

Homotopy similarity of maps. Compositions

S. S. Podkorytov

We describe the behavior of the homotopy similarity relations and finite-order invariants under the function $[X, Y] \rightarrow [X, Z]$ induced by a map $Y \rightarrow Z$ strongly r -similar to the constant map.

§ 1. Introduction

This paper continues [1] and [2]. We adopt notation and conventions thereof. Let X , Y , and Z be cellular spaces, X and Y compact. We prove the following two theorems.

1.1. Theorem. *Let maps $a, a' : X \rightarrow Y$ satisfy $a \stackrel{p-1}{\sim} a'$ and a map $b : Y \rightarrow Z$ satisfy $b \stackrel{q-1}{\approx} \uparrow_Z^Y$ ($p, q \geq 1$). Then the maps $b \circ a, b \circ a' : X \rightarrow Z$ satisfy*

$$b \circ a \stackrel{pq-1}{\sim} b \circ a'.$$

1.2. Theorem. *Let $b : Y \rightarrow Z$ be a map such that $b \stackrel{q-1}{\approx} \uparrow_Z^Y$ ($q \geq 1$). Let L be an abelian group and $h : [X, Z] \rightarrow L$ be a homotopy invariant. Then the invariant*

$$f : [X, Y] \rightarrow L, \quad [a] \mapsto h([b \circ a]),$$

satisfies

$$q \operatorname{ord} f \leq \operatorname{ord} h.$$

We conjecture that the assumption of strong $(q-1)$ -similarity in these statements can be replaced by that of $(q-1)$ -similarity.

§ 2. Coherence of an ensemble of compositions

Consider a partition of unity

$$\sum_{e \in E} \phi_e = 1,$$

where E is a nonempty finite set and $\phi_e : X \rightarrow [0, 1]$ are continuous functions, and the unbased map

$$\phi = (\phi_e)_{e \in E} : X \rightarrow \Delta E.$$

Introduce the function

$$\xi^\phi : Y^X \times (Z^Y)^{(\Delta E)} \rightarrow Z^X, \quad \xi^\phi(a, s) : X \xrightarrow{\phi \bar{\times} a} \Delta E \times Y \xrightarrow{\square^Y(s)} Z$$

(equivalently, $\xi^\phi(a, s) : x \mapsto s(\phi(x))(a(x))$), and the homomorphism

$$(\xi^\phi) : \langle Y^X \rangle \otimes \langle (Z^Y)^{(\Delta E)} \rangle \rightarrow \langle Z^X \rangle, \quad \langle a \rangle \otimes \langle s \rangle \mapsto \langle \xi^\phi(a, s) \rangle.$$

We fix a metric on X . A number $\lambda > 0$ is called a *Lebesgue number* of an open cover Γ of X if any set $V \subseteq X$ of diameter at most λ is contained in some $G \in \Gamma$ (according to [3, proof of theorem 3.3.14]).

2.1. Proposition. *Let Γ be an open cover of X with a Lebesgue number λ . Suppose that*

$$\text{diam supp } \phi_e \leq \epsilon, \quad e \in E,$$

where $\epsilon > 0$ and $(pq - 2)\epsilon \leq \lambda$ ($p, q \geq 1$). Let an ensemble $A \in \langle Y^X \rangle$ satisfy

$$A \stackrel{p-1}{\equiv} \Gamma 0.$$

Let $S \in \langle (Z^Y)^{(\Delta E)} \rangle$ be a fissile ensemble such that

$$\langle \theta(\lceil_Z^Y) \rangle - S \in \langle (Z^Y)^{(\Delta E)} \rangle_Y^{(q)}.$$

Then

$$(\xi^\phi)(A \otimes S) \in \langle Z^X \rangle^{(pq)}.$$

Proof. Take a set $V \subseteq X$ with $|V| \leq pq - 1$. We should show that

$$(\xi^\phi)(A \otimes S)|_V = 0$$

in $\langle Z^{(V)} \rangle$. Consider the equivalence on V generated by all pairs (x_1, x_2) with $\text{dist}(x_1, x_2) \leq \epsilon$. Let V_i , $i \in I$, be the classes of this equivalence. Clearly, $\text{diam } V_i \leq (pq - 2)\epsilon$ and $\text{dist}(V_i, V_j) > \epsilon$ for $i \neq j$. For $i \in I$, put

$$F_i = \{e \mid \phi_e|_{V_i} \neq 0\} \subseteq E.$$

Clearly, $\phi(V_i) \subseteq \Delta F_i$. We have $F_i \neq \emptyset$ because $V_i \neq \emptyset$. We have $F_i \cap F_j = \emptyset$ for $i \neq j$ because $\text{diam supp } \phi_e \leq \epsilon$ and $\text{dist}(V_i, V_j) > \epsilon$. Thus we have the layout

