(I)$ -equivariant map $h:V(I)\to Y^X$ such that $d(\top)=b$. We get the realization homomorphism

$$\langle \Upsilon_h^{\check{\mathbf{C}}m{\beta}\Delta E} \rangle : \langle \mathbf{W}(I)^{\check{\mathbf{C}}m{\beta}\Delta E} \rangle \to \langle (Y^X)^{\check{\mathbf{C}}\Delta E} \rangle.$$

By Corollary 19.4, there is an r-almost fissile ensemble $q \in \langle W(I)^{\mathsf{C}\mathsf{B}\triangle E} \rangle$ such that

$$\langle \boldsymbol{\theta}_{\top}^{\beta \Delta E} \rangle - q|_{(\boldsymbol{\beta} \Delta E)_{+}} \in \langle \boldsymbol{W}(I)^{(\boldsymbol{\beta} \Delta E)_{+}} \rangle^{[r]}.$$
 (26)

Put $Q=\langle \Upsilon_h^{\check{\mathbf{C}}\beta\Delta E}\rangle(q)$. By Lemma 22.1, $Q\in \langle (Y_{\preccurlyeq}^X)^{\check{\mathbf{C}}\Delta E}\rangle$. By Lemma 22.3, Q is (X,r)-almost fissile. We have

$$\Upsilon_h^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E}(\boldsymbol{\theta}_I^E) = \text{by construction} = \theta_{\P}^{\Delta E}(h(\top)) = \theta_{\P}^{\Delta E}(b)$$

and

$$Q|_{(\Delta E)_+} = \langle \Upsilon_h^{\check{\mathbf{C}}\boldsymbol{\beta}\Delta E} \rangle(q)|_{(\Delta E)_+} = \text{by naturality of } \Upsilon = \langle \Upsilon_h^{(\mathbf{\beta}\Delta E)_+} \rangle(q|_{(\mathbf{\beta}\Delta E)_+}).$$

Thus

$$<\theta_b^{\Delta E}>-Q|_{(\Delta E)_+}=\langle \Upsilon_h^{(\mathbf{\beta}\Delta E)_+}\rangle (<\boldsymbol{\theta}_\top^{\mathbf{\beta}\Delta E}>-q|_{(\mathbf{\beta}\Delta E)_+})\in \langle (Y^X)^{(\Delta E)_+}\rangle_X^{(r)},$$

where \in follows from (26) by Lemma 22.2. By Proposition 13.5 $\stackrel{r}{\approx} b$.

§ 24. Loops in an arbitrary space

Nested commutators. A nesting t of weight $|t| \ge 1$ is either the atom \bullet if |t| = 1, or a pair (t', t'') of nestings with |t'| + |t''| = |t|. Given elements g_1, \ldots, g_s of a group G, and a nesting t of weight s, the t-nested commutator

$${}^t[\![g_i]\!]_{i=1}^s \in G$$

is defined to be either g_1 if s = 1, or

$$[t'[g_i]_{i=1}^{|t'|}, t''[g_i]_{i=|t'+|1}^s]$$

if t = (t', t''). Nested commutators of weight s in G generate $\gamma^s G$, the sth term of the lower central series of G.

Loops. Put $X = S^1$ and let Y be a cellular space. We consider the group $\pi_1(Y) = [X, Y]$ with the filtration $\pi_1(Y)^{((s))} = [X, Y]^{((s))}$ (see § 8).

Theorem 24.1. One has

$$\pi_1(Y)^{((s))} = \gamma^s \pi_1(Y).$$

Recall [3, Theorem 13.2]:

$$\pi_1(Y)^{(s)} = \gamma^s \pi_1(Y).$$
 (27)

Thus, by Theorem 8.2 and [3, Theorem 4.2], the strong r-similarity on $\pi_1(Y)$ coincides with the r-similarity.

Proof. The inclusion $\pi_1(Y)^{((s))} \subseteq \gamma^s \pi_1(Y)$ follows from the comparisons $\pi_1(Y)^{((s))} \subseteq \pi_1(Y)^{(s)}$ (immediate from the definitions) and (27).

