Homotopy similarity of maps

S. S. Podkorytov

Given based cellular spaces X and Y, X compact, we define a sequence of increasingly fine equivalences on the based-homotopy set $[X, Y]$.

§ 1. Introduction

Let X and Y be based cellular spaces ($=\mathrm{CW}$-complexes), X compact. Let Y^{X} be the set of based continuous maps $X \rightarrow Y$ and $\left\langle Y^{X}\right\rangle$ be the free abelian group associated with Y^{X}. An element $A \in\left\langle Y^{X}\right\rangle$, an ensemble, has the form

$$
\begin{equation*}
A=\sum_{i} u_{i}<a_{i}> \tag{1}
\end{equation*}
$$

where $u_{i} \in \mathbf{Z}$ and $a_{i} \in Y^{X}$. Let $\mathcal{F}_{r}(X)$ be the set of subspaces ($=$ subsets containing the basepoint) $T \subseteq X$ containing at most r points distinct from the basepoint. Introduce the subgroup

$$
\left\langle Y^{X}\right\rangle^{(r+1)}=\left\{A:\left.A\right|_{T}=0 \text { in }\left\langle Y^{T}\right\rangle \text { for all } T \in \mathcal{F}_{r}(X)\right\} \subseteq\left\langle Y^{X}\right\rangle
$$

We have

$$
\left\langle Y^{X}\right\rangle=\left\langle Y^{X}\right\rangle^{(0)} \supseteq\left\langle Y^{X}\right\rangle^{(1)} \supseteq \ldots
$$

For ensembles $A, B \in\left\langle Y^{X}\right\rangle$, let

$$
A \xlongequal{\stackrel{r}{=} B}
$$

mean that $B-A \in\left\langle Y^{X}\right\rangle^{(r+1)}$.
For maps $a, b \in Y^{X}$, we say that a is r-similar to b,

$$
a \stackrel{r}{\sim} b,
$$

when there exists an ensemble $A \in\left\langle Y^{X}\right\rangle$ given by (1) with all $a_{i} \sim a$ (\sim denotes based homotopy) such that $A \stackrel{r}{=}$. A simple example is given in Section 3.

Our main results state that the relation $\stackrel{r}{\sim}$ is an equivalence (Theorem 8.1) and respects homotopy (Theorem 5.2). It follows that we get a sequence of increasingly fine equivalences on the based-homotopy set $[X, Y]$.

We conjecture that, for 0 -connected Y, a map is r-similar to the constant map if and only if it lifts to the classifying space of the $(r+1)$ th term of the lower central series of the loop group of Y.

A related notion is that of a homotopy invariant of finite degree [4, 5]. A function $f:[X, Y] \rightarrow L$, where L is an abelian group, is called an invariant of
degree at most r when for any ensemble $A \in\left\langle Y^{X}\right\rangle$ given by (1) the congruence $A \stackrel{r}{=} 0$ implies

$$
\sum_{i} u_{i} f\left(\left[a_{i}\right]\right)=0
$$

It is clear that $f([a])=f([b])$ if $a \stackrel{r}{\sim} b$ and f has degree at most r. In $\S 11$, we give an example of two maps that are not 2-similar but cannot be distinguished by invariants of degree at most 2 . In the stable dimension range, invariants of degree at most r were characterized in a way similar to our conjecture about r-similarity [4].

The relation between r-similarity and finite-degree homotopy invariants is similar to that between n-equivalence and finite-degree invariants in knot theory [1, 2]. The example of $\S 11$ is similar to that of [2, Remark 10.8].

§ 2. Preliminaries

By a space we mean a based space (unless the contrary is stated explicitly). The basepoint of a cellular space is a vertex. The basepoint of a space X is denoted by Ψ_{X} or Ψ^{4}. A subspace contains the basepoint. A cover is a cover by subspaces. A map is a based continuous map. The constant map $X \rightarrow Y$ is denoted by Ψ_{Y}^{X} or \uparrow. A homotopy is a based homotopy.

For a subspace $Z \subseteq X$, in : $Z \rightarrow X$ is the inclusion. A wedge of spaces comes with the insertions ($=$ coprojections):

$$
\operatorname{in}_{k}: X_{k} \rightarrow X_{1} \vee \ldots \vee X_{n}
$$

Maps $a_{k}: X_{k} \rightarrow Y$ form the map

$$
a_{1} \underline{\bar{\nabla}} \ldots \underline{\bar{\nabla}} a_{n}: X_{1} \vee \ldots \vee X_{n} \rightarrow Y
$$

This notation is also used for homotopy classes.
The formula $\left.a \sim\right|_{Z} b$ means homotopy $\left.\left.a\right|_{Z} \sim b\right|_{Z}$. Similarly, equality of restrictions to a subset C is denoted by $=\left.\right|_{C}$.

For a set E, the associated abelian group $\langle E\rangle$ is freely generated by the elements $\langle e\rangle, e \in E$. A function $t: E \rightarrow F$ between two sets induces the homomorphism

$$
\langle t\rangle:\langle E\rangle \rightarrow\langle F\rangle, \quad<e\rangle \mapsto<t(e)\rangle .
$$

For a cover Γ of a space X, we put

$$
\Gamma(r)=\left\{\{4\} \cup G_{1} \cup \ldots \cup G_{s} \subseteq X: G_{1}, \ldots, G_{s} \in \Gamma, 0 \leqslant s \leqslant r\right\}
$$

For ensembles $A, B \in\left\langle Y^{X}\right\rangle$, the formula

$$
A \underset{\Gamma}{\stackrel{r}{\Gamma}} B
$$

means that $A=\left.\right|_{W} B$ in $\left\langle Y^{W}\right\rangle$ for all $W \in \Gamma(r)$.
Expressions with? denote functions: for example, $?^{2}: \mathbf{R} \rightarrow \mathbf{R}$ is the function $x \mapsto x^{2}$.

§ 3. A simple example

Put $\mathcal{E}=\{0,1\} \subseteq \mathbf{Z}$. Fix $r \geqslant 0$. For $d=\left(d_{1}, \ldots, d_{r+1}\right) \in \mathcal{E}^{r+1}$, put $|d|=d_{1}+\ldots+d_{r+1}$. Consider a wedge of spaces

$$
W=U_{1} \vee \ldots \vee U_{r+1} \vee V .
$$

Introduce the maps

$$
\Lambda(d)=\lambda_{1}\left(d_{1}\right) \vee \ldots \vee \lambda_{r+1}\left(d_{r+1}\right) \vee \operatorname{id}_{V}: W \rightarrow W, \quad d \in \mathcal{E}^{r+1}
$$

where the map $\lambda_{k}(e): U_{k} \rightarrow U_{k}$, for $e \in \mathcal{E}$, is id if $e=1$ and ४ if $e=0$.
3.1. Lemma. Let X and Y be spaces and $p: X \rightarrow W$ and $q: W \rightarrow Y$ be maps. Consider the ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{d \in \mathcal{E}^{r+1}}(-1)^{|d|}<a(d)>,
$$

where

$$
a(d): X \xrightarrow{p} W \xrightarrow{\Lambda(d)} W \xrightarrow{q} Y .
$$

Then $A \stackrel{r}{=} 0$.
Proof. Take $T \in \mathcal{F}_{r}(X)$. There is a k such that $p(T) \cap \operatorname{in}_{k}\left(U_{k}\right)=\left\{\mathcal{Y}_{W}\right\}$. Then $\left.a(d)\right|_{T}$ does not depend on d_{k}. We get

$$
\left.A\right|_{T}=\sum_{d \in \mathcal{E}^{r+1}}(-1)^{|d|}<\left.a(d)\right|_{T^{\prime}}>=0 .
$$

Example. Consider the wedge

$$
W=S^{n_{1}} \vee \ldots \vee S^{n_{r+1}}
$$

$\left(n_{1}, \ldots, n_{r+1} \geqslant 1\right)$. Put $m=n_{1}+\ldots+n_{r+1}-r$ and let $p: S^{m} \rightarrow W$ be a map with

$$
[p]=\left\lfloor\ldots\left\lfloor\left[\mathrm{in}_{1}\right],\left[\mathrm{in}_{2}\right]\right\rceil, \ldots,\left[\mathrm{in}_{r+1}\right]\right\rceil
$$

(the iterated Whitehead product) in $\pi_{m}(W)$. We show that $4 \stackrel{r}{\sim} p$. Consider the maps

$$
a(d): S^{m} \xrightarrow{p} W \xrightarrow{\Lambda(d)} W, \quad d \in \mathcal{E}^{r+1} .
$$

Put $1_{r+1}=(1, \ldots, 1) \in \mathcal{E}^{r+1}$. By Lemma 3.1,

$$
\sum_{d \in \mathcal{E}^{r+1} \backslash\left\{1_{r+1}\right\}}(-1)^{r-|d|}<a(d)>\stackrel{r}{=}<a\left(1_{r+1}\right)>.
$$

All $a(d)$ on the left side are homotopic to \uparrow. On the right, $a\left(1_{r+1}\right)=p$ because $\Lambda\left(1_{r+1}\right)=$ id. Thus $\uparrow \stackrel{r}{\sim} p$.