$$F_* = \{F_i \mid i \in I\} \subseteq \mathcal{A}(E).$$

Consider the homomorphisms

$$\rho_1 : \langle Y^X \rangle \rightarrow \bigotimes_{i \in I} \langle Y^{(V_i)} \rangle, \quad \langle a \rangle \mapsto \bigotimes_{i \in I} \langle a|_{V_i} \rangle,$$

and

$$\rho_2 : \langle (Z^Y)^{(\Delta E)} \rangle \rightarrow \bigotimes_{i \in I} \langle (Z^Y)^{(\Delta F_i)} \rangle, \quad \langle s \rangle \mapsto \bigotimes_{i \in I} \langle s|_{\Delta F_i} \rangle.$$

From now on, let decorated ρ 's denote similar homomorphisms. For $i \in I$, we have, similarly to ξ and ξ^ϕ , the function

$$\xi_i^\phi : Y^{(V_i)} \times (Z^X)^{(\Delta F_i)} \rightarrow Z^{(V_i)}, \quad \xi^\phi(d, t) : x \mapsto t(\phi(x))(d(x)),$$

and the homomorphism

$$(\xi_i^\phi) : \langle Y^{(V_i)} \rangle \otimes \langle (Z^Y)^{(\Delta F_i)} \rangle \rightarrow \langle Z^{(V_i)} \rangle, \quad \langle d \rangle \otimes \langle t \rangle \mapsto \langle \xi_i^\phi(d, t) \rangle.$$

We have

$$\rho_2(S) = \bigotimes_{i \in I} S|_{\Delta F_i}. \quad (1)$$

Indeed, consider the commutative diagram with sendings

$$\begin{array}{ccc} \langle (Z^Y)^{(\Delta E)} \rangle & \xrightarrow{?|_{\Delta F_*}} & \langle (Z^Y)^{(\Delta F_*)} \rangle \\ \downarrow \rho_2 & \nearrow \bar{\rho}_2 & \downarrow \\ \bigotimes_{i \in I} \langle (Z^Y)^{(\Delta F_i)} \rangle, & & \bigotimes_{i \in I} S|_{\Delta F_i} \\ & & \end{array}$$

The horizontal sending holds because S is fissile. The diagonal one is obvious. The vertical sending, which is (1), follows.

We have the commutative diagram with sendings

$$\begin{array}{ccccc} & & \rho_1(A) \otimes \rho_2(S) & & \\ & \nearrow & & \searrow & \\ & \bigotimes_{i \in I} \langle Y^{(V_i)} \rangle \otimes \bigotimes_{i \in I} \langle (Z^Y)^{(\Delta F_i)} \rangle & & & \\ & \xrightarrow{\rho_1 \otimes \rho_2} & & \xleftarrow{? \otimes \bigotimes_{i \in I} S|_{\Delta F_i}} & \\ & & \bigotimes_{i \in I} (\langle Y^{(V_i)} \rangle \otimes \langle (Z^Y)^{(\Delta F_i)} \rangle) & & \bigotimes_{i \in I} \langle Y^{(V_i)} \rangle \\ & \downarrow & & \downarrow & \\ \langle Y^X \rangle \otimes \langle (Z^Y)^{(\Delta E)} \rangle & & \bigotimes_{i \in I} (\langle Y^{(V_i)} \rangle \otimes \langle (Z^Y)^{(\Delta F_i)} \rangle) & & \bigotimes_{i \in I} \langle Y^{(V_i)} \rangle \\ \downarrow (\xi^\phi) & & \downarrow \bigotimes_{i \in I} (\xi_i^\phi) & & \downarrow \bigotimes_{i \in I} h_i \\ \langle Z^X \rangle & \xrightarrow{\rho_3} & \bigotimes_{i \in I} \langle Z^{(V_i)} \rangle, & & \bigotimes_{i \in I} h_i \\ \downarrow ?|_V & \nearrow \bar{\rho}_3 & & & \\ \langle Z^{(V)} \rangle & & \cong & & \end{array}$$

where

$$h_i = (\xi_i^\phi)(? \otimes S_i) : \langle Y^{(S_i)} \rangle \xrightarrow{? \otimes S|_{\Delta F_i}} \langle Y^{(V_i)} \rangle \otimes \langle (Z^Y)^{(\Delta F_i)} \rangle \xrightarrow{(\xi_i^\phi)} \langle Z^{(V_i)} \rangle.$$

Clearly, $\bar{\rho}_3$ is an isomorphism. The first sending is obvious. The second one follows from (1). We should show that $A \otimes S$ goes to zero under the composition in the left column. By the diagram, it suffices to show that

$$(\bigotimes_{i \in I} h_i)(\rho_1(A)) = 0. \quad (2)$$

Let $J \subseteq I$ consist of those i for which $|V_i| \geq q$. We have $|J| \leq p-1$ because $|V| \leq pq-1$.