Check that $\gamma^s \pi_1(Y) \subseteq \pi_1(Y)^{((s))}$. Since $\pi_1(Y)^{((s))}$ is a subgroup (by Theorem 8.1), it suffices to show that, for any nesting t of weight s and any maps $a_1, \ldots, a_s : X \to Y$, one has

$$^{t}[[a_{i}]]_{i=1}^{s} \in \pi_{1}(Y)^{((s))}.$$

Put

$$B_s = \bigvee_{i \in (s)} X$$
 and $a = \overline{\bigvee_{i \in (s)}} a_i : B_s \to Y$.

Let in_i: $X \to B_s$ be the canonical insertions. Choose a loop $e: S^1 \to B_s$ with

$$[e] = {}^{t}[[in_{i}]]_{i=1}^{s}$$

in $\pi_1(B_s)$. So ${}^t[[a_i]]_{i=1}^s = [a \circ e]$. Clearly, the loop e is Brunnian. By Lemma 23.1, $[e] \in \pi_1(B_s)^{((s))}$. By Corollary 5.1, $[a \circ e] \in \pi_1(Y)^{((s))}$, as was to be shown.

§ 25. Whitehead products

Whitehead product. Let T_i , i = 1, 2, be compact cellular spaces and

$$T_i \stackrel{p_i}{\longleftarrow} T_1 \times T_2 \stackrel{k}{\longrightarrow} T_1 \wedge T_2$$

be the projections. The map

$$\Sigma(T_1 \times T_2) \xrightarrow{\Sigma k} \Sigma(T_1 \wedge T_2)$$

is homotopy right-invertible (because there is a canonical map r of the join T_1*T_2 to $\Sigma(T_1\times T_2)$ such that $\Sigma k\circ r$ is a homotopy equivalence). Let Y be a space. Given homotopy classes $\boldsymbol{a}_i\in[\Sigma T_i,Y],\ i=1,2$, consider the homotopy classes

$$a_i \circ \Sigma p_i : \Sigma(T_1 \times T_2) \xrightarrow{\Sigma p_i} \Sigma T_i \xrightarrow{a_i} Y, \qquad i = 1, 2,$$

and their commutator

$$[\boldsymbol{a}_1 \circ \Sigma p_1, \boldsymbol{a}_2 \circ \Sigma p_2] \in [\Sigma(T_1 \times T_2), Y].$$

The Whitehead product

$$|\boldsymbol{a}_1, \boldsymbol{a}_2| \in [\Sigma(T_1 \wedge T_2), Y]$$

is uniquely defined by (homotopy) commutativity of the diagram

see [5, Section 7.8].

Nested Whitehead products. Let T_i , $i \in (s)$, be compact cellular spaces and

$$T_i \stackrel{p_i}{\longleftarrow} T_1 \times \ldots \times T_s \xrightarrow{k} T_1 \wedge \ldots \wedge T_s$$

be the projections.

Lemma 25.1. The map

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{\Sigma k} \Sigma(T_1 \wedge \ldots \wedge T_s)$$

is homotopy right-invertible.

Proof. Induction on s. If s = 1, k is the identity. Take s > 1. Put

$$T' = T_1 \times \ldots \times T_{s-1}, \qquad Z' = T_1 \wedge \ldots \wedge T_{s-1}.$$

Let

$$T' \times T_s \xrightarrow{K} T' \wedge T_s$$
 and $T' \xrightarrow{k'} Z'$

be the projections. We have the decomposition

$$\Sigma k : \Sigma(T' \times T_s) \xrightarrow{\Sigma K} \Sigma(T' \wedge T_s) \xrightarrow{\Sigma(k' \wedge \operatorname{id}_{T_s})} \Sigma(Z' \wedge T_s),$$

where ΣK is right-invertible (as noted above) and the second arrow is because it coincides with

$$\Sigma T' \wedge T_s \xrightarrow{\Sigma k' \wedge \mathrm{id}_{T_s}} \Sigma Z' \wedge T_s,$$

which is right-invertible because $\Sigma k'$ is by the induction hypothesis.