§ 4. Equipment of a cellular space

Let Y be a compact unbased cellular space. In this section, we turn off our convention that maps and homotopies preserve basepoints.
4.1. Lemma. There exist homotopies

$$
q_{t}: Y^{2} \rightarrow Y \quad \text { and } \quad p_{t}: Y^{2} \rightarrow[0,1], \quad t \in[0,1]
$$

such that

$$
\begin{equation*}
q_{0}(z, y)=y, \quad q_{t}(z, z)=z, \quad p_{0}(z, y)=0, \quad p_{t}(z, z)=t \tag{2}
\end{equation*}
$$

and, for any $(z, y) \in Y^{2}$ and $t \in[0,1]$, one has

$$
\begin{equation*}
p_{t}(z, y)=0 \quad \text { or } \quad q_{t}(z, y)=z \tag{3}
\end{equation*}
$$

Roughly speaking, the inclusions $\{z\} \rightarrow Y, z \in Y$, form a parametric cofibration.

Proof (after [6, Exemple on p. 490]). By [3, Corollary A.10], Y is an ENR. Embed it to \mathbf{R}^{n} and choose its neighbourhood $U \subseteq \mathbf{R}^{n}$ and a retraction $r: U \rightarrow Y$. Choose $\epsilon>0$ such that U includes all closed balls of radius ϵ with centres in Y. Consider the homotopy $l_{t}:\left(\mathbf{R}^{n}\right)^{2} \rightarrow \mathbf{R}^{n}, t \in[0,1]$,

$$
\begin{aligned}
l_{t}(z, y) & =y+\min (\epsilon t /|z-y|, 1)(z-y), \quad z \neq y \\
l_{t}(z, z) & =z
\end{aligned}
$$

Put

$$
q_{t}(z, y)=r\left(l_{t}(z, y)\right) \quad \text { and } \quad p_{t}(z, y)=\max (t-|z-y| / \epsilon, 0)
$$

4.2. Corollary. One can continuously associate to each path $v:[0,1] \rightarrow Y a$ homotopy $E_{t}(v): Y \rightarrow Y, t \in[0,1]$, such that $E_{0}(v)=$ id and $E_{t}(v)(v(0))=$ $v(t)$.

Proof. Using Lemma 4.1, put

$$
E_{t}(v)(y)= \begin{cases}q_{t}(v(0), y) & \text { if } p_{t}(v(0), y)=0 \\ v\left(p_{t}(v(0), y)\right) & \text { if } q_{t}(v(0), y)=v(0)\end{cases}
$$

§ 5. Coherent homotopies

Let X and Y be cellular spaces, X compact.
5.1. Lemma. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

and maps $b, \tilde{b} \in Y^{X}, b \sim \tilde{b}$. Then there exist maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim a_{i}$, such that the ensemble

$$
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}>
$$

has the following property: if $A=\left.\right|_{Z}$ for some subspace $Z \subseteq X$, then $\tilde{A}=\left.\right|_{Z}$ $<\tilde{b}>$.

Proof. We have a homotopy $h_{t} \in Y^{X}, t \in[0,1]$, such that $h_{0}=b$ and $h_{1}=\tilde{b}$. Replace Y by a compact cellular subspace that includes the images of all a_{i} and h_{t}.

For $x \in X$, introduce the path $v_{x}=h_{?}(x):[0,1] \rightarrow Y$. We have $v_{x}(0)=b(x)$ and $v_{x}(1)=\tilde{b}(x)$. For a subspace $Z \subseteq X$, introduce the functions $e_{t}^{Z}: Y^{Z} \rightarrow$ $Y^{Z}, t \in[0,1]$,

$$
e_{t}^{Z}(d)(x)=E_{t}\left(v_{x}\right)(d(x)), \quad x \in Z, \quad d \in Y^{Z}
$$

where E_{t} is given by Corollary 4.2. For $d \in Y^{Z}$, we have the homotopy $e_{t}^{Z}(d) \in$ $Y^{Z}, t \in[0,1]$. The diagram

is commutative. We have $e_{0}^{Z}=\mathrm{id}$ because

$$
e_{0}^{Z}(d)(x)=E_{0}\left(v_{x}\right)(d(x))=d(x) .
$$

We have $e_{1}^{X}(b)=\tilde{b}$ because

$$
e_{1}^{X}(b)(x)=E_{1}\left(v_{x}\right)(b(x))=E_{1}\left(v_{x}\right)\left(v_{x}(0)\right)=v_{x}(1)=\tilde{b}(x)
$$

Put $\tilde{a}_{i}=e_{1}^{X}\left(a_{i}\right)$. Since $a_{i}=e_{0}^{X}\left(a_{i}\right)$, we have $\tilde{a}_{i} \sim a_{i}$. We have

$$
\left.(<\tilde{b}>-\tilde{A})\right|_{Z}=\left.\left\langle e_{1}^{X}\right\rangle(-A)\right|_{Z}=\left\langle e_{1}^{Z}\right\rangle\left(\left.(-A)\right|_{Z}\right)
$$

Thus $A=\left.\right|_{Z}$ implies $\tilde{A}=\left.\right|_{Z}<\tilde{b}>$.
5.2. Theorem. Let maps $a, b, \tilde{a}, \tilde{b} \in Y^{X}$ satisfy

$$
\tilde{a} \sim a \stackrel{r}{\sim} b \sim \tilde{b} .
$$

Then $\tilde{a} \stackrel{r}{\sim} \tilde{b}$.
Proof. By the definition of similarity, it suffices to show that $a \stackrel{r}{\sim} \tilde{b}$. We have an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

where $a_{i} \sim a$, such that $A \stackrel{r}{=}$. By Lemma 5.1, there is an ensemble $\tilde{A} \in$ $\left\langle Y^{X}\right\rangle$,

$$
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}>
$$

where $\tilde{a}_{i} \sim a_{i}$, such that $\tilde{A} \stackrel{r}{=}<\tilde{b}>$. Since $a_{i} \sim a$, we have shown that $a \stackrel{r}{\sim} \tilde{b}$.

§ 6. Underlaying a cover

Let X and Y be cellular spaces, X compact.
6.1. Lemma. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

Then there exist maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim a_{i}$, such that the ensemble

$$
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}>
$$

has the following property: if $\left.A\right|_{Z}=0$ for some subspace $Z \subseteq X$, then $\left.\tilde{A}\right|_{V}=0$ for some neighbourhood $V \subseteq X$ of Z.

Proof. Replace Y by a compact cellular subspace that includes the images of all a_{i}. We will use the "equipment" $\left(q_{t}, p_{t}\right)$ given by Lemma 4.1.

Let i that numbers a_{i} run over $1, \ldots, n$. Define maps $a_{i}^{k} \in Y^{X}, 1 \leqslant i \leqslant n$, $0 \leqslant k \leqslant n$, by the rules $a_{i}^{0}=a_{i}$ and

$$
\begin{equation*}
a_{i}^{k}(x)=q_{1}\left(a_{k}^{k-1}(x), a_{i}^{k-1}(x)\right), \quad x \in X \tag{4}
\end{equation*}
$$

for $k \geqslant 1$. Put $\tilde{a}_{i}=a_{i}^{n}$. We have $a_{i}^{k} \sim a_{i}^{k-1}$ because $a_{i}^{k}=h_{1}$ and $a_{i}^{k-1}=h_{0}$ for the homotopy $h_{t} \in Y^{X}, t \in[0,1]$,

$$
h_{t}(x)=q_{t}\left(a_{k}^{k-1}(x), a_{i}^{k-1}(x)\right), \quad x \in X
$$

Thus $\tilde{a}_{i} \sim a_{i}$.
Claim 1. If $a_{i}^{k-1}=\left.\right|_{Q} a_{j}^{k-1}$ for some subspace $Q \subseteq X$, then $a_{i}^{k}=\left.\right|_{Q} a_{j}^{k}$.
This follows from (4).
Claim 2. If $a_{i}^{i-1}=\left.\right|_{Q} a_{j}^{i-1}$ for some subspace $Q \subseteq X$, then there exists a neighbourhood $W \subseteq X$ of Q such that $a_{i}^{i}=\left.\right|_{W} a_{j}^{i}$.

Indeed, if $a_{i}^{i-1}=\left.\right|_{Q} a_{j}^{i-1}$, then, by (2),

$$
p_{1}\left(a_{i}^{i-1}(x), a_{j}^{i-1}(x)\right)=1
$$

for $x \in Q$. There exists a neighbourhood $W \subseteq X$ of Q such that

$$
p_{1}\left(a_{i}^{i-1}(x), a_{j}^{i-1}(x)\right)>0
$$

for $x \in W$. Then, by (3),

$$
q_{1}\left(a_{i}^{i-1}(x), a_{j}^{i-1}(x)\right)=a_{i}^{i-1}(x)
$$

for $x \in W$. By (4),

$$
a_{i}^{i}(x)=q_{1}\left(a_{i}^{i-1}(x), a_{i}^{i-1}(x)\right)=a_{i}^{i-1}(x)
$$

(because $q_{1}(z, z)=z$ by (2)) and

$$
a_{j}^{i}(x)=q_{1}\left(a_{i}^{i-1}(x), a_{j}^{i-1}(x)\right) .
$$

Thus $a_{i}^{i}(x)=a_{j}^{i}(x)$ for $x \in W$, as required.
Take a subspace $Z \subseteq X$.
Claim 3. If $a_{i}=\left.\right|_{Z} a_{j}$, then there exists a neighbourhood $W \subseteq X$ of Z such that $\tilde{a}_{i}=\left.\right|_{W} \tilde{a}_{j}$.

