Homotopy similarity of maps

S. S. Podkorytov

Given based cellular spaces X and Y, X compact, we define a sequence
of increasingly fine equivalences on the based-homotopy set [X,Y].

§ 1. Introduction

Let X and Y be based cellular spaces ( = CW-complexes), X compact. Let
Y be the set of based continuous maps X — Y and (YX) be the free abelian
group associated with YX. An element A € (YX), an ensemble, has the form

A: Zui<ai>, (1)

where u; € Z and a; € YX. Let F,.(X) be the set of subspaces ( = subsets
containing the basepoint) T' C X containing at most r points distinct from the
basepoint. Introduce the subgroup

YD — LA Al =0in (YT) for all T € F,(X) } C (YY),

We have
Xy =X O oy M o |

For ensembles A, B € (YX), let
A=B

mean that B — A € (Y X)(r+1),
For maps a,b € Y, we say that a is r-similar to b,
a ~ b,
when there exists an ensemble A € (YX) given by (1) with all a; ~ a (~ denotes
based homotopy) such that A = <b>. A simple example is given in Section 3.

Our main results state that the relation ~ is an equivalence (Theorem 8.1)
and respects homotopy (Theorem 5.2). It follows that we get a sequence of
increasingly fine equivalences on the based-homotopy set [X,Y].

We conjecture that, for 0-connected Y, a map is r-similar to the constant
map if and only if it lifts to the classifying space of the (r + 1)th term of the
lower central series of the loop group of Y.

A related notion is that of a homotopy invariant of finite order [4, 5]. A
function f : [X,Y] — L, where L is an abelian group, is called an invariant of



order at most r when for any ensemble A € (YX) given by (1) the congruence
A = 0 implies

Zuif([ai]) =0.

It is clear that f([a]) = f([b]) if @ ~ b and f has order at most r. In § 11, we
give an example of two maps that are not 2-similar but cannot be distinguished
by invariants of order at most 2. In the stable dimension range, invariants of
order at most r were characterized in a way similar to our conjecture about
r-similarity [4].

The relation between r-similarity and finite-order homotopy invariants is
similar to that between n-equivalence and finite-degree invariants in knot theory
[1, 2]. The example of § 11 is similar to that of [2, Remark 10.8].

§ 2. Preliminaries

By a space we mean a based space (unless the contrary is stated explicitly).
The basepoint of a cellular space is a vertex. The basepoint of a space X is
denoted by 9y or . A subspace contains the basepoint. A cover is a cover by
subspaces. A map is a based continuous map. The constant map X — Y is
denoted by <1€,( or J. A homotopy is a based homotopy.

For a subspace Z C X, in : Z — X is the inclusion. A wedge of spaces
comes with the insertions ( = coprojections):

ing : Xpg > X1 V...VX,.

Maps ag : X — Y form the map

aly...yan:Xl\/...\/Xn%Y.
This notation is also used for homotopy classes.

The formula a ~|z b means homotopy a|z ~ b|z. Similarly, equality of
restrictions to a subset C' is denoted by =|¢.

For a set E, the associated abelian group (FE) is freely generated by the
elements <e>, e € E. A function t : F — F between two sets induces the
homomorphism

(t): (E) = (F), <e> +— <t(e)>.

For a cover T of a space X, we put
'r)y={{YyUGU...UG, C X :Gy,...,G, €T, 0<s<r}.
For ensembles A, B € (YX), the formula
A=B
means that A =|y B in (Y"W) for all W € I'(r).

Expressions with ? denote functions: for example, 72 : R — R is the function
2
Tz,



§ 3. A simple example

Put £ = {0,1} C Z. Fixr > 0. Ford = (dy,...,dpy1) € EF put
|d| =dy + ...+ dry1. Consider a wedge of spaces

W=U V.. VU1 VV.
Introduce the maps
A(d) =M\ (d) V...V Npg1 (dpgr) Vidy - W — W, de &
where the map A\i(e) : Uy — Uy, fore € £,isid if e =1 and § if e = 0.

3.1. Lemma. Let X andY be spaces andp: X — W and q: W — Y be maps.
Consider the ensemble A € (YX),

A= > (-1)l<a(a)-,
de€&rtt

where

Then A = 0.

Proof. Take T € F,.(X). There is a k such that p(T) Ning(Ux) = {y }. Then
a(d)|7 does not depend on dj. We get

Alp= Y (-)<a(d)|r> =0. O

degrtt

Ezample. Consider the wedge
W =8"v... v+
(n1,...,npp1 =2 1). Putm=ny+...+npp1 —r and let p: S™ — W be a map
with
[ = [ L[ina], [ing]], ..., [inp44]]

(the iterated Whitehead product) in m,,(W). We show that § ~ p. Consider

the maps
a(d): 5™ Hw 2w geet

Put 1,.1 = (1,...,1) € £, By Lemma 3.1,

Z (_1)r—\d\<a(d)> L <a(lpy1)>.

deE™ 1\ (1,41}

All a(d) on the left side are homotopic to <. On the right, a(1,4+1) = p because
A(1,41) =id. Thus § ~ p.