Let Y be space, and $a_i \in [\Sigma T_i, Y]$ be homotopy classes. Given a nesting t of weight s, define the t-nested Whitehead product

$${}^{t}|\boldsymbol{a}_{i}|_{i=1}^{s} \in |\Sigma(T_{1} \wedge \ldots \wedge T_{s}), Y|$$

by induction on s putting

$${}^t |\boldsymbol{a}_i|_{i=1}^s = \boldsymbol{a}_1$$

for s = 1 and

$${}^t \lfloor \boldsymbol{a}_i \rceil_{i=1}^s = \lfloor^{t'} \lfloor \boldsymbol{a}_i \rceil_{i=1}^{|t'|}, {}^{t''} \lfloor \boldsymbol{a}_i \rceil_{i=|t'|+1}^s \rceil$$

for t = (t', t'').

Lemma 25.2. For a nesting t of weight s, the diagram

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{c := t [[a_i \circ \Sigma p_i]]_{i=1}^s} Y$$

$$\Sigma k \bigvee_{w := t [a_i]_{i=1}^s} Y$$

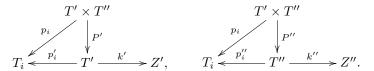
$$\Sigma(T_1 \wedge \ldots \wedge T_s)$$

is (homotopy) commutative.

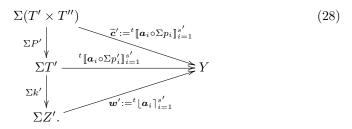
Proof. Induction on s. If s = 1, Σk is the identity and $\boldsymbol{c} = \boldsymbol{w} = \boldsymbol{a}_1$. Take s > 1. We have t = (t', t''). Put s' = |t'|, s'' = |t''|, and

$$T' = T_1 \times \ldots \times T_{s'},$$
 $T'' = T_{s'+1} \times \ldots \times T_s,$ $Z' = T_1 \wedge \ldots \wedge T_{s'},$ $Z'' = T_{s'+1} \wedge \ldots \wedge T_s,$

We have the commutative diagrams of projections



Consider the diagram



The upper triangle is commutative because the function

$$[\Sigma T', Y] \to [\Sigma (T' \times T''), Y]$$

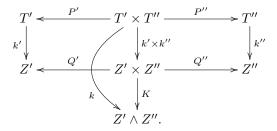
induced by $\Sigma P'$ is a homomorphism and sends $\mathbf{a}_i \circ \Sigma p'_i$ to $\mathbf{a}_i \circ \Sigma p_i$. The lower triangle is commutative by the induction hypothesis. Similarly, we have the commutative diagram

$$\Sigma(T' \times T'') \qquad (29)$$

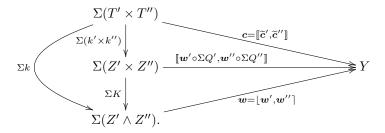
$$\Sigma P'' \bigvee_{t \parallel \mathbf{a}_{i} \circ \Sigma p_{i}' \parallel_{i=s'+1}^{s}} \underbrace{\Gamma}_{i \parallel \mathbf{a}_{i} \circ \Sigma p_{i}' \parallel_{i=s'+1}^{s}} Y$$

$$\Sigma E'' \bigvee_{\mathbf{x}'' := t \mid \mathbf{a}_{i} \mid_{i=s'+1}^{s}} Y$$

We have the commutative diagram of projections



Consider the diagram



The upper triangle is commutative because the function

$$[\Sigma(Z'\times Z''),Y]\to [\Sigma(T'\times T''),Y]$$

induced by $\Sigma(k' \times k'')$ is a homomorphism under which

$$w' \circ \Sigma Q' \mapsto w' \circ \Sigma k' \circ \Sigma P' = \text{by diagram } (28) = \widetilde{c}'$$

and

$$\mathbf{w}'' \circ \Sigma Q'' \mapsto \mathbf{w}'' \circ \Sigma k'' \circ \Sigma P'' = \text{by diagram } (29) = \widetilde{\mathbf{c}}''.$$

The lower triangle is commutative by the definition of Whitehead product. We are done. \Box

Corollary 25.3. Let R be a homotopy right-inverse of Σk :

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{\Sigma k} \Sigma(T_1 \wedge \ldots \wedge T_s), \qquad \Sigma k \circ R \sim \mathrm{id}.$$

Then, for any nesting t of weght s, the diagram

is (homotopy) commutative.