This follows from the construction of \tilde{a}_{i} and the claims 1 and 2.
Consider the equivalence

$$
R=\left\{(i, j): a_{i}=\left.\right|_{z} a_{j}\right\}
$$

on the set $I=\{1, \ldots, n\}$. It follows from the claim 3 that there exists a neighbourhood $V \subseteq X$ of Z such that $\tilde{a}_{i}=\left.\right|_{V} \tilde{a}_{j}$ for all $(i, j) \in R$. We have the commutative diagram

where π is the projection. The function \bar{l} is injective. Consider the elements $U \in\langle I\rangle$,

$$
U=\sum_{i} u_{i}<i>
$$

and $\bar{U}=\langle\pi\rangle(U) \in\langle I / R\rangle$. We have

$$
\left.A\right|_{Z}=\langle l\rangle(U)=\langle\bar{l}\rangle(\bar{U}) \quad \text { and }\left.\quad \tilde{A}\right|_{V}=\langle d\rangle(U)=\langle\bar{d}\rangle(\bar{U}) .
$$

If $\left.A\right|_{Z}=0$, then $\bar{U}=0$ because $\langle\bar{l}\rangle$ is injective. Then $\left.\tilde{A}\right|_{V}=0$.
6.2. Corollary. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

such that $A \stackrel{r}{=} 0$. Then there exist maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim a_{i}$, such that the ensemble

$$
\begin{equation*}
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}> \tag{5}
\end{equation*}
$$

satisfies the condition $\tilde{A} \underset{\Gamma}{\stackrel{r}{\Gamma}} 0$ for some open cover Γ of X.
Proof. Since $A \stackrel{r}{=} 0$, we have $A=\left.\right|_{T} 0$ for all $T \in \mathcal{F}_{r}(\underset{\sim}{X})$. By Lemma 6.1, there are maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim a_{i}$, such that the ensemble \tilde{A} given by (5) satisfies the condition $\tilde{A}=\left.\right|_{V(T)} 0$ for some neighbourhood $V(T) \subseteq X$ of each $T \in \mathcal{F}_{r}(X)$. There is an open cover Γ of X such that every $W \in \Gamma(r)$ is included in $V(T)$ for some $T \in \mathcal{F}_{r}(X)$. Then $\tilde{A}=\left.\right|_{W} 0$ for all $W \in \Gamma(r)$, that is, $\tilde{A} \underset{\Gamma}{\stackrel{r}{=}} 0$.
6.3. Lemma. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

and a map $b \in Y^{X}$. Then there exist maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim a_{i}$, such that the ensemble

$$
\begin{equation*}
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}> \tag{6}
\end{equation*}
$$

has the following property: if $A=\left.\right|_{Z}$ for some subspace $Z \subseteq X$, then $\tilde{A}=\left.\right|_{V}$ for some neighbourhood $V \subseteq X$ of Z.

Proof. Let Π be the set of subspaces $Z \subseteq X$ such that $A=\left.\right|_{Z}$. By Lemma 6.1, there are maps $\bar{a}_{i}, \bar{b} \in Y^{X}, \bar{a}_{i} \sim a_{i}$ and $\bar{b} \sim b$, such that the ensemble

$$
\bar{A}=\sum_{i} u_{i}<\bar{a}_{i}>
$$

satisfies the condition $\bar{A}=\left.\right|_{V(Z)}<\bar{b}>$ for some neighbourhood $V(Z) \subseteq X$ of each $Z \in \Pi$. By Lemma 5.1, there are maps $\tilde{a}_{i} \in Y^{X}, \tilde{a}_{i} \sim \bar{a}_{i}$, such that the ensemble \tilde{A} given by (6) satisfies the condition $\tilde{A}=\left.\right|_{V(Z)}$ for all $Z \in \Pi$.
6.4. Corollary. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

and a map $b \in Y^{X}$. Suppose that $A \stackrel{r}{=}$. Then there exist maps $\tilde{a}_{i} \in Y^{X}$, $\tilde{a}_{i} \sim a_{i}$, such that the ensemble

$$
\begin{equation*}
\tilde{A}=\sum_{i} u_{i}<\tilde{a}_{i}> \tag{7}
\end{equation*}
$$

satisfies the condition $\tilde{A} \underset{\Gamma}{\Gamma}$ for some open cover Γ of X.

This follows from Lemma 6.3 as Corollary 6.2 does from Lemma 6.1.

§ 7. Symmetric characterization of similarity

Let X and Y be cellular spaces, X compact.
7.1. Lemma. Consider a cover Γ of X, an open subspace $G \in \Gamma$, a closed subspace $D \subseteq G$, and maps a, $b_{0}, b_{1} \in Y^{X}$ such that $\left.a \sim\right|_{G} b_{0}, b_{0} \sim b_{1} \operatorname{rel} X \backslash D$, and $a \underset{\Gamma}{\stackrel{r-1}{\sim}} b_{0}$ in the following sense: there is an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

where $a_{i} \sim a$, such that $\left.A \stackrel{r-1}{\bar{\Gamma}}<b_{0}\right\rangle$. Then there exists an ensemble $C \in\left\langle Y^{X}\right\rangle$,

$$
C=\sum_{k} w_{k}<c_{k}>
$$

where $c_{k} \sim a$, such that $C \stackrel{r}{=}<b_{1}>-<b_{0}>$.
Proof. There is a homotopy $h_{t} \in Y^{X}, t \in[0,1]$, such that $h_{s}=b_{s}, s=0,1$, and $h_{t}=\left.\right|_{X \backslash D} b_{0}$. Choose a continuous function $\phi: X \rightarrow[0,1]$ such that $\left.\phi\right|_{E}=1$ and $\left.\phi\right|_{X \backslash F}=0$ for some subspaces $E, F \subseteq X, E$ open, F closed, such that

$$
D \subseteq E \subseteq F \subseteq G
$$

Let $p \in Y^{G}$ be a map such that $\left.p \sim b_{0}\right|_{G}$. Choose a homotopy $K_{t}(p) \in Y^{G}$, $t \in[0,1]$, such that $K_{0}(p)=p, K_{1}(p)=\left.b_{0}\right|_{G}$, and, moreover, $K_{t}(p)=\left.b_{0}\right|_{G}$ if $p=\left.b_{0}\right|_{G}$. Define a homotopy $L_{t}(p) \in Y^{G}, t \in[-1,1]$, by the rules

$$
L_{t}(p)(x)=K_{\phi(x)(t+1)}(p)(x), \quad x \in G,
$$

for $t \in[-1,0]$ and

$$
L_{t}(p)(x)= \begin{cases}h_{t}(x) & \text { if } x \in E, \\ K_{\phi(x)}(p)(x) & \text { if } x \in G \backslash D\end{cases}
$$

for $t \in[0,1]$. We have $L_{-1}(p)=p, L_{s}(p)=\left.\right|_{E} b_{s}, s=0,1, L_{0}(p)=\left.\right|_{G \backslash D} L_{1}(p)$, and $L_{t}(p)=\left.\right|_{G \backslash F} p$. Moreover, $L_{s}\left(\left.b_{0}\right|_{G}\right)=\left.b_{s}\right|_{G}, s=0,1$.

Let $d \in Y^{X}$ be a map such that $\left.d \sim\right|_{G} b_{0}$. Define a homotopy $l_{t}(d) \in Y^{X}$, $t \in[-1,1]$, by the rules $l_{t}(d)=\left.\right|_{G} L_{t}\left(\left.d\right|_{G}\right)$ and $l_{t}(d)=\left.\right|_{X \backslash F} d$. We have $l_{-1}(d)=d$, $l_{s}(d)=\left.\right|_{E} b_{s}, s=0,1, l_{0}(d)=\left.\right|_{X \backslash D} l_{1}(d)$, and $l_{t}(d)=\left.\right|_{X \backslash F} d$.

Since $\left.a_{i} \sim a \sim\right|_{G} b_{0}$, the homotopies $l_{t}\left(a_{i}\right)$ are defined. Put

$$
C=\sum_{i} u_{i}\left(<l_{1}\left(a_{i}\right)>-<l_{0}\left(a_{i}\right)>\right) .
$$

We have $l_{s}\left(a_{i}\right) \sim a_{i} \sim a$. It remains to show that $C \stackrel{r}{=}\left\langle b_{1}\right\rangle-<b_{0}>$. Take $T \in \mathcal{F}_{r}(X)$. We check that

$$
\begin{equation*}
C=\left.\right|_{T}<b_{1}>-<b_{0}>. \tag{8}
\end{equation*}
$$

We are in one of the following three cases.
Case 1: $T \cap D=\left\{\bigwedge_{X}\right\}$. We have $l_{0}\left(a_{i}\right)=\left.\right|_{T} l_{1}\left(a_{i}\right)$ and $b_{0}=\left.\right|_{T} b_{1}$. Thus both the sides of (8) are zero on T.

Case 2: $T \cap F=\left\{\Varangle_{X}, x_{*}\right\}$, where $x_{*} \in E$ and $x_{*} \neq \bigwedge_{X}$. Put $Z=T \backslash\left\{x_{*}\right\}$. We have $Z \in \mathcal{F}_{r-1}(X)$ and $Z \cap F=\left\{\bigwedge_{X}\right\}$. Define functions $e_{s}: Y^{Z} \rightarrow Y^{T}, s=0,1$, by the rules $\left.e_{s}(q)\right|_{Z}=q$ and $e_{s}(q)\left(x_{*}\right)=b_{s}\left(x_{*}\right)$. We have $e_{s}\left(\left.b_{0}\right|_{Z}\right)=\left.b_{s}\right|_{T}$ and $e_{s}\left(\left.a_{i}\right|_{Z}\right)=\left.l_{s}\left(a_{i}\right)\right|_{T}$. Thus

$$
\left.\left.\left(<b_{0}>-\sum_{i} u_{i}<a_{i}>\right)\right|_{Z} \stackrel{\left\langle e_{s}\right\rangle}{\longmapsto}\left(<b_{s}>-\sum_{i} u_{i}<l_{s}\left(a_{i}\right)>\right)\right|_{T} .
$$

Since $A \stackrel{r-1}{=}<b_{0}>$, the expression on the left is zero. Thus the one on the right is also zero, which implies (8).