§ 4. Equipment of a cellular space

Let Y be a compact unbased cellular space. In this section, we turn off our
convention that maps and homotopies preserve basepoints.

4.1. Lemma. There exist homotopies
@Y =Y and p:Y?—10,1], t €10,1],
such that

QO(Zay) =Y, Qt(z7z) =z, pO(Zvy) = 07 pt(Z,Z) = t) (2)

and, for any (z,y) € Y2 and t € [0,1], one has

pe(zy) =0 or qfzy) == (3)

Roughly speaking, the inclusions {z} — Y, z € Y, form a parametric cofi-
bration.

Proof (after [6, Exemple on p. 490]). By [3, Corollary A.10], Y is an ENR. Em-
bed it to R™ and choose its neighbourhood U C R™ and a retraction r : U — Y.
Choose € > 0 such that U includes all closed balls of radius € with centres in Y.
Consider the homotopy /; : (R")? — R"™, t € [0, 1],

li(2,y) =y +min(et/[z —y|, 1) (2 — ), z# Yy,

li(z,2) = 2.

Put
@z 9) = r(le(zy)) and  pu(zy) = max(t — |z — y|/e,0). O

4.2. Corollary. One can continuously associate to each path v : [0,1] =Y a
homotopy Ey(v) : Y — Y, t € [0,1], such that Eo(v) = id and E¢(v)(v(0)) =
u(t).

Proof. Using Lemma 4.1, put

q(v(0),y)  if pi(v(0),y) =0,

Ei(v)(y) = {U(pt(v(o)’y)) if ¢:(v(0),y) = v(0). O

§ 5. Coherent homotopies

Let X and Y be cellular spaces, X compact.

5.1. Lemma. Consider an ensemble A € (YX),

A= E Ui<ai>,
9



and maps b,g ceY¥X b~ b. Then there exist maps a; € Y, a; ~ a;, such that
the ensemble B
A = Z Ui<ai>
i
has the following property: if A=|z <b> for some subspace Z C X, then Z:|Z
<b>.

Proof. We have a homotopy h; € YX, ¢ € [0,1], such that hg = b and h; = b.
Replace Y by a compact cellular subspace that includes the images of all a; and
hy.

For x € X, introduce the path v, = he(z) : [0,1] = Y. We have v,(0) = b(x)
and v, (1) = b(x). For a subspace Z C X, introduce the functions e? : Y2 —
YZ, tel0,1],

etZ(d)(x) = Fi(vg)(d(x)), reZ, deY?,

where Ej is given by Corollary 4.2. For d € Y#, we have the homotopy e (d) €
YZ t€[0,1]. The diagram

X
YX % YX

|, b

vZ " .vy?

is commutative. We have eZ = id because
eg (d)(x) = Eo(v,)(d(2)) = d().
We have e (b) = b because
€1 (b)(z) = E1(v:)(b(2)) = E1(v5)(v2(0)) = vs(1) = b(2).
Put @; = e (a;). Since a; = ef (a;), we have @; ~ a;. We have
(<b> = A)|z = (e1 ) (<b> — A)| 7 = (7 )((<b> — A)|2).
Thus A =|z <b> implies g:|z <b>. O
5.2. Theorem. Let maps a,b, ?i,g € YX satisfy
dr~alb~b.
Then @ ~ b.

Proof. By the definition of similarity, it suffices to show that a ~ b. We have
an ensemble A € (YX),
A= Z Ui<Ai>,



where a; ~ a, such that A = <b>. By Lemma 5.1, there is an ensemble Ae
(Y),
A= Z (7 <Eii>,
i
where a; ~ a;, such that AL <b-. Since a; ~ a, we have shown that a ~ b O
§ 6. Underlaying a cover

Let X and Y be cellular spaces, X compact.

6.1. Lemma. Consider an ensemble A € (YX),
A= Z Ui<Ai>.
i
Then there exist maps a; € Y X, a; ~ a;, such that the ensemble

A: E ui<6i>
%

has the following property: if Alz =0 for some subspace Z C X, then Z\V =0
for some neighbourhood VC X of Z.

Proof. Replace Y by a compact cellular subspace that includes the images of
all a;. We will use the “equipment” (g, p:) given by Lemma 4.1.

Let 4 that numbers a; run over 1,...,n. Define maps a¥ € YX 1 <i < n,
0 < k < n, by the rules ay = a; and

af(z) = qi(ay " (2),0{ " (2)), zEX, (4)

for k> 1. Put @; = a. We have a¥ ~ a¥~! because a¥ = hy and a¥~* = hy for

the homotopy h; € YX, t € [0, 1],
h(@) = (@), b (@), weX.
Thus a; ~ a;.
Claim 1. Tf a¥~' =|g af_l for some subspace @ C X, then a¥ =|g a?.
This follows from (4).