Take $i \in I \setminus J$ and $d \in Y^{(V_i)}$. We show that

$$h_i(< d >) = \langle \nabla_Z^{V_i} \rangle. \quad (3)$$

Consider the unbased maps

$$D : V_i \rightarrow \Delta E \times Y, \quad x \mapsto (\phi(x), d(x)),$$

and $D' = D|_{V_i \rightarrow D(V_i)}$. We have the commutative diagram with sendings

$$\begin{array}{ccccc} S & \xleftarrow{\quad \langle \theta(\nabla_Z^Y) \rangle \quad} & \langle (Z^Y)^{(\Delta E)} \rangle & \xrightarrow{\square^Y} & \langle Z^{(\Delta E \times Y)} \rangle \\ \downarrow & & \downarrow & & \downarrow \\ h_i(< d >) & \xleftarrow{\quad \langle \nabla_Z^{V_i} \rangle \quad} & \langle Z^{(V_i)} \rangle & \xleftarrow{\langle Z^{(D')} \rangle} & \langle Z^{(D(V_i))} \rangle. \\ \end{array}$$

Commutativity is checked directly. The first sending holds by definition of h_i . The second one is obvious. Consider the difference $R = \langle \theta(\nabla_Z^Y) \rangle - S$. Since $R \in \langle (Z^Y)^{(\Delta E)} \rangle_Y^{(q)}$, we have $\square^Y(R) \in \langle (Z^Y)^{\Delta E \times Y} \rangle^{(q)}$. Since $|D(V_i)| \leq |V_i| \leq q-1$, we have $\square^Y(R)|_{D(V_i)} = 0$. The equality (3) follows by the diagram.

We have the commutative diagram

$$\begin{array}{ccccc} \langle Y^X \rangle & \xrightarrow{\rho_1} & \bigotimes_{i \in I} \langle Y^{(V_i)} \rangle & \xrightarrow{\bigotimes_{i \in I} h_i} & \bigotimes_{i \in I} \langle Z^{(V_i)} \rangle \\ & \searrow \rho'_1 & \downarrow \pi & & \uparrow \sigma \\ & & \bigotimes_{i \in J} \langle Y^{(V_i)} \rangle & \xrightarrow{\bigotimes_{i \in J} h_i} & \bigotimes_{i \in J} \langle Z^{(V_i)} \rangle, \end{array}$$

where π and σ are defined by the rules

$$\begin{aligned} \pi : \bigotimes_{i \in I} \langle d_i \rangle &\mapsto \bigotimes_{i \in J} \langle d_i \rangle, & d_i \in Y^{(V_i)} \ (i \in I), \\ \sigma : \bigotimes_{i \in J} \langle f_i \rangle &\mapsto \bigotimes_{i \in I} \langle f_i \rangle, & f_i \in Z^{(V_i)} \ (i \in I), & f_i = \nabla_Z^{V_i} \text{ if } i \notin J. \end{aligned}$$

Commutativity of the square follows from (3). We show that $\rho'_1(A) = 0$. By the diagram, (2) will follow.

For $i \in J$, there is $G_i \in \Gamma$ such that $V_i \subseteq G_i$ because $\text{diam } V_i \leq (pq-2)\epsilon \leq \lambda$. Put

$$H = \{\nabla_X\} \cup \bigcup_{i \in J} G_i.$$

Since $|J| \leq p-1$, $H \in \Gamma(p-1)$. We have the commutative diagram

$$\begin{array}{ccc} \langle Y^X \rangle & \xrightarrow{\rho'_1} & \bigotimes_{i \in J} \langle Y^{(V_i)} \rangle \\ \downarrow ?|_H & \nearrow \widehat{\rho}'_1 & \\ \langle Y^H \rangle. & & \end{array}$$

Since $A \stackrel{p-1}{\equiv}_{\Gamma} 0$, we have $A|_H = 0$. By the diagram, $\rho'_1(A) = 0$. \square

§ 3. Exploiting Proposition 2.1

3.1. Corollary. *Let an ensemble $A \in \langle Y^X \rangle$,*

$$A = \sum_i u_i \langle a_i \rangle,$$

satisfy $A \stackrel{p-1}{\equiv}$ and a map $b : Y \rightarrow Z$ satisfy $b \stackrel{q-1}{\approx} \upharpoonright_Z^Y$ ($p, q \geq 1$). Then there exists an ensemble $C \in \langle Z^X \rangle$,

$$C = \sum_{i,j} u_i v_j \langle c_{ij} \rangle, \quad (4)$$

where $c_{ij} \sim b \circ a_i$ and

$$\sum_j v_j = 1, \quad (5)$$

such that $C \stackrel{pq-1}{\equiv} 0$.