For a finite space Z, let $\|Z\|$ be the cardinality of $Z \backslash\{\uparrow\}$.
Case 3: $\|T \cap G\| \geqslant 2$. We have $T=W \cup Z$ for some subspaces $W, Z \subseteq X$ such that $W \cap Z=\left\{\Varangle_{X}\right\}, W \subseteq G, Z \cap F=\left\{\Varangle_{X}\right\}$, and $\|Z\| \leqslant r-2$. Consider the subspace $M=G \cup Z \subseteq X$. Define functions $f_{s}: Y^{M} \rightarrow Y^{T}, s=0,1$. Take $q \in Y^{M}$. If $\left.q \sim\right|_{G} b_{0}$, put $f_{s}(q)=\left.\right|_{W} L_{s}\left(\left.q\right|_{G}\right)$ and $f_{s}(q)=\left.\right|_{Z} q$. Otherwise, put $f_{S}(q)=\Psi_{Y}^{T}$. We have $f_{s}\left(\left.b_{0}\right|_{M}\right)=b_{s} \mid T$ and $f_{S}\left(\left.a_{i}\right|_{M}\right)=\left.l_{s}\left(a_{i}\right)\right|_{T}$. Thus

$$
\left.\left.\left(<b_{0}>-\sum_{i} u_{i}<a_{i}>\right)\right|_{M} \stackrel{\left\langle f_{s}\right\rangle}{\longmapsto}\left(<b_{s}>-\sum_{i} u_{i}<l_{s}\left(a_{i}\right)>\right)\right|_{T} .
$$

Since M is included in some element of $\Gamma(r-1)$ and $A \stackrel{r-1}{\bar{\Gamma}}<b_{0}>$, the expression on the left is zero. Thus the one on the right is also zero, which implies (8).
7.2. Lemma. Let $a, b, \tilde{b} \in Y^{X}$ be maps such that $a \stackrel{r-1}{\sim} b \sim \tilde{b}$ and (*) $\left.a \sim\right|_{S} b$ for any $S \in \mathcal{F}_{1}(X)$. Then there exists an ensemble $C \in\left\langle Y^{X}\right\rangle$,

$$
C=\sum_{k} w_{k}<c_{k}>
$$

where $c_{k} \sim a$, such that $C \stackrel{r}{=}<\tilde{b}>-$.
The condition $\left(^{*}\right)$ is satisfied automatically if X or Y is 0 -connected. It also follows from the condition $a \stackrel{r-1}{\sim} b$ if $r \geqslant 2$ (cf. the proof of Theorem 7.3).

Proof. There is an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

whre $a_{i} \sim a$, such that $A \stackrel{r-1}{=}$. Using Corollary 6.4, replace each a_{i} by a homotopic map to get $A \stackrel{r-1}{\bar{\Gamma}}$ for some open cover Γ of X.

Call a subspace $G \subseteq X$ primitive if the map in : $G \rightarrow X$ is homotopic to the composition

$$
G \xrightarrow{f} S \xrightarrow{\text { in }} X
$$

for some subspace $S \in \mathcal{F}_{1}(X)$ and map f. Since X is Hausdorff and locally contractible, for any open subspace $U \subseteq X$ and point $x \in U$, there exists a primitive open subspace $G \subseteq X$ such that $x \in G$ and $G \subseteq U$. We replace the cover Γ by its refinement consisting of primitive open subspaces. Then it follows from (*) that $\left.a \sim\right|_{G} b$ for each $G \in \Gamma$.

Choose a finite partition of unity subordinate to Γ :

$$
\sum_{j=1}^{m} \phi_{j}=1
$$

where each $\phi_{j}: X \rightarrow[0,1]$ is a continuous function such that $\left.\phi_{j}\right|_{X \backslash D_{j}}=0$ for some closed subspace $D_{j} \subseteq X$ such that $D_{j} \subseteq G_{j}$ for some $G_{j} \in \Gamma$. Choose a homotopy $h_{t} \in Y^{X}, t \in[0,1]$, such that $h_{0}=b$ and $h_{1}=\tilde{b}$. Define maps $b_{j} \in Y^{X}, 0 \leqslant j \leqslant m$, by the rule

$$
b_{j}(x)=h_{\phi_{1}(x)+\ldots+\phi_{j}(x)}(x) .
$$

We have $b_{0}=b, b_{m}=\tilde{b}$, and $b_{j-1} \sim b_{j} \operatorname{rel} X \backslash D_{j}$.
Take $j \geqslant 1$. Applying Lemma 5.1 to the congruence $A \underset{\Gamma}{\stackrel{r-1}{\Gamma}}$ and the homotopy $b \sim b_{j-1}$, we get an ensemble $A_{j} \in\left\langle Y^{X}\right\rangle$,

$$
A_{j}=\sum_{i} u_{i}<a_{j i}>,
$$

where $a_{j i} \sim a_{i}(\sim a)$, such that $A_{j} \stackrel{r-1}{\bar{\Gamma}}<b_{j-1}>$. We have $\left.a \sim\right|_{G_{j}} b \sim b_{j-1}$. By Lemma 7.1, there is an ensemble $C_{j} \in\left\langle Y^{X}\right\rangle$,

$$
C_{j}=\sum_{k} w_{j k}<c_{j k}>
$$

where $c_{j k} \sim a$, such that $C_{j} \stackrel{r}{=}\left\langle b_{j}>-<b_{j-1}>\right.$.
We get

$$
\sum_{j=1}^{m} C_{j}=<b_{m}>-<b_{0}>=<\tilde{b}>-
$$

7.3. Theorem. Consider maps $a, b \in Y^{X}$ and ensembles $A, B \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>\quad \text { and } \quad B=\sum_{j} v_{j}<b_{j}>
$$

where

$$
\sum_{i} u_{i}=\sum_{j} v_{j}=1
$$

$a_{i} \sim a$, and $b_{j} \sim b$, such that $A \stackrel{r}{=} B$. Then $a \stackrel{r}{\sim} b$.
Proof. Induction on r. If $r \leqslant 0$, the assertion is trivial. Suppose $r \geqslant 1$.
For $S \in \mathcal{F}_{1}(X)$, we have $\left.a \sim\right|_{S} b$ because

$$
<\left[\left.a\right|_{S}\right]>=\sum_{i} u_{i}<\left[\left.a_{i}\right|_{S}\right]>=\left.\llbracket A\right|_{S} \rrbracket=\left.\llbracket B\right|_{S} \rrbracket=\sum_{j} v_{j}<\left[\left.b_{j}\right|_{S}\right]>=<\left[\left.b\right|_{S}\right]>
$$

in $\langle[S, Y]\rangle$. Here $\llbracket ? \rrbracket:\left\langle Y^{S}\right\rangle \rightarrow\langle[S, Y]\rangle$ is the homomorphism induced by the projection [?] : $Y^{S} \rightarrow[S, Y]$.

By induction hypothesis, $a \stackrel{r-1}{\sim}_{\sim} b$. Take j. Since $b \sim b_{j}$, Lemma 7.2 gives an ensemble $C_{j} \in\left\langle Y^{X}\right\rangle$,

$$
C_{j}=\sum_{k} w_{j k}<c_{j k}>
$$

where $c_{j k} \sim a$, such that $C_{j} \stackrel{r}{=}\left\langle b_{j}\right\rangle-\langle b\rangle$. We have

$$
A-\sum_{j} v_{j} C_{j} \stackrel{r}{=} A-\sum_{j} v_{j}\left(<b_{j}>-\right)=A-B+\stackrel{r}{=},
$$

which proves the assertion.

§ 8. Similarity is an equivalence

Let X and Y be cellular spaces, X compact.
8.1. Theorem. The relation $\stackrel{r}{\sim}$ on Y^{X} is an equivalence.

This was conjectured by A. V. Malyutin.
Proof. Reflexivity is trivial. Symmetry follows from Theorem 7.3. It remains to prove transitivity.

Let maps $a, b, c \in Y^{X}$ satisfy $a \stackrel{r}{\sim} b \stackrel{r}{\sim} c$. There are ensembles $A, B \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>, \quad \text { and } \quad B=\sum_{j} v_{j}<b_{j}>,
$$

where $a_{i} \sim a$ and $b_{j} \sim b$, such that $A \stackrel{r}{=}$ and $B \stackrel{r}{=}<c>$. For each j, we have $b \sim b_{j}$ and, by Lemma 5.1, there is an ensemble $A_{j} \in\left\langle Y^{X}\right\rangle$,

$$
A_{j}=\sum_{i} u_{i}<a_{j i}>
$$

where $a_{j i} \sim a_{i}(\sim a)$, such that $A_{j} \stackrel{r}{=}\left\langle b_{j}>\right.$. We have

$$
\sum_{j} v_{j} A_{j} \stackrel{r}{=} \sum_{j} v_{j}<b_{j}>=B \stackrel{r}{=}<c>
$$

Thus $a \stackrel{r}{\sim} c$.
Using Theorem 5.2, we introduce the relation of r-similarity on $[X, Y]$:

$$
[a] \stackrel{r}{\sim}[b] \quad \Leftrightarrow \quad a \stackrel{r}{\sim} b .
$$

It follows from Theorem 8.1 that it is an equivalence.

