
Homotopy similarity of maps

S. S. Podkorytov

Given based cellular spaces X and Y , X compact, we define a sequence
of increasingly fine equivalences on the based-homotopy set [X,Y ].

§ 1. Introduction

Let X and Y be based cellular spaces ( = CW-complexes), X compact. Let
Y X be the set of based continuous maps X → Y and ⟨Y X⟩ be the free abelian
group associated with Y X . An element A ∈ ⟨Y X⟩, an ensemble, has the form

A =
∑
i

ui<ai>, (1)

where ui ∈ Z and ai ∈ Y X . Let Fr(X) be the set of subspaces ( = subsets
containing the basepoint) T ⊆ X containing at most r points distinct from the
basepoint. Introduce the subgroup

⟨Y X⟩(r+1) = {A : A|T = 0 in ⟨Y T ⟩ for all T ∈ Fr(X) } ⊆ ⟨Y X⟩.

We have
⟨Y X⟩ = ⟨Y X⟩(0) ⊇ ⟨Y X⟩(1) ⊇ . . . .

For ensembles A,B ∈ ⟨Y X⟩, let
A

r
= B

mean that B −A ∈ ⟨Y X⟩(r+1).
For maps a, b ∈ Y X , we say that a is r-similar to b,

a
r∼ b,

when there exists an ensemble A ∈ ⟨Y X⟩ given by (1) with all ai ∼ a (∼ denotes

based homotopy) such that A
r
= <b>. A simple example is given in Section 3.

Our main results state that the relation
r∼ is an equivalence (Theorem 8.1)

and respects homotopy (Theorem 5.2). It follows that we get a sequence of
increasingly fine equivalences on the based-homotopy set [X,Y ].

We conjecture that, for 0-connected Y , a map is r-similar to the constant
map if and only if it lifts to the classifying space of the (r + 1)th term of the
lower central series of the loop group of Y .

A related notion is that of a homotopy invariant of finite order [4, 5]. A
function f : [X,Y ] → L, where L is an abelian group, is called an invariant of
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order at most r when for any ensemble A ∈ ⟨Y X⟩ given by (1) the congruence

A
r
= 0 implies ∑

i

uif([ai]) = 0.

It is clear that f([a]) = f([b]) if a
r∼ b and f has order at most r. In § 11, we

give an example of two maps that are not 2-similar but cannot be distinguished
by invariants of order at most 2. In the stable dimension range, invariants of
order at most r were characterized in a way similar to our conjecture about
r-similarity [4].

The relation between r-similarity and finite-order homotopy invariants is
similar to that between n-equivalence and finite-degree invariants in knot theory
[1, 2]. The example of § 11 is similar to that of [2, Remark 10.8].

§ 2. Preliminaries

By a space we mean a based space (unless the contrary is stated explicitly).
The basepoint of a cellular space is a vertex. The basepoint of a space X is
denoted by <|X or <|. A subspace contains the basepoint. A cover is a cover by
subspaces. A map is a based continuous map. The constant map X → Y is
denoted by <|XY or <|. A homotopy is a based homotopy.

For a subspace Z ⊆ X, in : Z → X is the inclusion. A wedge of spaces
comes with the insertions ( = coprojections):

ink : Xk → X1 ∨ . . . ∨Xn.

Maps ak : Xk → Y form the map

a1 ∨ . . . ∨ an : X1 ∨ . . . ∨Xn → Y.

This notation is also used for homotopy classes.
The formula a ∼|Z b means homotopy a|Z ∼ b|Z . Similarly, equality of

restrictions to a subset C is denoted by =|C .
For a set E, the associated abelian group ⟨E⟩ is freely generated by the

elements <e>, e ∈ E. A function t : E → F between two sets induces the
homomorphism

⟨t⟩ : ⟨E⟩ → ⟨F ⟩, <e> 7→ <t(e)>.

For a cover Γ of a space X, we put

Γ(r) = { {<|} ∪G1 ∪ . . . ∪Gs ⊆ X : G1, . . . , Gs ∈ Γ, 0 ⩽ s ⩽ r }.

For ensembles A,B ∈ ⟨Y X⟩, the formula

A
r
=
Γ
B

means that A=|W B in ⟨Y W ⟩ for all W ∈ Γ(r).
Expressions with ? denote functions: for example, ?2 : R → R is the function

x 7→ x2.
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§ 3. A simple example

Put E = {0, 1} ⊆ Z. Fix r ⩾ 0. For d = (d1, . . . , dr+1) ∈ Er+1, put
|d| = d1 + . . .+ dr+1. Consider a wedge of spaces

W = U1 ∨ . . . ∨ Ur+1 ∨ V.

Introduce the maps

Λ(d) = λ1(d1) ∨ . . . ∨ λr+1(dr+1) ∨ idV : W → W, d ∈ Er+1,

where the map λk(e) : Uk → Uk, for e ∈ E, is id if e = 1 and <| if e = 0.

3.1. Lemma. Let X and Y be spaces and p : X → W and q : W → Y be maps.
Consider the ensemble A ∈ ⟨Y X⟩,

A =
∑

d∈Er+1

(−1)|d|<a(d)>,

where

a(d) : X
p−→ W

Λ(d)−−−→ W
q−→ Y.