Claim 2. If a;:_l =g az_l for some subspace @@ C X, then there exists a neigh-

bourhood W C X of @ such that a! =|w aé.

Indeed, if az:*l =lo a;'fl, then, by (2),

pi(a (@), 0l (2)) =1



for x € Q. There exists a neighbourhood W C X of @ such that
pr(a; " (2), a5 (2)) > 0
for x € W. Then, by (3),
qi(a; (@), a5 (2)) = a;” ' ()
for x € W. By (4),
aj(z) = qi(a;” (@), a; 7 (2) = ai” (@)

(because ¢q1(z,z) = z by (2)) and

Thus aj(z) = a}(x) for x € W, as required.
Take a subspace Z C X.

Claim 3. If a; =|z a;, then there exists a neighbourhood W C X of Z such that
a; =|w a;.

This follows from the construction of @; and the claims 1 and 2.
Consider the equivalence
R={(i,j) :ai=|za;}

on the set I = {1,...,n}. It follows from the claim 3 that there exists a
neighbourhood V' C X of Z such that a; =|y a; for all (i, j) € R. We have the
commutative diagram

ai|z<izl dii—ag |y

where 7 is the projection. The function [ is injective. Consider the elements
U e (1),
U= Z U,i<7;>7
and U = (7)(U) € (I/R). We have
Alz = OU) = O(O) and  Aly = (d)(U) = (d)(T).

If Alz =0, then U = 0 because (I) is injective. Then Aly = 0. O



6.2. Corollary. Consider an ensemble A € (YX),
A= Z Ui<Ai>,

such that A = 0. Then there exist maps a; € Y, @; ~ a;, such that the

ensemble B
A= Z ui<2ii> (5)
satisfies the condition ﬁ% 0 for some open cover I' of X.

Proof. Since A = 0, we have A =|7 0 for all T € F,.(X). By Lemma 6.1, there
are maps a; € Y, @; ~ a;, such that the ensemble A given by (5) satisfies the
condition A =|y(ry 0 for some neighbourhood V(T') C X of each T' € F,.(X).
There is an open cover I' of X such that every W € I'(r) is included in V(T
for some T € F.(X). Then A =|y 0 for all W € I'(r), that is, Z% 0. O

6.3. Lemma. Consider an ensemble A € (YX),
A= Z Ui <Qj>,
i

and a map b € YX. Then there exist maps a; € YX, @; ~ a;, such that the
ensemble B
A= Z ui<Ei> (6)
i
has the following property: if A=|z<b> for some subspace Z C X, then g:|v<b>

for some neighbourhood V.C X of Z.

Proof. Let II be the set of subspaces Z C X such that A=|z<b>. By Lemma 6.1,
there are maps @;,b € YX, @; ~ a; and b ~ b, such that the ensemble

A = E ui<67;>
%

satisfies the condition A =|y(z) <b> for some neighbourhood V(Z) C X of each
Z € 1. By Lemma 5.1, there are maps a; € Y X, @; ~ @;, such that the ensemble
A given by (6) satisfies the condition A =|y () <b> for all Z € II. O

6.4. Corollary. Consider an ensemble A € (YX),
A= Z U;<Ai>,

and a map b € YX. Suppose that A = <b>. Then there exist maps a; € Y,
a; ~ a;, such that the ensemble

Av: Zui<ﬁi> (7)

satisfies the condition Z% <b> for some open cover I' of X.



This follows from Lemma 6.3 as Corollary 6.2 does from Lemma 6.1. O

§ 7. Symmetric characterization of similarity

Let X and Y be cellular spaces, X compact.

7.1. Lemma. Consider a cover I' of X, an open subspace G € T', a closed
subspace D C X, D C G, and maps a,by,by € YX such that a ~|g by, by ~

byrel X\ D, and a TA;JI bo in the following sense: there is an ensemble A € (YX),
A= Z Ui <Qz;>,
i

where a; ~ a, such that A 7%1 <bo>. Then there exists an ensemble C € (YX),

C= E Wr<C>,
k

where ¢, ~ a, such that C = <by> — <by>.

Proof. There is a homotopy h; € Y, t € [0,1], such that h, = by, s = 0,1, and
hi =|x\p bo. Choose a continuous function ¢ : X — [0, 1] such that ¢|p = 1
and QS\X\F = 0 for some subspaces E, F' C X, FE open, F closed, such that

DCECFCAQG.