§ 9. The Hopf invariant

Let X and Y be spaces. Let $e \in C^{m}(Y)$ and $f \in C^{n}(Y)(m, n \geqslant 1)$ be (singular) cocycles and $g \in C^{m+n-1}(Y)$ be a cochain with $\delta g=e f$. Put

$$
[X, Y]_{e, f}=\left\{\boldsymbol{a}: \boldsymbol{a}^{*}([e])=0 \text { and } \boldsymbol{a}^{*}([f])=0 \text { in } H^{\bullet}(X)\right\} \subseteq[X, Y]
$$

and

$$
Y_{e, f}^{X}=\left\{a:[a] \in[X, Y]_{e, f}\right\} \subseteq Y^{X}
$$

Given $a \in Y_{e, f}^{X}$, choose a cochain $p \in C^{m-1}(X)$ such that $\delta p=a^{\#}(e)$ and put

$$
q=p a^{\#}(f)-a^{\#}(g) \in C^{m+n-1}(X)
$$

Then $\delta q=0$ and the class $[q] \in H^{m+n-1}(X)$ neither depends on the choice of p nor changes if a is replaced by a homotopic map. Putting $h([a])=[q]$, we get the function

$$
h:[X, Y]_{e, f} \rightarrow H^{m+n-1}(X),
$$

which we call the Hopf invariant [7].
9.1. Lemma. Let X_{0} be a space and $t: X \rightarrow X_{0}$ be a map. We have the Hopf invariants

$$
h_{0}:\left[X_{0}, Y\right]_{e, f} \rightarrow H^{m+n-1}\left(X_{0}\right) \quad \text { and } \quad h:[X, Y]_{e, f} \rightarrow H^{m+n-1}(X)
$$

Given $a_{0} \in Y^{X_{0}}$, put $a=a_{0} \circ t \in Y^{X}$. If $a_{0} \in Y_{e, f}^{X_{0}}$, then $a \in Y_{e, f}^{X}$ and $h([a])=t^{*}\left(h_{0}\left(\left[a_{0}\right]\right)\right)$ in $H^{m+n-1}(X)$.
9.2. Lemma. Take elements $\boldsymbol{u} \in \pi_{m}(Y)$ and $\boldsymbol{v} \in \pi_{n}(Y)$. Put

$$
\Delta=\left\langle\boldsymbol{u}^{*}([e]),\left[S^{m}\right]\right\rangle\left\langle\boldsymbol{v}^{*}([f]),\left[S^{n}\right]\right\rangle+(-1)^{m n}\left\langle\boldsymbol{u}^{*}([f]),\left[S^{m}\right]\right\rangle\left\langle\boldsymbol{v}^{*}([e]),\left[S^{n}\right]\right\rangle \in \mathbf{Z}
$$

(the last two Kronecker indices vanish unless $m=n$). Consider the Hopf invariant

$$
h:\left[S^{m+n-1}, Y\right]_{e, f} \rightarrow H^{m+n-1}\left(S^{m+n-1}\right)
$$

and the Whitehead product $\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil \in \pi_{m+n-1}(Y)=\left[S^{m+n-1}, Y\right]$. Then $\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil \in$ $\left[S^{m+n-1}, Y\right]_{e, f}$ and

$$
\left\langle h(\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil),\left[S^{m+n-1}\right]\right\rangle=(-1)^{m n+m+n} \Delta .
$$

Caution: the sign in the last equality is sensitive to certain conventions.
Proof (after [7, § 19]). We assume that $S^{m} \vee S^{n} \subseteq S^{m} \times S^{n}$ in the standard way. We have the commutative diagram

where $[\phi]=\left\lfloor\left[\mathrm{in}_{1}\right],\left[\mathrm{in}_{2}\right]\right\rceil$ in $\pi_{m+n-1}\left(S^{m} \vee S^{n}\right)$. We have the chain of homomorphisms and sendings

Choose representatives $u: S^{m} \rightarrow Y$ and $v: S^{n} \rightarrow Y$ of \boldsymbol{u} and \boldsymbol{v}, respectively. Consider the maps

$$
a: S^{m+n-1} \xrightarrow{\phi} S^{m} \vee S^{n} \xrightarrow{w=u \underline{\nabla} v} Y .
$$

Clearly, $[a]=\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil$ in $\pi_{m+n-1}(Y)$.
Choose cocycles $\hat{e} \in C^{m}\left(S^{m} \times S^{n}\right)$ and $\hat{f} \in C^{n}\left(S^{m} \times S^{n}\right)$ and a cochain $\hat{g} \in C^{m+n-1}\left(S^{m} \times S^{n}\right)$ such that

$$
\left.\hat{e}\right|_{S^{m} \vee S^{n}}=w^{\#}(e),\left.\quad \hat{f}\right|_{S^{m} \vee S^{n}}=w^{\#}(f), \quad \text { and }\left.\quad \hat{g}\right|_{S^{m} \vee S^{n}}=w^{\#}(g) .
$$

We have

$$
a^{\#}(e)=\phi^{\#}\left(w^{\#}(e)\right)=\phi^{\#}\left(\left.\hat{e}\right|_{S^{m} \vee S^{n}}\right)=\left.\chi^{\#}(\hat{e})\right|_{S^{m+n-1}}
$$

in $C^{m}\left(S^{m+n-1}\right)$. It follows that $a^{*}([e])=0$ in $H^{m}\left(S^{m+n-1}\right)$ (which is automatic unless $n=1$). Similarly, $a^{*}([f])=0$ in $H^{n}\left(S^{m+n-1}\right)$. Thus $[a] \in$ $\left[S^{m+n-1}, Y\right]_{e, f}$.

Let $z_{k} \in H^{k}\left(S^{k}\right)$ be the class with $\left\langle z_{k},\left[S^{k}\right]\right\rangle=1$. One easily sees that

$$
[\hat{e}]=\left\langle\boldsymbol{u}^{*}([e]),\left[S^{m}\right]\right\rangle\left(z_{m} \times 1\right)+\left\langle\boldsymbol{v}^{*}([e]),\left[S^{n}\right]\right\rangle\left(1 \times z_{n}\right)
$$

in $H^{m}\left(S^{m} \times S^{n}\right)$ and

$$
[\hat{f}]=\left\langle\boldsymbol{v}^{*}([f]),\left[S^{n}\right]\right\rangle\left(1 \times z_{n}\right)+\left\langle\boldsymbol{u}^{*}([f]),\left[S^{m}\right]\right\rangle\left(z_{m} \times 1\right)
$$

in $H^{n}\left(S^{m} \times S^{n}\right)$. Thus $[\hat{e}][\hat{f}]=\Delta\left(z_{m} \times z_{n}\right)$ in $H^{m+n}\left(S^{m} \times S^{n}\right)$ and

$$
\begin{equation*}
\left\langle[\hat{e}][\hat{f}],\left[S^{m} \times S^{n}\right]\right\rangle=(-1)^{m n} \Delta \tag{10}
\end{equation*}
$$

Choose a cochain $\tilde{p} \in C^{m-1}\left(D^{m+n}\right)$ such that $\delta \tilde{p}=\chi^{\#}(\hat{e})$. Put

$$
\tilde{q}=\tilde{p} \chi^{\#}(\hat{f})-\chi^{\#}(\hat{g}) \in C^{m+n-1}\left(D^{m+n}\right)
$$

Put

$$
p=\left.\tilde{p}\right|_{S^{m+n-1}} \in C^{m-1}\left(S^{m+n-1}\right) \quad \text { and } \quad q=\left.\tilde{q}\right|_{S^{m+n-1}} \in C^{m+n-1}\left(S^{m+n-1}\right) .
$$

We have

$$
\delta p=\left.\delta \tilde{p}\right|_{S^{m+n-1}}=\left.\chi^{\#}(\hat{e})\right|_{S^{m+n-1}}=\phi^{\#}\left(\left.\hat{e}\right|_{S^{m} \vee S^{n}}\right)=\phi^{\#}\left(w^{\#}(e)\right)=a^{\#}(e)
$$

and

$$
\begin{array}{r}
q=\left.p \chi^{\#}(\hat{f})\right|_{S^{m+n-1}}-\left.\chi^{\#}(\hat{g})\right|_{S^{m+n-1}}=p \phi^{\#}\left(\left.\hat{f}\right|_{S^{m} \vee S^{n}}\right)-\phi^{\#}\left(\left.\hat{g}\right|_{S^{m} \vee S^{n}}\right)= \\
=p \phi^{\#}\left(w^{\#}(f)\right)-\phi^{\#}\left(w^{\#}(g)\right)=p a^{\#}(f)-a^{\#}(g)
\end{array}
$$

Thus $\delta q=0$ and $h([a])=[q]$.
We have

$$
\delta \tilde{q}=\chi^{\#}(\hat{e}) \chi^{\#}(\hat{f})-\delta \chi^{\#}(\hat{g})=\chi^{\#}(\hat{e} \hat{f}-\delta \hat{g})
$$

We have the chain of homomorphisms and sendings

Collating it with (9) and using (10), we get

$$
\left\langle[q],\left[S^{m+n-1}\right]\right\rangle=(-1)^{m+n}\left\langle[\hat{e}][\hat{f}],\left[S^{m} \times S^{n}\right]\right\rangle=(-1)^{m n+m+n} \Delta .
$$

This is what we need because $h(\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil)=h([a])=[q]$.