Then A
r
= 0.

Proof. Take T ∈ Fr(X). There is a k such that p(T ) ∩ ink(Uk) = {<|W }. Then
a(d)|T does not depend on dk. We get

A|T =
∑

d∈Er+1

(−1)|d|<a(d)|T > = 0.

Example. Consider the wedge

W = Sn1 ∨ . . . ∨ Snr+1

(n1, . . . , nr+1 ⩾ 1). Put m = n1 + . . .+ nr+1 − r and let p : Sm → W be a map
with

[p] = ⌊. . . ⌊[in1], [in2]⌉, . . . , [inr+1]⌉

(the iterated Whitehead product) in πm(W ). We show that <| r∼ p. Consider
the maps

a(d) : Sm p−→ W
Λ(d)−−−→ W, d ∈ Er+1.

Put 1r+1 = (1, . . . , 1) ∈ Er+1. By Lemma 3.1,∑
d∈Er+1\{1r+1}

(−1)r−|d|<a(d)>
r
= <a(1r+1)>.

All a(d) on the left side are homotopic to <|. On the right, a(1r+1) = p because

Λ(1r+1) = id. Thus <| r∼ p.
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§ 4. Equipment of a cellular space

Let Y be a compact unbased cellular space. In this section, we turn off our
convention that maps and homotopies preserve basepoints.

4.1. Lemma. There exist homotopies

qt : Y
2 → Y and pt : Y

2 → [0, 1], t ∈ [0, 1],

such that

q0(z, y) = y, qt(z, z) = z, p0(z, y) = 0, pt(z, z) = t, (2)

and, for any (z, y) ∈ Y 2 and t ∈ [0, 1], one has

pt(z, y) = 0 or qt(z, y) = z. (3)

Roughly speaking, the inclusions {z} → Y , z ∈ Y , form a parametric cofi-
bration.

Proof (after [6, Exemple on p. 490]). By [3, Corollary A.10], Y is an ENR. Em-
bed it to Rn and choose its neighbourhood U ⊆ Rn and a retraction r : U → Y .
Choose ϵ > 0 such that U includes all closed balls of radius ϵ with centres in Y .
Consider the homotopy lt : (Rn)2 → Rn, t ∈ [0, 1],

lt(z, y) = y +min(ϵt/|z − y|, 1)(z − y), z ̸= y,

lt(z, z) = z.

Put
qt(z, y) = r(lt(z, y)) and pt(z, y) = max(t− |z − y|/ϵ, 0).

4.2. Corollary. One can continuously associate to each path v : [0, 1] → Y a
homotopy Et(v) : Y → Y , t ∈ [0, 1], such that E0(v) = id and Et(v)(v(0)) =
v(t).

Proof. Using Lemma 4.1, put

Et(v)(y) =

{
qt(v(0), y) if pt(v(0), y) = 0,

v(pt(v(0), y)) if qt(v(0), y) = v(0).

§ 5. Coherent homotopies

Let X and Y be cellular spaces, X compact.

5.1. Lemma. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,
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and maps b, b̃ ∈ Y X , b ∼ b̃. Then there exist maps ãi ∈ Y X , ãi ∼ ai, such that
the ensemble

Ã =
∑
i

ui<ãi>

has the following property: if A=|Z <b> for some subspace Z ⊆ X, then Ã=|Z
<b̃>.

Proof. We have a homotopy ht ∈ Y X , t ∈ [0, 1], such that h0 = b and h1 = b̃.
Replace Y by a compact cellular subspace that includes the images of all ai and
ht.

For x ∈ X, introduce the path vx = h?(x) : [0, 1] → Y . We have vx(0) = b(x)

and vx(1) = b̃(x). For a subspace Z ⊆ X, introduce the functions eZt : Y Z →
Y Z , t ∈ [0, 1],

eZt (d)(x) = Et(vx)(d(x)), x ∈ Z, d ∈ Y Z ,

where Et is given by Corollary 4.2. For d ∈ Y Z , we have the homotopy eZt (d) ∈
Y Z , t ∈ [0, 1]. The diagram

Y X
eXt //

?|Z
��

Y X

?|Z
��

Y Z
eZt // Y Z

is commutative. We have eZ0 = id because

eZ0 (d)(x) = E0(vx)(d(x)) = d(x).

We have eX1 (b) = b̃ because

eX1 (b)(x) = E1(vx)(b(x)) = E1(vx)(vx(0)) = vx(1) = b̃(x).

Put ãi = eX1 (ai). Since ai = eX0 (ai), we have ãi ∼ ai. We have

(<b̃> − Ã)|Z = ⟨eX1 ⟩(<b> −A)|Z = ⟨eZ1 ⟩((<b> −A)|Z).

Thus A=|Z <b> implies Ã=|Z <b̃>.

5.2. Theorem. Let maps a, b, ã, b̃ ∈ Y X satisfy

ã ∼ a
r∼ b ∼ b̃.

Then ã
r∼ b̃.