Let p € Y be a map such that p ~ by|g. Choose a homotopy K;(p) € Y,
t € [0,1], such that Ky(p) = p, K1(p) = bo|g, and, moreover, K;(p) = bolg if
p = bg|g. Define a homotopy L:(p) € Y, t € [~1,1], by the rules

Li(p)(7) = Ko@) 1) () (), T €q,

for t € [-1,0] and

he(x ifxeE,
L)) ="
Ko@) (p)(z) ifzeG\D
for ¢t € [07 1] We have L—l(p) =D Ls(p) :|E bs7 s=0,1, Lo(p) :|G\D Ll(p)a
and L¢(p) :|G>F p. Moreover, Lg(bo|c) = bs|la, s =0, 1.
Let d € Y be a map such that d ~|g by. Define a homotopy I;(d) € YX,
t € [=1,1], by the rules I;(d) =|g Lt(d|c) and I;(d) =| x\pd. We have [_;(d) = d,
ls(d) =|g bs, s = 0,1, lo(d) =|x\p l1(d), and l;(d) =|x\r d.
Since a; ~ a ~|g by, the homotopies I;(a;) are defined. Put

C= Zui(<ll(ai)> — <lp(a;)>).



We have I,(a;) ~ a; ~ a. It remains to show that C' = <b;> — <by>. Take
T € F,.(X). We check that

C =|p <by1> — <bo>. (8)
We are in one of the following three cases.

Case 1: TN D = {9y }. We have ly(a;)=|rl1(a;) and by =|7 b1. Thus both the
sides of (8) are zero on T.

Case 2: TNF ={Yy, .}, where z, € F and x, # §. Put Z =T\ {z.}. We
have Z € F,_1(X) and ZNF = {Jy}. Define functions e : Y — YT, s =0,1,
by the rules es(q)|z = q and es(q)(x.) = bs(xx). We have es(bg|z) = bs|r and
es(ailz) = ls(a;)|r. Thus

(<bO> — Zui<ai>)’2 }ﬂ) (<bs> — Zui<l3(ai)>)|T.

Since A =" <bp>, the expression on the left is zero. Thus the one on the right
is also zero, which implies (8).

For a finite space Z, let || Z|| be the cardinality of Z \ {}.
Case 3: |TNGJ = 2. We have T = W U Z for some subspaces W, Z C X such
that WNZ ={9¢}, WCG, ZNF = {9y}, and || Z]| < r — 2. Consider the
subspace M = GU Z C X. Define functions f, : YM — Y7 s =0,1. Take

q € YM. If g ~|g by, put fs(q) =|w Ls(qlc) and fs(q) =|z ¢. Otherwise, put
fs(q) = 9% We have f,(bo|ar) = bs|T and fy(as|ar) = ls(a;)|z. Thus

(<bo> = D wiaiz) [y L (b = 3 uielal@))

Since M is included in some element of I'(r — 1) and A T%1 <bg>, the expression

on the left is zero. Thus the one on the right is also zero, which implies (8). O

7.2. Lemma. Let a,b,g € YX be maps such that a "ZMb~ b and (*) ar~|sd
for any S € F1(X). Then there exists an ensemble C € (YX),

C = E W <Cg>,
k

where ¢, ~ a, such that C = <b> — <b>.

The condition (*) is satisfied automatically if X or Y is O0-connected. It also

follows from the condition a "~' b if r > 2 (cf. the proof of Theorem 7.3).

10



Proof. There is an ensemble A € (YX),

A= E ui<a;>,
i

whre a; ~ a, such that A = Using Corollary 6.4, replace each a; by a
homotopic map to get A T%l <b> for some open cover I' of X.

Call a subspace G C X primitive if the map in : G — X is homotopic to the

composition
¢Lhs™x

for some subspace S € F1(X) and map f. Since X is Hausdorff and locally
contractible, for any open subspace U C X and point x € U, there exists a
primitive open subspace G C X such that x € G and G C U. We replace the
cover I' by its refinement consisting of primitive open subspaces. Then it follows
from (*) that a ~|g b for each G € T.

Choose a finite partition of unity subordinate to I':

> =1,
j=1

where each ¢; : X — [0,1] is a continuous function such that ¢;|x\p, = 0 for
some closed subspace D; C X such that D; C G; for some G; € I'. Choose

a homotopy h; € YX, t € [0,1], such that hy = b and h; = b. Define maps
bj € YX,0<j < m, by the rule

bj(@) = hg, (2)+...+6; () (T)-

We have by = b, by, :E, and b;_1 ~ b;jrel X \ D;.
Take 7 > 1. Applying Lemma 5.1 to the congruence A T%l <b> and the
homotopy b ~ b;_1, we get an ensemble A; € (YX),

Aj = Zui<aji>,
i
where a;; ~ a; (~ a), such that A; T%l <bj_1>. We have a ~|g, b ~ b;_1. By
Lemma 7.1, there is an ensemble C; € (YX),

Cj =Y wik<cjr>,
k

where ¢, ~ a, such that C; = <bj>— <bj_1>.
We get

Zc’j = <by> — <bp> = <E> — <b>. O

j=1

11



7.3. Theorem. Consider maps a,b € Y™ and ensembles A, B € (YX),

A= Zui<ai> and B = Zvj<bj>,
- ,

J

where
SUED SR
4 J
a; ~ a, and b; ~ b, such that A = B. Then a ~b.