Let Γ be an open cover of X. Consider the differential graded ring $C^{\bullet}(\Gamma)$ of Γ-cochains of X (that is, functions on the set of singular simplices subordinate to Γ). The projection

$$
\left.?\right|_{\Gamma}: C^{\bullet}(X) \rightarrow C^{\bullet}(\Gamma)
$$

is a morphism of differential graded rings; it induces an isomorphism of cohomology rings,

$$
\left.?\right|_{\Gamma}: H^{\bullet}(X) \rightarrow H^{\bullet}(\Gamma)
$$

9.3. Lemma. Given $a \in Y_{e, f}^{X}$, choose $\tilde{p} \in C^{m-1}(\Gamma)$ such that $\delta \tilde{p}=\left.a^{\#}(e)\right|_{\Gamma}$ and put

$$
\tilde{q}=\left.\tilde{p} a^{\#}(f)\right|_{\Gamma}-\left.a^{\#}(g)\right|_{\Gamma} \in C^{m+n-1}(\Gamma)
$$

Then $\delta \tilde{q}=0$ and $\left.h([a])\right|_{\Gamma}=[\tilde{q}]$ in $H^{m+n-1}(\Gamma)$.
We suppose that X and Y are cellular spaces and X is compact.
9.4. Theorem. Consider an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

where $a_{i} \in Y_{e, f}^{X}$, such that $A \stackrel{2}{=} 0$. Then

$$
\sum_{i} u_{i} h\left(\left[a_{i}\right]\right)=0
$$

in $H^{m+n-1}(X)$.
Thus h may be called a partial invariant of degree at most 2 .
Proof. Using Corollary 6.2, replace a_{i} by homotopic maps so that $A \underset{\Gamma}{\overline{=}} 0$ for some open cover Γ of X.

Let $B \subseteq C^{m}(\Gamma)$ be the subgroup generated by the coboundaries $\left.a_{i}^{\#}(e)\right|_{\Gamma}$. It is free because finitely generated and torsion-free. Thus there is a homomorphiam $P: B \rightarrow C^{m-1}(\Gamma)$ such that $\delta P(b)=b, b \in B$. Put

$$
\tilde{q}_{i}=\left.P\left(\left.a^{\#}(e)\right|_{\Gamma}\right) a^{\#}(f)\right|_{\Gamma}-\left.a^{\#}(g)\right|_{\Gamma} \in C^{m+n-1}(\Gamma)
$$

By Lemma 9.3, $\delta \tilde{q}_{i}=0$ and

$$
\left.h\left(\left[a_{i}\right]\right)\right|_{\Gamma}=\left[\tilde{q}_{i}\right]
$$

in $H^{m+n-1}(\Gamma)$.
Take a singular simplex $\sigma: \Delta^{m+n-1} \rightarrow G, G \in \Gamma$. Let

$$
\sigma^{\prime}: \Delta^{m-1} \rightarrow G \quad \text { and } \quad \sigma^{\prime \prime}: \Delta^{n} \rightarrow G
$$

be its front and back faces, respectively.

The group $\operatorname{Hom}(B, \mathbf{Q})$ is formed by homomorphisms $\langle ?, T\rangle$, where T runs over $C_{m}(\Gamma ; \mathbf{Q})$, the group of rational Γ-chains in X. Thus there is a chain $T \in C_{m}(\Gamma ; \mathbf{Q})$ such that

$$
\left\langle P(b), \sigma^{\prime}\right\rangle=\langle b, T\rangle, \quad b \in B
$$

We have

$$
T=\sum_{k} c_{k} \tau_{k}
$$

where $c_{k} \in \mathbf{Q}$ and $\tau_{k}: \Delta^{m} \rightarrow G_{k}, G_{k} \in \Gamma$. Thus

$$
\left\langle P\left(\left.a_{i}^{\#}(e)\right|_{\Gamma}\right), \sigma^{\prime}\right\rangle=\left\langle\left. a_{i}^{\#}(e)\right|_{\Gamma}, T\right\rangle=\sum_{k} c_{k}\left\langle\left. a_{i}^{\#}(e)\right|_{\Gamma}, \tau_{k}\right\rangle
$$

We get

$$
\begin{gathered}
\left\langle\tilde{q}_{i}, \sigma\right\rangle=(-1)^{(m-1) n}\left\langle P\left(\left.a_{i}^{\#}(e)\right|_{\Gamma}\right), \sigma^{\prime}\right\rangle\left\langle\left. a_{i}^{\#}(f)\right|_{\Gamma}, \sigma^{\prime \prime}\right\rangle-\left\langle\left. a_{i}^{\#}(g)\right|_{\Gamma}, \sigma\right\rangle= \\
=(-1)^{(m-1) n} \sum_{k} c_{k}\left\langle\left. a_{i}^{\#}(e)\right|_{\Gamma}, \tau_{k}\right\rangle\left\langle\left. a_{i}^{\#}(f)\right|_{\Gamma}, \sigma^{\prime \prime}\right\rangle-\left\langle\left. a_{i}^{\#}(g)\right|_{\Gamma}, \sigma\right\rangle= \\
=(-1)^{(m-1) n} \sum_{k} c_{k}\left\langle\left(\left.a_{i}\right|_{G \cup G_{k}}\right)^{\#}(e), \tau_{k}\right\rangle\left\langle\left(\left.a_{i}\right|_{G \cup G_{k}}\right)^{\#}(f), \sigma^{\prime \prime}\right\rangle-\left\langle\left(\left.a_{i}\right|_{G}\right)^{\#}(g), \sigma\right\rangle .
\end{gathered}
$$

We have found functions $R_{k}: Y^{G \cup G_{k}} \rightarrow \mathbf{Q}$ and $S: Y^{G} \rightarrow \mathbf{Q}$ such that

$$
\left\langle\tilde{q}_{i}, \sigma\right\rangle=\sum_{k} R_{k}\left(\left.a_{i}\right|_{G \cup G_{k}}\right)-S\left(\left.a_{i}\right|_{G}\right)
$$

for all i. Since $A \underset{\Gamma}{\stackrel{2}{\Gamma}} 0$, we have $\left.A\right|_{G \cup G_{k}}=0$ and $\left.A\right|_{G}=0$. Thus

$$
\sum_{i} u_{i}\left\langle\tilde{q}_{i}, \sigma\right\rangle=0
$$

Since σ was taken arbitrarily, we have

$$
\sum_{i} u_{i} \tilde{q}_{i}=0
$$

We get

$$
\left.\sum_{i} u_{i} h\left(\left[a_{i}\right]\right)\right|_{\Gamma}=\sum_{i} u_{i}\left[\tilde{q}_{i}\right]=0
$$

Since restriction to Γ here is an isomorphism, we get

$$
\sum_{i} u_{i} h\left(\left[a_{i}\right]\right)=0 .
$$

9.5. Corollary. Let $a, b \in Y_{e, f}^{X}$ satisfy $a \stackrel{2}{\sim} b$. Then $h([a])=h([b])$.

Proof. There is an ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{i} u_{i}<a_{i}>
$$

where $a_{i} \sim a$, such that $A \stackrel{2}{=}$. Since $A=\left.\right|_{\{\triangleleft\}}$, we have

$$
\sum_{i} u_{i}=1
$$

By Theorem 9.4,

$$
\sum_{i} u_{i} h\left(\left[a_{i}\right]\right)=h([b]) .
$$

Since $\left[a_{i}\right]=[a]$, we get $h([a])=h([b])$.

§ 10. Maps of $S^{p} \times S^{n}$

This section does not depend of the rest of the paper. We recall a theorem of G. W. Whitehead about the fibration of free spheroids (Theorem 10.1) and deduce Lemma 10.3 about certain maps $S^{p} \times S^{n} \rightarrow Y$ (we need it in § 11).

We fix numbers $p, n \geqslant 1$ and a space Y. Let $\Omega^{n} Y$ be the space of maps $S^{n} \rightarrow Y$, as usual. Let

$$
\epsilon: S^{p} \times S^{n} \rightarrow S^{p} \wedge S^{n} \rightarrow S^{p+n}
$$

be the composition of the projection and the standard homeomorphism. For a map $w: S^{p+n} \rightarrow Y$, introduce the map

$$
\nabla^{n}(w): S^{p} \rightarrow \Omega^{n} Y, \quad \nabla^{n}(w)(t)(z)=w(\epsilon(t, z))
$$

Introduce the isomorphism

$$
\nabla^{n}: \pi_{p+n}(Y) \rightarrow \pi_{p}\left(\Omega^{n} Y\right), \quad[w] \mapsto\left[\nabla^{n}(w)\right]
$$

Let

$$
\mu: S^{n} \rightarrow S^{n} \vee S^{n}
$$

be the standard comultiplication. Consider the usual multiplication

$$
\Omega^{n} Y \times \Omega^{n} Y \xrightarrow{\#} \Omega^{n} Y, \quad v_{1} \# v_{2}: S^{n} \xrightarrow{\mu} S^{n} \vee S^{n} \xrightarrow{v_{1} \underline{\bar{\nabla}} v_{2}} Y
$$

For a map $v: S^{n} \rightarrow Y$, introduce the map

$$
\tau_{v}: \Omega^{n} Y \xrightarrow{v \# ?}\left(\Omega^{n} Y, v \# \Psi\right)
$$

where the target is $\Omega^{n} Y$ with the specified new basepoint. It induces the isomorphism

$$
\tau_{v *}: \pi_{p}\left(\Omega^{n} Y\right) \rightarrow \pi_{p}\left(\Omega^{n} Y, v \# ४\right)
$$