Proof. By the definition of similarity, it suffices to show that a
r∼ b̃. We have

an ensemble A ∈ ⟨Y X⟩,
A =

∑
i

ui<ai>,
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where ai ∼ a, such that A
r
= <b>. By Lemma 5.1, there is an ensemble Ã ∈

⟨Y X⟩,
Ã =

∑
i

ui<ãi>,

where ãi ∼ ai, such that Ã
r
= <b̃>. Since ai ∼ a, we have shown that a

r∼ b̃.

§ 6. Underlaying a cover

Let X and Y be cellular spaces, X compact.

6.1. Lemma. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>.

Then there exist maps ãi ∈ Y X , ãi ∼ ai, such that the ensemble

Ã =
∑
i

ui<ãi>

has the following property: if A|Z = 0 for some subspace Z ⊆ X, then Ã|V = 0
for some neighbourhood V ⊆ X of Z.

Proof. Replace Y by a compact cellular subspace that includes the images of
all ai. We will use the “equipment” (qt, pt) given by Lemma 4.1.

Let i that numbers ai run over 1, . . . , n. Define maps aki ∈ Y X , 1 ⩽ i ⩽ n,
0 ⩽ k ⩽ n, by the rules a0i = ai and

aki (x) = q1(a
k−1
k (x), ak−1i (x)), x ∈ X, (4)

for k ⩾ 1. Put ãi = ani . We have aki ∼ ak−1i because aki = h1 and ak−1i = h0 for
the homotopy ht ∈ Y X , t ∈ [0, 1],

ht(x) = qt(a
k−1
k (x), ak−1i (x)), x ∈ X.

Thus ãi ∼ ai.

Claim 1. If ak−1i =|Q ak−1j for some subspace Q ⊆ X, then aki =|Q akj .

This follows from (4).

Claim 2. If ai−1i =|Q ai−1j for some subspace Q ⊆ X, then there exists a neigh-

bourhood W ⊆ X of Q such that aii =|W aij .

Indeed, if ai−1i =|Q ai−1j , then, by (2),

p1(a
i−1
i (x), ai−1j (x)) = 1
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for x ∈ Q. There exists a neighbourhood W ⊆ X of Q such that

p1(a
i−1
i (x), ai−1j (x)) > 0

for x ∈ W . Then, by (3),

q1(a
i−1
i (x), ai−1j (x)) = ai−1i (x)

for x ∈ W . By (4),

aii(x) = q1(a
i−1
i (x), ai−1i (x)) = ai−1i (x)

(because q1(z, z) = z by (2)) and

aij(x) = q1(a
i−1
i (x), ai−1j (x)).

Thus aii(x) = aij(x) for x ∈ W , as required.

Take a subspace Z ⊆ X.

Claim 3. If ai=|Z aj , then there exists a neighbourhood W ⊆ X of Z such that
ãi =|W ãj .

This follows from the construction of ãi and the claims 1 and 2.

Consider the equivalence

R = { (i, j) : ai =|Z aj }

on the set I = {1, . . . , n}. It follows from the claim 3 that there exists a
neighbourhood V ⊆ X of Z such that ãi =|V ãj for all (i, j) ∈ R. We have the
commutative diagram

Y Z I
ai|Z←[i:loo d:i 7→ãi|V //

π

��

Y V

I/R,

l

gg

d

77

where π is the projection. The function l is injective. Consider the elements
U ∈ ⟨I⟩,

U =
∑
i

ui<i>,

and U = ⟨π⟩(U) ∈ ⟨I/R⟩. We have

A|Z = ⟨l⟩(U) = ⟨l⟩(U) and Ã|V = ⟨d⟩(U) = ⟨d⟩(U).

If A|Z = 0, then U = 0 because ⟨l⟩ is injective. Then Ã|V = 0.
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6.2. Corollary. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

such that A
r
= 0. Then there exist maps ãi ∈ Y X , ãi ∼ ai, such that the

ensemble
Ã =

∑
i

ui<ãi> (5)

satisfies the condition Ã
r
=
Γ
0 for some open cover Γ of X.

Proof. Since A
r
= 0, we have A =|T 0 for all T ∈ Fr(X). By Lemma 6.1, there

are maps ãi ∈ Y X , ãi ∼ ai, such that the ensemble Ã given by (5) satisfies the

condition Ã =|V (T ) 0 for some neighbourhood V (T ) ⊆ X of each T ∈ Fr(X).
There is an open cover Γ of X such that every W ∈ Γ(r) is included in V (T )

for some T ∈ Fr(X). Then Ã=|W 0 for all W ∈ Γ(r), that is, Ã
r
=
Γ
0.

6.3. Lemma. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

and a map b ∈ Y X . Then there exist maps ãi ∈ Y X , ãi ∼ ai, such that the
ensemble

Ã =
∑
i

ui<ãi> (6)

has the following property: if A=|Z<b> for some subspace Z ⊆ X, then Ã=|V <b>

for some neighbourhood V ⊆ X of Z.

Proof. Let Π be the set of subspaces Z ⊆ X such that A=|Z<b>. By Lemma 6.1,
there are maps ai, b ∈ Y X , ai ∼ ai and b ∼ b, such that the ensemble

A =
∑
i

ui<ai>

satisfies the condition A=|V (Z) <b> for some neighbourhood V (Z) ⊆ X of each
Z ∈ Π. By Lemma 5.1, there are maps ãi ∈ Y X , ãi ∼ ai, such that the ensemble
Ã given by (6) satisfies the condition Ã=|V (Z) <b> for all Z ∈ Π.