Proof. Induction on r. If r < 0, the assertion is trivial. Suppose r > 1.
For S € F1(X), we have a ~|g b because

<lals]> =Y wi<lails]> = [Als] = [Bls] = Y _ v;<[bjls]> = <[bls]>
i J
in ([S,Y]). Here [?] : (Y¥) — ([S,Y]) is the homomorphism induced by the
projection [?] : Y5 — [S,Y].

By induction hypothesis, a "Z'b. Take j. Since b ~ bj, Lemma 7.2 gives an
ensemble C; € (YX),

Cj = ijk<cjk>7
k
where c¢j; ~ a, such that C; = <b;> — <b>. We have

A—Z’l}jCj éA—Z’Uj(<bj>—<b>) :A—B+<b>£<b>,
J J

which proves the assertion. O

§ 8. Similarity is an equivalence
Let X and Y be cellular spaces, X compact.

8.1. Theorem. The relation ~ on YX is an equivalence.
This was conjectured by A. V. Malyutin.

Proof. Reflexivity is trivial. Symmetry follows from Theorem 7.3. It remains
to prove transitivity.
Let maps a,b, ¢ € Y satisfy a ~ b ~ ¢. There are ensembles A, B € (YX),

A:Zui<ai> and B:Z’Uj<bj>7
i J

where a; ~ a and b; ~ b, such that A = <b> and B = <¢>. For each j, we have
b~ b; and, by Lemma 5.1, there is an ensemble A; € (YX),

Aj: E ul-<ajl->,
7

12



where aj; ~ a; (~ a), such that A; = <bj>. We have
ZUjAJ = Z’Uj<bj> =B = <C>.
J J

Thus a ~ c. O
Using Theorem 5.2, we introduce the relation of r-similarity on [X,Y]:
[a] ~[b] < asb

It follows from Theorem 8.1 that it is an equivalence.

§ 9. The Hopf invariant

Let X and Y be spaces. Let e € C™(Y) and f € C™(Y) (m,n = 1) be
(singular) cocycles and g € C™T~1(Y') be a cochain with §g = ef. Put

[(X,Y]e.s = {a:a’([e]) = 0 and a*([f]) = 0 in H*(X) } C [X,Y]

and
Y ={a:[d €[X, Y] }CY¥

Given a € Ye)jc, choose a cochain p € C™~1(X) such that dp = a¥(e) and put
g = pa®(f) —a*(g) € " HX).

Then §g = 0 and the class [q] € H™T"~1(X) neither depends on the choice of
p nor changes if a is replaced by a homotopic map. Putting h([a]) = [q], we get
the function

h:[X,Y]e;— H™ (X)),

which we call the Hopf invariant [7].

9.1. Lemma. Let X be a space and t: X — Xg be a map. We have the Hopf
mvariants

ho : [Xo,Y]e — H™™ Y (Xo) and h:[X,Y].;— H"™ HX).

Given ag € YX0, put a = agot € YX. Ifag € Y, then a € Y5 and

h([a]) = t*(ho([ac])) in H™T"H(X). 0
9.2. Lemma. Tuke elements u € 7, (Y) and v € m,(Y). Put
A = (u([e]), [S™) (" ([f1), [S™]) + (=1)"" (™ ([f]), [S™]) (v"([e]), [S"]) € Z

(the last two Kronecker indices vanish unless m = n). Consider the Hopf in-

variant
h: [Sernfl’ Y]e,f N Hernfl(Sernfl)

and the Whitehead product |w,v] € mpin_1(Y) = [STT"=L Y], Then |u,v] €
(STt Y], ¢ and

(h(lw,v1), [S™ ) = (1" A

13



Caution: the sign in the last equality is sensitive to certain conventions.

Proof (after [7, § 19]). We assume that S™ Vv §™ C S™ x S™ in the standard
way. We have the commutative diagram

Sm+n—1 ¢ 5 Sm \/Sn

Dt X gm o gn

b

where [¢] = |[in1], [in2]] in 7p4n—1(S™ VvV S™). We have the chain of homomor-
phisms and sendings

Hypyp—1 (S0 [smtnl 9)
P
Hyen (D77, 701 e
(x> ®) «
Hppn(S™ x S™, 8™V S™) rel, ([S™ x S™)
rel,
Hypn (S™ x S™). [S™xS™]

Choose representatives u : S™ — Y and v : S™ — Y of u and v, respectively.
Consider the maps

a:SmEnTl Ly gmy g BTy,

Clearly, [a] = |u,v] in Tpmin—1(Y).
Choose cocycles € € C™(S™ x S™) and f € C™(S™ x S™) and a cochain
g € Cmin=l(8m x §") such that

Elgmysn = w (e), Flsmysn = w#(f), and glgmysn = w¥(g).
We have
a#(e) = 7 (w# (e)) = ¢¥ (€lgmvsn) = X7 (€)|gm+n-—1

in C™(Smtn=1) Tt follows that a*([e]) = 0 in H™(S™*"~1) (which is au-
tomatic unless n = 1). Similarly, a*([f]) = 0 in H*(S™*"~1). Thus [d] €
[Sernfl’Y]e’f'