Proof. By [1, Corollary 6.2], there is an ensemble $\tilde{A} \in \langle Y^X \rangle$,

$$\tilde{A} = \sum_i u_i \langle \tilde{a}_i \rangle,$$

where $\tilde{a}_i \sim a_i$, such that $\tilde{A} \stackrel{p-1}{\equiv}_{\Gamma} 0$ for some open cover Γ of X . Let λ be a Lebesgue number of Γ . Choose $\epsilon > 0$ such that $(pq - 2)\epsilon \leq \lambda$ and a partition of unity

$$\sum_{e \in E} \phi_e = 1,$$

where E is a nonempty finite set and $\phi_e : X \rightarrow [0, 1]$ are continuous functions such that

$$\text{diam supp } \phi_e \leq \epsilon, \quad e \in E.$$

Form the unbased map

$$\phi = (\phi_e)_{e \in E} : X \rightarrow \Delta E.$$

Since $b \stackrel{q-1}{\approx} \upharpoonright_Z^Y$, there is a fissile ensemble $S \in \langle (Z_b^Y)^{(\Delta E)} \rangle$,

$$S = \sum_j v_j \langle s_j \rangle,$$

such that $\theta(\upharpoonright_Z^Y) - S \in \langle (Z^Y)^{(\Delta E)} \rangle_Y^{(q)}$. Put

$$C = (\xi^{\phi})(\tilde{A} \otimes S)$$

(see § 2 for (ξ^ϕ)). By Proposition 2.1, $C \stackrel{pq-1}{=} 0$. We have

$$C = \sum_{i,j} u_i v_j \langle \xi^\phi(\tilde{a}_i, s_j) \rangle.$$

Since $\tilde{a}_i \sim a_i$ and $s_j \in (Z_b^Y)^{(\Delta E)}$, we have $\xi^\phi(\tilde{a}_i, s_j) \sim b \circ a_i$. The equality (5) holds because S is fissile and thus affine. \square

Proof of Theorem 1.1. Since $a \stackrel{p-1}{\sim} a'$, we have

$$\sum_i u_i \langle a_i \rangle \stackrel{p-1}{=} \langle a' \rangle$$

in $\langle Y^X \rangle$, where $a_i \sim a$. By Corollary 3.1,

$$\sum_{i,j} u_i v_j \langle c_{ij} \rangle \stackrel{pq-1}{=} \sum_j v_j \langle c'_j \rangle$$

in $\langle Z^Y \rangle$, where $c_{ij} \sim b \circ a_i \sim b \circ a$, $c'_j \sim b \circ a'$, and the equality (5) holds. By [1, Theorem 7.3], $b \circ a \stackrel{pq-1}{\sim} b \circ a'$. \square

Proof of Theorem 1.2. Suppose that $\text{ord } h \leq pq - 1$ for some integer $p \geq 1$. It suffices to show that $\text{ord } f \leq p - 1$. Take an ensemble $A \in \langle Y^X \rangle$,

$$A = \sum_i u_i \langle a_i \rangle,$$

such that $A \stackrel{p-1}{=} 0$. Corollary 3.1 yields an ensemble $C \in \langle Z^X \rangle$ of the form (4) with $c_{ij} \sim b \circ a_i$ and v_j satisfying (5) such that $C \stackrel{pq-1}{=} 0$. We have

$$\sum_i u_i f([a_i]) = \sum_{i,j} u_i v_j h([b \circ a_i]) = \sum_{i,j} u_i v_j h([c_{ij}]) \stackrel{(*)}{=} 0,$$

where $(*)$ holds because $\text{ord } h \leq pq - 1$ and $C \stackrel{pq-1}{=} 0$. Thus $\text{ord } f \leq p - 1$. \square

References

- [1] S. S. Podkorytov, Homotopy similarity of maps, arXiv:2308.00859 (2023).
- [2] S. S. Podkorytov, Homotopy similarity of maps. Strong similarity, <https://www.pdmi.ras.ru/~ssp/sim-2.pdf> (2025).
- [3] E. H. Spanier, Algebraic topology. McGraw-Hill, 1966.

ssp@pdmi.ras.ru
<http://www.pdmi.ras.ru/~ssp>