6.4. Corollary. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

and a map b ∈ Y X . Suppose that A
r
= <b>. Then there exist maps ãi ∈ Y X ,

ãi ∼ ai, such that the ensemble

Ã =
∑
i

ui<ãi> (7)

satisfies the condition Ã
r
=
Γ

<b> for some open cover Γ of X.
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This follows from Lemma 6.3 as Corollary 6.2 does from Lemma 6.1.

§ 7. Symmetric characterization of similarity

Let X and Y be cellular spaces, X compact.

7.1. Lemma. Consider a cover Γ of X, an open subspace G ∈ Γ, a closed
subspace D ⊆ X, D ⊆ G, and maps a, b0, b1 ∈ Y X such that a ∼|G b0, b0 ∼
b1 relX \D, and a

r−1∼
Γ

b0 in the following sense: there is an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

where ai ∼ a, such that A
r−1
=
Γ

<b0>. Then there exists an ensemble C ∈ ⟨Y X⟩,

C =
∑
k

wk<ck>,

where ck ∼ a, such that C
r
= <b1> − <b0>.

Proof. There is a homotopy ht ∈ Y X , t ∈ [0, 1], such that hs = bs, s = 0, 1, and
ht =|X\D b0. Choose a continuous function ϕ : X → [0, 1] such that ϕ|E = 1
and ϕ|X\F = 0 for some subspaces E,F ⊆ X, E open, F closed, such that

D ⊆ E ⊆ F ⊆ G.

Let p ∈ Y G be a map such that p ∼ b0|G. Choose a homotopy Kt(p) ∈ Y G,
t ∈ [0, 1], such that K0(p) = p, K1(p) = b0|G, and, moreover, Kt(p) = b0|G if
p = b0|G. Define a homotopy Lt(p) ∈ Y G, t ∈ [−1, 1], by the rules

Lt(p)(x) = Kϕ(x)(t+1)(p)(x), x ∈ G,

for t ∈ [−1, 0] and

Lt(p)(x) =

{
ht(x) if x ∈ E,

Kϕ(x)(p)(x) if x ∈ G \D

for t ∈ [0, 1]. We have L−1(p) = p, Ls(p) =|E bs, s = 0, 1, L0(p) =|G\D L1(p),
and Lt(p) =|G\F p. Moreover, Ls(b0|G) = bs|G, s = 0, 1.

Let d ∈ Y X be a map such that d ∼|G b0. Define a homotopy lt(d) ∈ Y X ,
t ∈ [−1, 1], by the rules lt(d)=|GLt(d|G) and lt(d)=|X\F d. We have l−1(d) = d,
ls(d) =|E bs, s = 0, 1, l0(d) =|X\D l1(d), and lt(d) =|X\F d.

Since ai ∼ a∼|G b0, the homotopies lt(ai) are defined. Put

C =
∑
i

ui(<l1(ai)> − <l0(ai)>).
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We have ls(ai) ∼ ai ∼ a. It remains to show that C
r
= <b1> − <b0>. Take

T ∈ Fr(X). We check that

C =|T <b1> − <b0>. (8)

We are in one of the following three cases.

Case 1: T ∩D = {<|X}. We have l0(ai)=|T l1(ai) and b0=|T b1. Thus both the
sides of (8) are zero on T .

Case 2: T ∩ F = {<|X , x∗}, where x∗ ∈ E and x∗ ̸= <|X . Put Z = T \{x∗}. We
have Z ∈ Fr−1(X) and Z∩F = {<|X}. Define functions es : Y

Z → Y T , s = 0, 1,
by the rules es(q)|Z = q and es(q)(x∗) = bs(x∗). We have es(b0|Z) = bs|T and
es(ai|Z) = ls(ai)|T . Thus(

<b0> −
∑
i

ui<ai>
)∣∣

Z

⟨es⟩7−−→
(
<bs> −

∑
i

ui<ls(ai)>
)∣∣

T
.

Since A
r−1
= <b0>, the expression on the left is zero. Thus the one on the right

is also zero, which implies (8).

For a finite space Z, let ∥Z∥ be the cardinality of Z \ {<|}.

Case 3: ∥T ∩G∥ ⩾ 2. We have T = W ∪ Z for some subspaces W,Z ⊆ X such
that W ∩ Z = {<|X}, W ⊆ G, Z ∩ F = {<|X}, and ∥Z∥ ⩽ r − 2. Consider the
subspace M = G ∪ Z ⊆ X. Define functions fs : Y M → Y T , s = 0, 1. Take
q ∈ Y M . If q ∼|G b0, put fs(q) =|W Ls(q|G) and fs(q) =|Z q. Otherwise, put

fs(q) =
<|TY . We have fs(b0|M ) = bs|T and fs(ai|M ) = ls(ai)|T . Thus(

<b0> −
∑
i

ui<ai>
)∣∣

M

⟨fs⟩7−−→
(
<bs> −

∑
i

ui<ls(ai)>
)∣∣

T
.