Let $\Lambda^{n} Y$ be the space of unbased maps $S^{n} \rightarrow Y$. Consider the fibration

$$
\rho: \Lambda^{n} Y \rightarrow Y, \quad v \mapsto v(\Varangle)
$$

We have $\rho^{-1}(\uparrow)=\Omega^{n}(Y)$.
10.1. Theorem (G. W. Whitehead). For a map $v: S^{n} \rightarrow Y$, the composition

$$
\boldsymbol{\Gamma}: \pi_{p+1}(Y) \xrightarrow{\lfloor ?,[v]\rceil} \pi_{p+n}(Y) \xrightarrow{\nabla^{n}} \pi_{p}\left(\Omega^{n} Y\right) \xrightarrow{\tau_{v *}} \pi_{p}\left(\Omega^{n} Y, v \# \uparrow\right)
$$

coincides up to a sign with the connecting homomorphism of the fibration ρ at the point $v \# \uparrow \in \Omega^{n} Y$. Consequently, the composition

$$
\pi_{p+1}(Y) \xrightarrow{\Gamma} \pi_{p}\left(\Omega^{n} Y, v \# \uparrow\right) \xrightarrow{\mathrm{in}_{*}} \pi_{p}\left(\Lambda^{n} Y, v \# \uparrow\right)
$$

is zero.
See $[8$, Theorem (3.2)] and $[9, \S 3]$.
For a map $v: S^{n} \rightarrow Y$, introduce the homomorphism

$$
\boldsymbol{\Psi}_{v}: \pi_{p+n}(Y) \xrightarrow{\nabla^{n}} \pi_{p}\left(\Omega^{n} Y\right) \xrightarrow{\tau_{v *}} \pi_{p}\left(\Omega^{n} Y, v \# \uparrow\right) \xrightarrow{\mathrm{in}_{*}} \pi_{p}\left(\Lambda^{n} Y, v \# \uparrow\right) .
$$

By Theorem 10.1,

$$
\begin{equation*}
\boldsymbol{\Psi}_{v}(\lfloor\boldsymbol{u},[v]\rceil)=0, \quad \boldsymbol{u} \in \pi_{p+1}(Y) \tag{11}
\end{equation*}
$$

For maps $v: S^{n} \rightarrow Y$ and $w: S^{p+n} \rightarrow Y$, introduce the map

$$
\Psi_{v}(w): S^{p} \xrightarrow{\nabla^{n}(w)} \Omega^{n} Y \xrightarrow{\tau_{v}}\left(\Omega^{n} Y, v \# \uparrow\right) \xrightarrow{\text { in }}\left(\Lambda^{n} Y, v \# \uparrow\right) .
$$

Clearly,

$$
\left[\Psi_{v}(w)\right]=\boldsymbol{\Psi}_{v}([w])
$$

in $\pi_{p}\left(\Lambda^{n} Y, v \# \uparrow\right)$.
Introduce the map

$$
\begin{equation*}
\Phi: S^{p} \times S^{n} \xrightarrow{\mathrm{id} \times \mu} S^{p} \times\left(S^{n} \vee S^{n}\right) \xrightarrow{\theta} S^{n} \vee S^{p+n}, \tag{12}
\end{equation*}
$$

where

$$
\theta: \quad\left(t, \operatorname{in}_{1}(z)\right) \mapsto \operatorname{in}_{1}(z), \quad\left(t, \operatorname{in}_{2}(z)\right) \mapsto \operatorname{in}_{2}(\epsilon(t, z)), \quad t \in S^{p}, \quad z \in S^{n}
$$

For maps $v: S^{n} \rightarrow Y$ and $w: S^{p+n} \rightarrow Y$, introduce the map

$$
\begin{equation*}
\Xi(v, w): S^{p} \times S^{n} \xrightarrow{\Phi} S^{n} \vee S^{p+n} \xrightarrow{v \underline{\boxed{V}} w} Y . \tag{13}
\end{equation*}
$$

For elements $\boldsymbol{v} \in \pi_{n}(Y)$ and $\boldsymbol{w} \in \pi_{p+n}(Y)$, put

$$
\begin{equation*}
\boldsymbol{\Xi}(\boldsymbol{v}, \boldsymbol{w})=[\Xi(v, w)] \in\left[S^{p} \times S^{n}, Y\right] \tag{14}
\end{equation*}
$$

where v and w are representatives of \boldsymbol{v} and \boldsymbol{w}, respectively.
For maps $v_{0}: S^{n} \rightarrow Y$ and $V: S^{p} \rightarrow\left(\Lambda^{n} Y, v_{0}\right)$, introduce the map

$$
V^{\times}: S^{p} \times S^{n} \rightarrow Y, \quad(t, z) \mapsto V(t)(z)
$$

For $\boldsymbol{V} \in \pi_{p}\left(\Lambda^{n} Y, v_{0}\right)$, put

$$
\boldsymbol{V}^{\times}=\left[V^{\times}\right] \in\left[S^{p} \times S^{n}, Y\right]
$$

where V is a representative of \boldsymbol{V}.
10.2. Lemma. For maps $v: S^{n} \rightarrow Y$ and $w: S^{p+n} \rightarrow Y$, one has

$$
\Xi(v, w)=\Psi_{v}(w)^{\times}: S^{p} \times S^{n} \rightarrow Y
$$

Consequently,

$$
\boldsymbol{\Xi}([v],[w])=\boldsymbol{\Psi}_{v}([w])^{\times}
$$

in $\left[S^{p} \times S^{n}, Y\right]$.
Proof. Take a point $(t, z) \in S^{p} \times S^{n}$. We have $\mu(z)=\operatorname{in}_{k}(\tilde{z})$ in $S^{n} \vee S^{n}$ for some $k \in\{1,2\}$ and $\tilde{z} \in S^{n}$. We have

$$
\begin{array}{rll}
\theta(t, \mu(z))=\theta\left(t, \operatorname{in}_{k}(\tilde{z})\right)= & (\text { if } k=1) & =\operatorname{in}_{1}(\tilde{z}) \\
& (\text { if } k=2) & =\operatorname{in}_{2}(\epsilon(t, \tilde{z}))
\end{array}
$$

in $S^{n} \vee S^{p+n}$. Thus

$$
\begin{aligned}
& \Xi(v, w)(t, z)=((v \bar{\nabla} w) \circ \Phi)(t, z)= \\
& =((v \underline{\nabla} w) \circ \theta \circ(\operatorname{id} \times \mu))(t, z)=(v \underline{\bar{V}} w)(\theta(t, \mu(z)))= \\
& \\
& (\text { if } k=1) \quad=(v \underline{\nabla} w)\left(\operatorname{in}_{1}(\tilde{z})\right)=v(\tilde{z}), \\
& (\text { if } k=2) \quad
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \Psi_{v}(w)^{\times}(t, z)=\Psi_{v}(w)(t)(z)=\tau_{v}\left(\nabla^{n}(w)(t)\right)(z)= \\
& =\left(v \# \nabla^{n}(w)(t)\right)(z)=\left(v \underline{\nabla} \nabla^{n}(w)(t)\right)(\mu(z))=\left(v \underline{\nabla} \nabla^{n}(w)(t)\right)\left(\mathrm{in}_{k}(\tilde{z})\right)= \\
& \text { (if } k=1) \quad=v(\tilde{z}), \\
& \text { (if } k=2) \quad=\nabla^{n}(w)(t)(\tilde{z})=w(\epsilon(t, \tilde{z})) \text {. }
\end{aligned}
$$

The same.
10.3. Lemma. For elements $\boldsymbol{u} \in \pi_{p+1}(Y)$, $\boldsymbol{v} \in \pi_{n}(Y)$, and $\boldsymbol{w} \in \pi_{p+n}(Y)$, one has

$$
\boldsymbol{\Xi}(\boldsymbol{v},\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil+\boldsymbol{w})=\boldsymbol{\Xi}(\boldsymbol{v}, \boldsymbol{w})
$$

in $\left[S^{p} \times S^{n}, Y\right]$.
Proof. Choose a representative $v: S^{n} \rightarrow Y$ of \boldsymbol{v}. By (11),

$$
\boldsymbol{\Psi}_{v}(\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil+\boldsymbol{w})=\boldsymbol{\Psi}_{v}(\boldsymbol{w})
$$

in $\pi_{p}\left(\Lambda^{n} Y, v \# \uparrow\right)$. Applying Lemma 10.2 yields the desired equality.
For a map $w: S^{p+n} \rightarrow Y$, introduce the map

$$
\xi(w): S^{p} \times S^{n} \xrightarrow{\epsilon} S^{p+n} \xrightarrow{w} Y .
$$

For an element $\boldsymbol{w} \in \pi_{p+n}(Y)$, put

$$
\begin{equation*}
\boldsymbol{\xi}(\boldsymbol{w})=[\xi(w)] \in\left[S^{p} \times S^{n}, Y\right] \tag{15}
\end{equation*}
$$

where w is a representative of \boldsymbol{w}.
10.4. Lemma. For en element $\boldsymbol{w} \in \pi_{p+n}(Y)$, one has

$$
\boldsymbol{\Xi}(0, \boldsymbol{w})=\boldsymbol{\xi}(\boldsymbol{w})
$$

in $\left[S^{p} \times S^{n}, Y\right]$.
Proof. Choose a representative $w: S^{p+n} \rightarrow Y$ of \boldsymbol{w}. Consider the diagram

Since the map

$$
S^{n} \xrightarrow{\mu} S^{n} \vee S^{n} \xrightarrow{4 \underline{\mathrm{Vid}}} S^{n}
$$

is homotopic to the identity, the left triangle is homotopy commutative. The other empty triangles and the square are commutative. It follows that the parallel curved arrows are homotopic.