Proof. We have

$$\widetilde{\boldsymbol{c}} \circ R = \text{(by Lemma 25.2)} = \boldsymbol{w} \circ \Sigma k \circ R = \text{(since } \Sigma k \circ R \sim \text{id)} = \boldsymbol{w}.$$

§ 26. Loops and Whitehead products

Consider the wedge

$$B_s = \bigvee_{i \in (s)} S^1.$$

Given a map $v: S^1 \to B_s$ (a loop) and a space T, introduce the map v^{Σ} :

$$\Sigma T \xrightarrow{v^{\Sigma}} \bigvee_{i \in (s)} \Sigma T$$

$$\parallel \qquad \qquad \parallel$$

$$S^{1} \wedge T \xrightarrow{v \wedge \operatorname{id}_{T}} B_{s} \wedge T.$$

Let

$$\operatorname{in}_i: S^1 \to B_s \quad \text{and} \quad \operatorname{in}_i^T: \Sigma T \to \bigvee_{i \in (s)} \Sigma T$$

be the canonical insertions.

Lemma 26.1. The function

$$\pi_1(B_s) \to [T, \bigvee_{i \in (s)} \Sigma T], \qquad [v] \mapsto [v^{\Sigma}],$$

is a homomorhism, under which $[\operatorname{in}_i] \mapsto [\operatorname{in}_i^T]$.

Let T_i , $i \in (s)$, be spaces and

$$T_i \stackrel{p_i}{\longleftarrow} T_1 \times \ldots \times T_s \stackrel{k}{\longrightarrow} T_1 \wedge \ldots \wedge T_s$$

be the projections. Let Y be a space and $a_i: \Sigma T_i \to Y$ be maps. We have the compositions

$$a_i \circ \Sigma p_i : \Sigma(T_1 \times \ldots \times T_s) \xrightarrow{\Sigma p_i} \Sigma T_i \xrightarrow{a_i} Y.$$

Lemma 26.2. Let t be a nesting of weight s. Let $e: S^1 \to B_s$ be a loop with

$$[e] = {}^{t} [[in_{i}]]_{i=1}^{s}$$

in $\pi_1(B_s)$. Then the diagram

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{e^{\Sigma}} \bigvee_{i \in (s)} \Sigma(T_1 \times \ldots \times T_s)$$

$$\downarrow^{A := \overline{V} \atop i \in (s)} (a_i \circ \Sigma p_i)}$$

$$\downarrow^{A := \overline{V} \atop i \in (s)} (a_i \circ \Sigma p_i)$$

 $is\ (homotopy)\ commutative.$

Proof. Put $T = T_1 \times \dots T_s$. By Lemma, the function

$$\pi_1(B_s) \to [T, \bigvee_{i \in (s)} \Sigma T], \qquad [v] \mapsto [v^{\Sigma}],$$

is a homomorhism, under which $[\operatorname{in}_i] \mapsto [\operatorname{in}_i^T]$. Thus

$$[e^{\Sigma}] = {}^{t} [[\inf_{i}^{T}]]_{i=1}^{s}.$$

The map A induces a homomorphism

$$[\Sigma T, Y] \to [\Sigma T, \bigvee_{i \in (s)} \Sigma T],$$

under which $[\operatorname{in}_i^T] \mapsto [a_i \circ \Sigma p_i]$ and thus

$$[e^{\Sigma}] = {}^{t}[[\inf_{i}^{T}]]_{i=1}^{s} \mapsto {}^{t}[[a_{i}] \circ \Sigma p_{i}]_{i=1}^{s} = \mathbf{c},$$

which is what was to be shown.