Since M is included in some element of Γ(r− 1) and A
r−1
=
Γ

<b0>, the expression

on the left is zero. Thus the one on the right is also zero, which implies (8).

7.2. Lemma. Let a, b, b̃ ∈ Y X be maps such that a
r−1∼ b ∼ b̃ and (*) a ∼|S b

for any S ∈ F1(X). Then there exists an ensemble C ∈ ⟨Y X⟩,

C =
∑
k

wk<ck>,

where ck ∼ a, such that C
r
= <b̃> − <b>.

The condition (*) is satisfied automatically if X or Y is 0-connected. It also

follows from the condition a
r−1∼ b if r ⩾ 2 (cf. the proof of Theorem 7.3).

10



Proof. There is an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

whre ai ∼ a, such that A
r−1
= <b>. Using Corollary 6.4, replace each ai by a

homotopic map to get A
r−1
=
Γ

<b> for some open cover Γ of X.

Call a subspace G ⊆ X primitive if the map in : G → X is homotopic to the
composition

G
f−→ S

in−→ X

for some subspace S ∈ F1(X) and map f . Since X is Hausdorff and locally
contractible, for any open subspace U ⊆ X and point x ∈ U , there exists a
primitive open subspace G ⊆ X such that x ∈ G and G ⊆ U . We replace the
cover Γ by its refinement consisting of primitive open subspaces. Then it follows
from (*) that a∼|G b for each G ∈ Γ.

Choose a finite partition of unity subordinate to Γ:

m∑
j=1

ϕj = 1,

where each ϕj : X → [0, 1] is a continuous function such that ϕj |X\Dj
= 0 for

some closed subspace Dj ⊆ X such that Dj ⊆ Gj for some Gj ∈ Γ. Choose

a homotopy ht ∈ Y X , t ∈ [0, 1], such that h0 = b and h1 = b̃. Define maps
bj ∈ Y X , 0 ⩽ j ⩽ m, by the rule

bj(x) = hϕ1(x)+...+ϕj(x)(x).

We have b0 = b, bm = b̃, and bj−1 ∼ bj relX \Dj .

Take j ⩾ 1. Applying Lemma 5.1 to the congruence A
r−1
=
Γ

<b> and the

homotopy b ∼ bj−1, we get an ensemble Aj ∈ ⟨Y X⟩,

Aj =
∑
i

ui<aji>,

where aji ∼ ai (∼ a), such that Aj
r−1
=
Γ

<bj−1>. We have a ∼|Gj b ∼ bj−1. By

Lemma 7.1, there is an ensemble Cj ∈ ⟨Y X⟩,

Cj =
∑
k

wjk<cjk>,

where cjk ∼ a, such that Cj
r
= <bj> − <bj−1>.

We get
m∑
j=1

Cj = <bm> − <b0> = <b̃> − <b>.
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7.3. Theorem. Consider maps a, b ∈ Y X and ensembles A,B ∈ ⟨Y X⟩,

A =
∑
i

ui<ai> and B =
∑
j

vj<bj>,

where ∑
i

ui =
∑
j

vj = 1,

ai ∼ a, and bj ∼ b, such that A
r
= B. Then a

r∼ b.

Proof. Induction on r. If r ⩽ 0, the assertion is trivial. Suppose r ⩾ 1.
For S ∈ F1(X), we have a∼|S b because

<[a|S ]> =
∑
i

ui<[ai|S ]> = [[A|S ]] = [[B|S ]] =
∑
j

vj<[bj |S ]> = <[b|S ]>

in ⟨[S, Y ]⟩. Here [[?]] : ⟨Y S⟩ → ⟨[S, Y ]⟩ is the homomorphism induced by the
projection [?] : Y S → [S, Y ].

By induction hypothesis, a
r−1∼ b. Take j. Since b ∼ bj , Lemma 7.2 gives an

ensemble Cj ∈ ⟨Y X⟩,
Cj =

∑
k

wjk<cjk>,

where cjk ∼ a, such that Cj
r
= <bj> − <b>. We have

A−
∑
j

vjCj
r
= A−

∑
j

vj(<bj> − <b>) = A−B + <b>
r
= <b>,

which proves the assertion.

§ 8. Similarity is an equivalence

Let X and Y be cellular spaces, X compact.

8.1. Theorem. The relation
r∼ on Y X is an equivalence.

This was conjectured by A. V. Malyutin.

Proof. Reflexivity is trivial. Symmetry follows from Theorem 7.3. It remains
to prove transitivity.

Let maps a, b, c ∈ Y X satisfy a
r∼ b

r∼ c. There are ensembles A,B ∈ ⟨Y X⟩,

A =
∑
i

ui<ai> and B =
∑
j

vj<bj>,

where ai ∼ a and bj ∼ b, such that A
r
= <b> and B

r
= <c>. For each j, we have

b ∼ bj and, by Lemma 5.1, there is an ensemble Aj ∈ ⟨Y X⟩,

Aj =
∑
i

ui<aji>,

12



where aji ∼ ai (∼ a), such that Aj
r
= <bj>. We have∑

j

vjAj
r
=

∑
j

vj<bj> = B
r
= <c>.