Let 2z, € H*(S*) be the class with (21, [S*]) = 1. One easily sees that

[e] = (w([e]), [S™]) (zm x 1) + (0" ([e]), [S"]) (1 X z5)

14



in H™(S™ x S™) and
[F] = @ (LD S x 20) + (" ([£]): [S™]) (2 x 1)

in H™(S™ x S™). Thus [@][f] = A(zp X 2p) in H™T7(S™ x S™) and

~

([l [5™ x §7]) = (=1)™"A. (10)

Choose a cochain p € C™~1(D™*") such that dp = x#(€). Put

~

q=px*(f) —x*(g) e C"H(D™E).

Put

p=Plgmin € CTHS™Y) and g = glgmin s € CTHEITL(§MARTY,
We have

p = 6p|gmin—1 = X7 ()| smin—1 = 7 (€lgmysn) = ¢7 (w¥ (€)) = a™ (e)

and

q =X (Plsmin-1 = xF (@)|smrn-r = pg¥ (Flsmysn) — ¢ (Glsmvsn) =

= po™ (w?(f)) = ¢* (w¥(9)) = pa® (f) — a¥(g).

Thus g = 0 and h([a]) = [g].
We have N R
07 = X" @ (f) — ox*(9) = X" (€f — 7).

We have the chain of homomorphisms and sendings

Hm+n71 (Sm+n71) [g]
5
HmEn(pman, gmine) [x* (67 ~53)]
(x:#)"
H™MFn(Sm x §n §m v §n) [af;sg]
rel®
Hm+n(S§m x §n). @[]

Collating it with (9) and using (10), we get
(la), [S™ 1) = (=)™t (@[f), [S™ x ™)) = (—1mrtmEnA,

This is what we need because h(|u,v]) = h([a]) = [¢].

15



Let I" be an open cover of X. Consider the differential graded ring C*(T") of
I'-cochains of X (that is, functions on the set of singular simplices subordinate
to I'). The projection

Nr:C*(X) = C*(T)
is a morphism of differential graded rings; it induces an isomorphism of coho-
mology rings,

Nr: HY(X) = H*(T).

9.3. Lemma. Given a € Ye)ff, choose p € C™~Y(T') such that §p = a*(e)|r
and put
G = pa” (f)lr —a*(g)lr € CT"H(T).

Then 6¢ = 0 and h([a])|r = [q] in H™ T~ Y(T). O
We suppose that X and Y are cellular spaces and X is compact.

9.4. Theorem. Consider an ensemble A € (YX),
A= Z Ui <Qj>,
i
where a; € YX., such that A 20. Then

e, f?

in H™T=1(X).
Thus h may be called a partial invariant of order at most 2.

Proof. Using Corollary 6.2, replace a; by homotopic maps so that A % 0 for

some open cover I" of X.

Let B C C™(I") be the subgroup generated by the coboundaries al# (e)|r. Ttis
free because finitely generated and torsion-free. Thus there is a homomorphiam
P: B — C™ 1(T) such that §P(b) = b, b € B. Put

Gi = P(a*(e)lr)a” (f)Ir — a*(g)lr € C "7 H(ID).

By Lemma 9.3, dg; = 0 and
h(lai])r = [¢]

in Hm+"=1(T).
Take a singular simplex o : A™T"~! G, G €T. Let

o A" 5 G and o' A" > G

be its front and back faces, respectively.

16



The group Hom(B, Q) is formed by homomorphisms (?,T), where T runs
over Cp, (T';Q), the group of rational T'-chains in X. Thus there is a chain
T € Cp,(T; Q) such that

(P(b),0’y = (b,T), be B.

We have

T = chTk,

where ¢, € Q and 71, : A™ — G, G € I'. Thus

(P(af (e)lr),0") = (af ()Ir, T) = ) exlaf (e)lr, )
k

We get

(Gi,0) = (*1)(”%1)”(13(&?( )lr),0'><a#( Dlrso") = (af (9)lr, o) =
N " ep(al (e)lr, T (af (F)lr, o) = (af (9)Ir, 0) =

k
= (=) Y " ep(@iloua)* (€), ) {(ailaua ) (), 0”) = ((aila)* (9), o).
k
We have found functions Ry, : YEYGr — Q and S : Y& — Q such that

(Gi,o Z Ri(ailcue,) — Slaile)

for all . Since A % 0, we have A|gug, = 0 and A|g = 0. Thus

Z ui{g;, o) = 0.
i
Since o was taken arbitrarily, we have
Z uiq~i =0.
i

We get

2 wihllai)le = 3 uil@] =0

Since restriction to I" here is an isomorphism, we get
i

9.5. Corollary. Let a,b€ Y, 'y satisfy a b, Then h([a]) = h([b]).
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Proof. There is an ensemble A € (YX),

A= Zui<ai>,
where a; ~ a, such that A 2 p-. Since A =[{qy <b>, we have
Zui =1.
By Theorem 9.4,
> wih([ai]) = h([b)).
Since [a;] = [a], we get h([a]) = h([b]). O
§ 10. Maps of SP x S™

This section does not depend of the rest of the paper. We recall a theorem
of G. W. Whitehead about the fibration of free spheroids (Theorem 10.1) and
deduce Lemma 10.3 about certain maps S? x S™ — Y (we need it in § 11).