§ 11. Fineness of 2-similarity

Put $X=S^{p} \times S^{n}(p \geqslant 1, n \geqslant 2)$. Let Y be a space with elements $\boldsymbol{u} \in$ $\pi_{p+1}(Y)$ and $\boldsymbol{v} \in \pi_{n}(Y)$. Consider the Whitehead product $\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil \in \pi_{p+n}(Y)$ and the homotopy classes

$$
\boldsymbol{k}(t)=\boldsymbol{\xi}(t\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil) \in[X, Y], \quad t \in \mathbf{Z}
$$

(see (15)).
11.1. Lemma. Let L be an abelian group and $f:[X, Y] \rightarrow L$ be an invariant of degree at most r. Then

$$
f(\boldsymbol{k}(r!+t))=f(\boldsymbol{k}(t)), \quad t \in \mathbf{Z}
$$

Proof (after [5, Lemma 1.5]). We will use the homotopy classes

$$
\boldsymbol{K}(s, t)=\boldsymbol{\Xi}(s \boldsymbol{v}, t\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil) \in[X, Y], \quad s, t \in \mathbf{Z}
$$

(see (14)). By Lemma 10.4,

$$
\begin{equation*}
\boldsymbol{K}(0, t)=\boldsymbol{k}(t) \tag{16}
\end{equation*}
$$

We have

$$
\begin{equation*}
\boldsymbol{K}(s, m+t)=\boldsymbol{K}(s, t) \quad \text { if } s \mid m \tag{17}
\end{equation*}
$$

because

$$
\begin{aligned}
\boldsymbol{\Xi}(s \boldsymbol{v},(m+t)\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil)=\boldsymbol{\Xi}(s \boldsymbol{v},\lfloor(m / s) \boldsymbol{u}, s \boldsymbol{v}\rceil+t\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil)= \\
(\text { by Lemma 10.3) }
\end{aligned} \quad=\boldsymbol{\Xi}(s \boldsymbol{v}, t\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil) .
$$

Consider the wedge of r copies of S^{n} and two copies of S^{p+n}

$$
W=S^{n} \vee \ldots \vee S^{n} \vee S^{p+n} \vee S^{p+n}
$$

and the maps

$$
\Lambda(d)=\lambda_{1}\left(d_{1}\right) \vee \ldots \lambda_{r}\left(d_{r}\right) \vee \lambda_{r+1}\left(d_{r+1}\right) \vee \mathrm{id}: W \rightarrow W
$$

$d=\left(d_{1}, \ldots, d_{r+1}\right) \in \mathcal{E}^{r+1}$, as in $\S 3$. Put

$$
\mu=\mu_{1} \vee \mu_{2}: S^{n} \vee S^{p+n} \rightarrow W
$$

where

$$
\mu_{1}: S^{n} \rightarrow S^{n} \vee \ldots \vee S^{n} \quad \text { and } \quad \mu_{2}: S^{p+n} \rightarrow S^{p+n} \vee S^{p+n}
$$

are the comultiplications. Choose a map $q: W \rightarrow Y$ with

$$
[q]=\boldsymbol{v} \underline{\bar{\nabla}} \ldots \underline{\bar{\nabla}} \boldsymbol{v} \underline{\bar{\nabla}} r!\langle\boldsymbol{u}, \boldsymbol{v}\rceil \underline{\nabla} t\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil
$$

Consider the ensemble $A \in\left\langle Y^{X}\right\rangle$,

$$
A=\sum_{d \in \mathcal{E}^{r+1}}(-1)^{|d|_{<a}}<a(d)>
$$

where

$$
a(d): X \xrightarrow{\Phi} S^{n} \vee S^{p+n} \xrightarrow{\mu} W \xrightarrow{\Lambda(d)} W \xrightarrow{q} Y,
$$

where Φ is as in (13). By Lemma 3.1, $A \stackrel{r}{=} 0$. Clearly,

$$
[q \circ \Lambda(d) \circ \mu]=\left(d_{1}+\ldots d_{r}\right) \boldsymbol{v} \underline{\nabla}\left(d_{r+1} r!+t\right)\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil
$$

in $\left[S^{n} \vee S^{p+n}, Y\right]$. Thus, by the construction of $\boldsymbol{K}(s, t)$,

$$
[a(d)]=\boldsymbol{K}\left(d_{1}+\ldots d_{r}, d_{r+1} r!+t\right)
$$

in $[X, Y]$. Thus, since f has degree at most r,

$$
\sum_{d \in \mathcal{E}^{r+1}}(-1)^{|d|} f\left(\boldsymbol{K}\left(d_{1}+\ldots d_{r}, d_{r+1} r!+t\right)\right)=0
$$

By (17), $\boldsymbol{K}\left(d_{1}+\ldots d_{r}, d_{r+1} r!+t\right)$ does not depend on d_{r+1} if $\left(d_{1}, \ldots, d_{r}\right) \neq$ $(0, \ldots, 0)$. Thus the corresponding summands cancel out. We get $f(\boldsymbol{K}(0, t))-$ $f(\boldsymbol{K}(0, r!+t))=0$. By (16), this is what we need.

Let classes $E \in H^{p+1}(Y)$ and $F \in H^{n}(Y)$ satisfy $E F=0$ in $H^{p+n+1}(Y)$. Put, as in Lemma 9.2,
$\Delta=\left\langle\boldsymbol{u}^{*}(E),\left[S^{p+1}\right]\right\rangle\left\langle\boldsymbol{v}^{*}(F),\left[S^{n}\right]\right\rangle+(-1)^{(p+1) n}\left\langle\boldsymbol{u}^{*}(F),\left[S^{p+1}\right]\right\rangle\left\langle\boldsymbol{v}^{*}(E),\left[S^{n}\right]\right\rangle \in \mathbf{Z}$.
If $Y=S^{p+1} \vee S^{n}$ with $\boldsymbol{u}=\left[\mathrm{in}_{1}\right]$ and $\boldsymbol{v}=\left[\mathrm{in}_{2}\right]$, taking obvious E and F yields $\Delta=1$. If $p=n-1$ and $Y=S^{n}$ with $\boldsymbol{u}=\boldsymbol{v}=$ [id], taking obvious equal E and F yields $\Delta=1+(-1)^{n}$.
11.2. Lemma. If $\Delta \neq 0$, the classes $\boldsymbol{k}(t), t \in \mathbf{Z}$, are pairwise not 2 -similar.

Proof. Choose cocycles $e \in C^{p+1}(Y)$ and $f \in C^{n}(Y)$ representing E and F, respectively. Choose a cochain $g \in C^{p+n}(Y)$ with $\delta g=e f$. Consider the corresponding Hopf invariants (see § 9)

$$
h_{0}: \pi_{p+n}(Y) \rightarrow H^{p+n}\left(S^{p+n}\right) \quad \text { and } \quad h:[X, Y]_{e, f} \rightarrow H^{p+n}(X)
$$

By Lemma 9.2,

$$
\left\langle h_{0}(\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil),\left[S^{p+n}\right]\right\rangle=(-1)^{p n+p+1} \Delta
$$

We have the decomposition

$$
\boldsymbol{k}(t): X \xrightarrow{\epsilon} S^{p+n} \stackrel{t[\mathrm{id}]}{\longrightarrow} S^{p+n} \stackrel{\lfloor\boldsymbol{u}, \boldsymbol{v}\rceil}{\longrightarrow} Y
$$

(the wavy arrows denote homotopy classes). Clearly, $\boldsymbol{k}(t) \in[X, Y]_{e, f}$. Since the Brouwer degree of ϵ is 1 and that of $t[\mathrm{id}]$ is t, Lemma 9.1 yields

$$
\langle h(\boldsymbol{k}(t)),[X]\rangle=(-1)^{p n+p+1} \Delta t .
$$

By Corollary 9.5, the classes $\boldsymbol{k}(t), t \in \mathbf{Z}$, are pairwise not 2-similar if $\Delta \neq 0$.
Moral. Suppose that $\Delta \neq 0$. The classes $\boldsymbol{k}(0)(=[\uparrow])$ and $\boldsymbol{k}(2)$ in $[X, Y]$, which are not 2 -similar by Lemma 11.2, cannot be distinguished by an invariant of degree at most 2 by Lemma 11.1. Recall that (X, Y) can be ($S^{p} \times S^{n}, S^{p+1} \vee S^{n}$) for any $p \geqslant 1$ and $n \geqslant 2$ or $\left(S^{n-1} \times S^{n}, S^{n}\right)$ for even $n \geqslant 2$.

References

[1] M. Gusarov, On n-equivalence of knots and invariants of finite degree, in: Topology of manifolds and varieties, Adv. Sov. Math. 18 (1994), 173-192.
[2] M. N. Gusarov, Variations of knotted graphs. Geometric techniques of n equivalence. St. Petersbg. Math. J. 12 (2001), 569-604.
[3] A. Hatcher, Algebraic topology. Cambridge University Press, 2002.
[4] S. S. Podkorytov, The order of a homotopy invariant in the stable case, Sb . Math. 202 (2011), 1183-1206.
[5] S. S. Podkorytov, On homotopy invariants of finite degree, J. Math. Sci., New York 212 (2016), 587-604.
[6] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. Math. (2) 54 (1951), 425-505.
[7] N. E. Steenrod, Cohomology invariants of mappings, Ann. Math. (2) 50 (1949), 954-988.
[8] G. W. Whitehead, On products in homotopy groups, Ann. Math. (2) 47 (1946), 460-475.
[9] J. H. C. Whitehead, On certain theorems of G. W. Whitehead, Ann. Math. (2) 58 (1953), 418-428.
ssp@pdmi.ras.ru
http://www.pdmi.ras.ru/~ssp