Thus a
r∼ c.

Using Theorem 5.2, we introduce the relation of r-similarity on [X,Y ]:

[a]
r∼ [b] ⇔ a

r∼ b.

It follows from Theorem 8.1 that it is an equivalence.

§ 9. The Hopf invariant

Let X and Y be spaces. Let e ∈ Cm(Y ) and f ∈ Cn(Y ) (m,n ⩾ 1) be
(singular) cocycles and g ∈ Cm+n−1(Y ) be a cochain with δg = ef . Put

[X,Y ]e,f = {a : a∗([e]) = 0 and a∗([f ]) = 0 in H•(X) } ⊆ [X,Y ]

and
Y X
e,f = { a : [a] ∈ [X,Y ]e,f } ⊆ Y X .

Given a ∈ Y X
e,f , choose a cochain p ∈ Cm−1(X) such that δp = a#(e) and put

q = pa#(f)− a#(g) ∈ Cm+n−1(X).

Then δq = 0 and the class [q] ∈ Hm+n−1(X) neither depends on the choice of
p nor changes if a is replaced by a homotopic map. Putting h([a]) = [q], we get
the function

h : [X,Y ]e,f → Hm+n−1(X),

which we call the Hopf invariant [7].

9.1. Lemma. Let X0 be a space and t : X → X0 be a map. We have the Hopf
invariants

h0 : [X0, Y ]e,f → Hm+n−1(X0) and h : [X,Y ]e,f → Hm+n−1(X).

Given a0 ∈ Y X0 , put a = a0 ◦ t ∈ Y X . If a0 ∈ Y X0

e,f , then a ∈ Y X
e,f and

h([a]) = t∗(h0([a0])) in Hm+n−1(X).

9.2. Lemma. Take elements u ∈ πm(Y ) and v ∈ πn(Y ). Put

∆ = ⟨u∗([e]), [Sm]⟩⟨v∗([f ]), [Sn]⟩+ (−1)mn⟨u∗([f ]), [Sm]⟩⟨v∗([e]), [Sn]⟩ ∈ Z

(the last two Kronecker indices vanish unless m = n). Consider the Hopf in-
variant

h : [Sm+n−1, Y ]e,f → Hm+n−1(Sm+n−1)

and the Whitehead product ⌊u,v⌉ ∈ πm+n−1(Y ) = [Sm+n−1, Y ]. Then ⌊u,v⌉ ∈
[Sm+n−1, Y ]e,f and

⟨h(⌊u,v⌉), [Sm+n−1]⟩ = (−1)mn+m+n∆.

13



Caution: the sign in the last equality is sensitive to certain conventions.

Proof (after [7, § 19]). We assume that Sm ∨ Sn ⊆ Sm × Sn in the standard
way. We have the commutative diagram

Sm+n−1 ϕ //

in

��

Sm ∨ Sn

in

��
Dm+n χ // Sm × Sn,

where [ϕ] = ⌊[in1], [in2]⌉ in πm+n−1(S
m ∨ Sn). We have the chain of homomor-

phisms and sendings

Hm+n−1(S
m+n−1) [Sm+n−1]

Hm+n(D
m+n, Sm+n−1)

∂

OO

(χ,ϕ)∗

��

[Dm+n]

_

OO

_

��
Hm+n(S

m × Sn, Sm ∨ Sn) rel∗([S
m×Sn])

Hm+n(S
m × Sn).

rel∗

OO

[Sm×Sn]
_

OO

(9)

Choose representatives u : Sm → Y and v : Sn → Y of u and v, respectively.
Consider the maps

a : Sm+n−1 ϕ−→ Sm ∨ Sn w=u∨v−−−−−→ Y.

Clearly, [a] = ⌊u,v⌉ in πm+n−1(Y ).

Choose cocycles ê ∈ Cm(Sm × Sn) and f̂ ∈ Cn(Sm × Sn) and a cochain
ĝ ∈ Cm+n−1(Sm × Sn) such that

ê|Sm∨Sn = w#(e), f̂ |Sm∨Sn = w#(f), and ĝ|Sm∨Sn = w#(g).

We have

a#(e) = ϕ#(w#(e)) = ϕ#(ê|Sm∨Sn) = χ#(ê)|Sm+n−1

in Cm(Sm+n−1). It follows that a∗([e]) = 0 in Hm(Sm+n−1) (which is au-
tomatic unless n = 1). Similarly, a∗([f ]) = 0 in Hn(Sm+n−1). Thus [a] ∈
[Sm+n−1, Y ]e,f .

Let zk ∈ Hk(Sk) be the class with ⟨zk, [Sk]⟩ = 1. One easily sees that

[ê] = ⟨u∗([e]), [Sm]⟩(zm × 1) + ⟨v∗([e]), [Sn]⟩(1× zn)
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in Hm(Sm × Sn) and

[f̂ ] = ⟨v∗([f ]), [Sn]⟩(1× zn) + ⟨u∗([f ]), [Sm]⟩(zm × 1)

in Hn(Sm × Sn). Thus [ê][f̂ ] = ∆(zm × zn) in Hm+n(Sm × Sn) and

⟨[ê][f̂ ], [Sm × Sn]⟩ = (−1)mn∆. (10)

Choose a cochain p̃ ∈ Cm−1(Dm+n) such that δp̃ = χ#(ê). Put

q̃ = p̃χ#(f̂)− χ#(ĝ) ∈ Cm+n−1(Dm+n).