We fix numbers p,n > 1 and a space Y. Let Q™Y be the space of maps
S™ — Y, as usual. Let

€:87 x S — SP NS — ST

be the composition of the projection and the standard homeomorphism. For a
map w : SPT" = Y, introduce the map

V*(w) : SP — Q"Y, V™ (w)(t)(z) = w(e(t, 2)).
Introduce the isomorphism
V" mpan(Y) = 1, (Q"Y), [w] = [V (w)].

Let
eS8t — Stv.s"

be the standard comultiplication. Consider the usual multiplication
OY x Q'Y B QrY, oty s S0 gry g U2y,
For a map v : S™ — Y, introduce the map
7t QY @y o),

where the target is Q™Y with the specified new basepoint. It induces the iso-

morphism
Tox : Tp(Q"Y) = 1, (MY, v#9).

Let A™Y be the space of unbased maps S™ — Y. Consider the fibration
p:A"Y =Y, v = u(9).
We have p~1(9) = Q*(Y).
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10.1. Theorem (G. W. Whitehead). For a map v : 8™ =Y, the composition

L% [ v"

Ty (V) YL (1) T m (@) 5 (@Y o)

coincides up to a sign with the connecting homomorphism of the fibration p at
the point v#9 € Q™Y . Consequently, the composition

r n in. n
Tp41(Y) = mp(Q"Y, v#) = mp(A"Y, v#9)
18 zero.
See [8, Theorem (3.2)] and [9, § 3]. O
For a map v : S™ — Y, introduce the homomorphism
W, T (V) ~ ) (Q7Y) 225 7, (Y, 0]) 255 7, (APY, 0#9).

By Theorem 10.1,

O (w ] =0, wemu(Y), (1)
For maps v : S™ — Y and w : SPT" — Y, introduce the map

U, (w) : 87 s gry T @y, o#9) 2 (AMY, o).

Clearly,

in m,(A"Y, v#9).
Introduce the map

B ;8P x §n X gp oy (gmv gm) L gy gt (12)
where
0: (t,in1(2)) — in1(2), (t,ing(2)) — ina(e(t, 2)), teSP, zeS"

For maps v : S® — Y and w : P — Y, introduce the map

S(v,w) : §P x §" Ty gny grn Yy, (13)
For elements v € m,(Y) and w € mp4,(Y), put
E(v,w) = [E(v,w)] € [§" x 5™, Y], (14)

where v and w are representatives of v and w, respectively.
For maps vg : S™ = Y and V : S? — (A"Y, vg), introduce the map

V.57 xS =Y, (t,z) = V(t)(2).
For V € m,(A"Y,vg), put
VX =[V*] e [SP x " Y],

where V' is a representative of V.
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10.2. Lemma. For mapsv:S™ =Y and w: SPT™™ =Y, one has
E(v,w) =V, (w)* : 8P x " =Y.

Consequently,

in [SP x S, Y].

Proof. Take a point (t,z) € SP x §™. We have u(z) = ing(%) in S™ v S™ for
some k € {1,2} and zZ € S™. We have

0t u(2)) = 0(t,in(2)) = (ifk=1)  =in(2),
(it k =

in S™ v SP*t™. Thus

E(v,w)(t,z) = (vVw)o®)(t,z) =
= ((vV¥w)obo(idx u)(t 2) = (v Vw)(O(t =) =
(iftk=1) = (vVw)(ing (2)) = v(2),
(if k=2) (v ¥ w)(inz(e(t,2))) = w(e(t, 2))

oy (w) ™ (t,2) = Wy (w)(t)(2) = 7o (V" (w) (1)) (2) =
= (#V"(w)(1))(2) = (0¥ V™ (w)(1))(1(2)) = (v ¥ V" (w) (1)) (ink(2)) =
(ifk=1) =v(2),
(ifk=2)  =V"(w)(t)(z) = w(e(t,z))
The same. O

10.3. Lemma. For elements u € mp41(Y), v € m,(Y), and w € mp1,(Y), one
has
E(v, lu,v] + w) = E(v, w)

in [SP x S™ Y.
Proof. Choose a representative v : S™ — Y of v. By (11),
([, 0] +w) = ¥, (w)
in m,(A"Y, v#Y). Applying Lemma 10.2 yields the desired equality. O
For a map w : SP™ — Y, introduce the map

E(w) : SP x 8™ 5 gPtm Ly Y,
For an element w € m,4,(Y), put

£(w) = [¢(w)] €[5 x 5", V], (15)

where w is a representative of w.
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10.4. Lemma. For en element w € m,1,(Y), one has
E(0, w) = §(w)
in [SP x S, Y].