By Lemma 25.1, we have the diagram

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{\Sigma k} \Sigma(T_1 \wedge \ldots \wedge T_s),$$

where $\Sigma k \circ R \sim \text{id}$. Introduce the composition $M_R^v(a_i)_{i=1}^s$:

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{v^{\Sigma}} \bigvee_{i \in (s)} \Sigma(T_1 \times \ldots \times T_s)$$

$$\downarrow A := \overline{\bigvee}_{i \in (s)} (a_i \circ \Sigma p_i)$$

$$\Sigma(T_1 \wedge \ldots \wedge T_s) \xrightarrow{M_R^v(a_i)_{i=1}^s} Y.$$

Lemma 26.3. Let t be a nesting of weight s. Let $e: S^1 \to B_s$ be a loop with

$$[e] = {}^{t} [[in_{i}]]_{i=1}^{s}$$

in $\pi_1(B_s)$. Then

$$[M_R^e(a_i)_{i=1}^s] = {}^t\lfloor [a_i] \rceil_{i=1}^s$$

in $[\Sigma(T_1 \wedge \ldots \wedge T_s), Y]$.

Proof. Recall the homotopy class

$$\Sigma(T_1 \times \ldots \times T_s) \xrightarrow{\mathbf{c} := {}^t \llbracket [a_i] \circ \Sigma p_i \rrbracket_{i=1}^s} Y.$$

We have

$$[M_R^e(a_i)_{i=1}^s] = [A \circ e^\Sigma \circ R] = (\text{by Lemma 26.2}) = \mathbf{c} \circ R = (\text{by Corollary 25.3}) = {}^t \lfloor [a_i] \rceil_{i=1}^s.$$

§ 27. Strong nullarity of Whitehead products

Let $a_i: \Sigma T_i \to Y$, etc., be as in the previous section.

Lemma 27.1. Let $v: S^1 \to B_s$ be a loop such that $\stackrel{r}{\sim} v$. Then

$$\stackrel{r}{\approx} M_R^v(a_i)_{i=1}^s.$$

Proof. We have

$$M_R^v(a_i)_{i=1}^s = A \circ v^\Sigma \circ R$$

(see the construction). By Corollary 5.4, $\ \ \stackrel{r}{\approx}\ v^{\Sigma}$. By Corollary 5.2, $\ \ \stackrel{r}{\approx}\ A\circ v^{\Sigma}\circ R$.

Given a nesting t of weight s and homotopy classes $\mathbf{a}_i \in [\Sigma T_i, Y], i \in (s)$, consider the t-nested Whitehead product

$${}^{t}\lfloor \boldsymbol{a}_{i} \rceil_{i=1}^{s} \in [\Sigma(T_{1} \wedge \dots T_{s}), Y].$$

Theorem 27.2. One has

$${}^{t}\lfloor \boldsymbol{a}_{i} \rceil_{i=1}^{s} \in [\Sigma(T_{1} \wedge \dots T_{s}), Y]^{((s))}.$$

Proof. For each i, choose a representative $a_i: \Sigma T_i \to Y$ of \boldsymbol{a}_i . Choose a loop $e: S^1 \to B_s$ with

$$[e] = {}^{t} [[in_{i}]]_{i=1}^{s}$$

in $\pi_1(B_s)$. Clearly, the loop e is Brunnian. By Lemma 23.1, $\uparrow \stackrel{s-1}{\approx} e$. By Lemma 27.1,

$$\stackrel{s-1}{\approx} M_R^e(a_i)_{i=1}^s.$$

By Lemma 26.3,

$$[M_R^e(a_i)_{i=1}^s] = {}^t \lfloor \boldsymbol{a}_i \rceil_{i=1}^s.$$

Thus

$${}^{t}\lfloor \boldsymbol{a}_{i} \rceil_{i=1}^{s} \in [\Sigma(T_{1} \wedge \dots T_{s}), Y]^{((s))}.$$

References

- [1] S. Podkorytov, Straight homotopy invariants, Topol. Proc. 49 (2017), 41–64.
- [2] S. S. Podkorytov, Homotopy similarity of maps, arXiv:2308.00859 (2023).
- [3] S. S. Podkorytov, Homotopy similarity of maps. Maps of the circle, arXiv:2406.02526 (2024).
- [4] S. S. Podkorytov, Homotopy similarity of maps. Compositions, to appear.
- [5] P. Selick, Introduction to homotopy theory. Fields Institute Monographs 9, AMS, 1997.

ssp@pdmi.ras.ru

http://www.pdmi.ras.ru/~ssp