Put

p = p̃|Sm+n−1 ∈ Cm−1(Sm+n−1) and q = q̃|Sm+n−1 ∈ Cm+n−1(Sm+n−1).

We have

δp = δp̃|Sm+n−1 = χ#(ê)|Sm+n−1 = ϕ#(ê|Sm∨Sn) = ϕ#(w#(e)) = a#(e)

and

q = pχ#(f̂)|Sm+n−1 − χ#(ĝ)|Sm+n−1 = pϕ#(f̂ |Sm∨Sn)− ϕ#(ĝ|Sm∨Sn) =

= pϕ#(w#(f))− ϕ#(w#(g)) = pa#(f)− a#(g).

Thus δq = 0 and h([a]) = [q].
We have

δq̃ = χ#(ê)χ#(f̂)− δχ#(ĝ) = χ#(êf̂ − δĝ).

We have the chain of homomorphisms and sendings

Hm+n−1(Sm+n−1)

δ

��

[q]_

��
Hm+n(Dm+n, Sm+n−1) [χ#(êf̂−δĝ)]

Hm+n(Sm × Sn, Sm ∨ Sn)

(χ,ϕ)∗

OO

rel∗

��

[êf̂−δĝ]
_

OO

_

��
Hm+n(Sm × Sn). [ê][f̂ ]

Collating it with (9) and using (10), we get

⟨[q], [Sm+n−1]⟩ = (−1)m+n⟨[ê][f̂ ], [Sm × Sn]⟩ = (−1)mn+m+n∆.

This is what we need because h(⌊u,v⌉) = h([a]) = [q].
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Let Γ be an open cover of X. Consider the differential graded ring C•(Γ) of
Γ-cochains of X (that is, functions on the set of singular simplices subordinate
to Γ). The projection

?|Γ : C•(X) → C•(Γ)

is a morphism of differential graded rings; it induces an isomorphism of coho-
mology rings,

?|Γ : H•(X) → H•(Γ).

9.3. Lemma. Given a ∈ Y X
e,f , choose p̃ ∈ Cm−1(Γ) such that δp̃ = a#(e)|Γ

and put
q̃ = p̃a#(f)|Γ − a#(g)|Γ ∈ Cm+n−1(Γ).

Then δq̃ = 0 and h([a])|Γ = [q̃] in Hm+n−1(Γ).

We suppose that X and Y are cellular spaces and X is compact.

9.4. Theorem. Consider an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

where ai ∈ Y X
e,f , such that A

2
= 0. Then∑

i

uih([ai]) = 0

in Hm+n−1(X).

Thus h may be called a partial invariant of order at most 2.

Proof. Using Corollary 6.2, replace ai by homotopic maps so that A
2
=
Γ

0 for

some open cover Γ of X.
LetB ⊆ Cm(Γ) be the subgroup generated by the coboundaries a#i (e)|Γ. It is

free because finitely generated and torsion-free. Thus there is a homomorphiam
P : B → Cm−1(Γ) such that δP (b) = b, b ∈ B. Put

q̃i = P (a#(e)|Γ)a#(f)|Γ − a#(g)|Γ ∈ Cm+n−1(Γ).

By Lemma 9.3, δq̃i = 0 and
h([ai])|Γ = [q̃i]

in Hm+n−1(Γ).
Take a singular simplex σ : ∆m+n−1 → G, G ∈ Γ. Let

σ′ : ∆m−1 → G and σ′′ : ∆n → G

be its front and back faces, respectively.
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The group Hom(B,Q) is formed by homomorphisms ⟨?, T ⟩, where T runs
over Cm(Γ;Q), the group of rational Γ-chains in X. Thus there is a chain
T ∈ Cm(Γ;Q) such that

⟨P (b), σ′⟩ = ⟨b, T ⟩, b ∈ B.

We have
T =

∑
k

ckτk,

where ck ∈ Q and τk : ∆m → Gk, Gk ∈ Γ. Thus

⟨P (a#i (e)|Γ), σ
′⟩ = ⟨a#i (e)|Γ, T ⟩ =

∑
k

ck⟨a#i (e)|Γ, τk⟩.

We get

⟨q̃i, σ⟩ = (−1)(m−1)n⟨P (a#i (e)|Γ), σ
′⟩⟨a#i (f)|Γ, σ

′′⟩ − ⟨a#i (g)|Γ, σ⟩ =

= (−1)(m−1)n
∑
k

ck⟨a#i (e)|Γ, τk⟩⟨a
#
i (f)|Γ, σ

′′⟩ − ⟨a#i (g)|Γ, σ⟩ =

= (−1)(m−1)n
∑
k

ck⟨(ai|G∪Gk
)#(e), τk⟩⟨(ai|G∪Gk

)#(f), σ′′⟩−⟨(ai|G)#(g), σ⟩.