Proof. Choose a representative w : SP*"* — Y of w. Consider the diagram

SP x (8™v S™) Sy gptn

idx (JVid) qvid

SP x S" Sptn,

Since the map B
sm 2 gmy g A gn

is homotopic to the identity, the left triangle is homotopy commutative. The
other empty triangles and the square are commutative. It follows that the
parallel curved arrows are homotopic. O

§ 11. Fineness of 2-similarity

Put X = SPxS" (p > 1,n > 2). Let Y be a space with elements u €
mp41(Y) and v € 7, (Y). Consider the Whitehead product |u,v] € mptn(Y)
and the homotopy classes

B(t) = €(tlu, o) € [X,Y],  tez
(see (15)).

11.1. Lemma. Let L be an abelian group and f : [X,Y] — L be an invariant
of order at most r. Then

fk(r'+1) = f(k(t)), teL.
Proof (after [5, Lemma 1.5]). We will use the homotopy classes

K(s,t) = E(sv,t|u,v]) € [X,Y], s, te
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(see (14)). By Lemma 10.4,
K(0,t) = k(t). (16)

We have
K(s,m+t)=K(s,t) if s|m (17)

because
E(sv, (m+t)|u,v]) = E(sv, [(m/s)u, sv] + t|u,v]) =
(by Lemma 10.3) = E(sv,t|u,v]).
Consider the wedge of r copies of S™ and two copies of SP+"
W =_8"V...v8"vgrtry grtn
and the maps
A(d) = Ai(di) V. Ae(dr) V Arpa(dpyr) Vid W — W,
d=(dy,...,dvy1) € £ asin § 3. Put
=gV g STV ST W,

where
a1 S™ = 8"V ...vS8" and g :SPTT — SPTTy GPTR

are the comultiplications. Choose a map q: W — Y with
[q =vV...VoVrlu,v]Vtu,v].
Consider the ensemble A € (YX),
A= > (-1)<a(d)-,
de€&rtt

where N
a(d): X T sm v grtn By Ay g,y

where @ is as in (13). By Lemma 3.1, A = 0. Clearly,
[goA(d)op]=(di+...d)vV (djrr! +t) | u, v]
in [S™ Vv SPT™ Y], Thus, by the construction of K (s,t),
l[a(d)] = K(d1 +...dp,dpi1r! + 1)
in [X,Y]. Thus, since f has order at most r,
S ()H(K(dy + .. deydpar! 1) = 0.
de€grtt

By (17), K(dy + ...dy,dy 17! + t) does not depend on d,4q if (di,...,d,) #
(0,...,0). Thus the corresponding summands cancel out. We get f(K(0,t)) —
F(K (0,71 +1t)) = 0. By (16), this is what we need. O
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Let classes E € HPT1(Y) and F € H™(Y) satisfy EF = 0 in HPT"F1(Y),
Put, as in Lemma 9.2,

A = (u*(E), [SPH) (0" (F), [S"]) + (1) P (u (F), [SPH]) (v" (B), [S"]) € Z.

If Y = SPFl v §" with w = [in;] and v = [iny], taking obvious E and F
yvields A=1. If p=n—1and Y = S™ with u = v = [id], taking obvious equal
E and F yields A =1+ (—1)".

11.2. Lemma. If A # 0, the classes k(t), t € Z, are pairwise not 2-similar.

Proof. Choose cocycles e € CPTL(Y) and f € C™(Y) representing E and F,
respectively. Choose a cochain g € CP*"(Y) with dg = ef. Consider the
corresponding Hopf invariants (see § 9)

ho : Tpin(Y) — HPT(SPT™) and h:[X,Y].; — HPT™"(X).

By Lemma 9.2,
(ho(|u, v]),[SPT"]) = (—1)PHPHLA,

We have the decomposition

t[id]

k(t) : X —s grtn L gpn Lol

(the wavy arrows denote homotopy classes). Clearly, k(t) € [X, Y] ;. Since the
Brouwer degree of € is 1 and that of ¢[id] is ¢, Lemma 9.1 yields

(h(k(1)), [X]) = (=1)P"PHIAL
By Corollary 9.5, the classes k(t), t € Z, are pairwise not 2-similar if A £ 0. O

Moral. Suppose that A # 0. The classes k(0) (= [q]) and k(2) in [X, Y], which
are not 2-similar by Lemma 11.2, cannot be distinguished by an invariant of
order at most 2 by Lemma 11.1. Recall that (X,Y) can be (SP x §™, SPT1v Sn)
for any p > 1 and n > 2 or (S"~1 x S™, S™) for even n > 2.
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