We have found functions Rk : Y G∪Gk → Q and S : Y G → Q such that

⟨q̃i, σ⟩ =
∑
k

Rk(ai|G∪Gk
)− S(ai|G)

for all i. Since A
2
=
Γ
0, we have A|G∪Gk

= 0 and A|G = 0. Thus

∑
i

ui⟨q̃i, σ⟩ = 0.

Since σ was taken arbitrarily, we have∑
i

uiq̃i = 0.

We get ∑
i

uih([ai])|Γ =
∑
i

ui[q̃i] = 0.

Since restriction to Γ here is an isomorphism, we get∑
i

uih([ai]) = 0.

9.5. Corollary. Let a, b ∈ Y X
e,f satisfy a

2∼ b. Then h([a]) = h([b]).
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Proof. There is an ensemble A ∈ ⟨Y X⟩,

A =
∑
i

ui<ai>,

where ai ∼ a, such that A
2
= <b>. Since A=|{<|} <b>, we have∑

i

ui = 1.

By Theorem 9.4, ∑
i

uih([ai]) = h([b]).

Since [ai] = [a], we get h([a]) = h([b]).

§ 10. Maps of Sp × Sn

This section does not depend of the rest of the paper. We recall a theorem
of G. W. Whitehead about the fibration of free spheroids (Theorem 10.1) and
deduce Lemma 10.3 about certain maps Sp × Sn → Y (we need it in § 11).

We fix numbers p, n ⩾ 1 and a space Y . Let ΩnY be the space of maps
Sn → Y , as usual. Let

ϵ : Sp × Sn → Sp ∧ Sn → Sp+n

be the composition of the projection and the standard homeomorphism. For a
map w : Sp+n → Y , introduce the map

∇n(w) : Sp → ΩnY, ∇n(w)(t)(z) = w(ϵ(t, z)).

Introduce the isomorphism

∇n : πp+n(Y ) → πp(Ω
nY ), [w] 7→ [∇n(w)].

Let
µ : Sn → Sn ∨ Sn

be the standard comultiplication. Consider the usual multiplication

ΩnY × ΩnY
#−→ ΩnY, v1#v2 : Sn µ−→ Sn ∨ Sn v1∨v2−−−−→ Y.

For a map v : Sn → Y , introduce the map

τv : ΩnY
v#?−−→ (ΩnY, v#<|),

where the target is ΩnY with the specified new basepoint. It induces the iso-
morphism

τv ∗ : πp(Ω
nY ) → πp(Ω

nY, v#<|).
Let ΛnY be the space of unbased maps Sn → Y . Consider the fibration

ρ : ΛnY → Y, v 7→ v(<|).

We have ρ−1(<|) = Ωn(Y ).
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10.1. Theorem (G. W. Whitehead). For a map v : Sn → Y , the composition

Γ : πp+1(Y )
⌊?,[v]⌉−−−−→ πp+n(Y )

∇n

−−→ πp(Ω
nY )

τv ∗−−→ πp(Ω
nY, v#<|)

coincides up to a sign with the connecting homomorphism of the fibration ρ at
the point v#<| ∈ ΩnY . Consequently, the composition

πp+1(Y )
Γ−→ πp(Ω

nY, v#<|) in∗−−→ πp(Λ
nY, v#<|)

is zero.

See [8, Theorem (3.2)] and [9, § 3].

For a map v : Sn → Y , introduce the homomorphism

Ψv : πp+n(Y )
∇n

−−→ πp(Ω
nY )

τv ∗−−→ πp(Ω
nY, v#<|) in∗−−→ πp(Λ

nY, v#<|).

By Theorem 10.1,

Ψv(⌊u, [v]⌉) = 0, u ∈ πp+1(Y ). (11)

For maps v : Sn → Y and w : Sp+n → Y , introduce the map

Ψv(w) : S
p ∇

n(w)−−−−→ ΩnY
τv−→ (ΩnY, v#<|) in−→ (ΛnY, v#<|).

Clearly,
[Ψv(w)] = Ψv([w])

in πp(Λ
nY, v#<|).

Introduce the map

Φ : Sp × Sn id×µ−−−→ Sp × (Sn ∨ Sn)
θ−→ Sn ∨ Sp+n, (12)

where

θ : (t, in1(z)) 7→ in1(z), (t, in2(z)) 7→ in2(ϵ(t, z)), t ∈ Sp, z ∈ Sn.

For maps v : Sn → Y and w : Sp+n → Y , introduce the map

Ξ(v, w) : Sp × Sn Φ−→ Sn ∨ Sp+n v∨w−−−→ Y. (13)

For elements v ∈ πn(Y ) and w ∈ πp+n(Y ), put

Ξ(v,w) = [Ξ(v, w)] ∈ [Sp × Sn, Y ], (14)

where v and w are representatives of v and w, respectively.
For maps v0 : Sn → Y and V : Sp → (ΛnY, v0), introduce the map

V × : Sp × Sn → Y, (t, z) 7→ V (t)(z).

For V ∈ πp(Λ
nY, v0), put

V × = [V ×] ∈ [Sp × Sn, Y ],

where V is a representative of V .
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10.2. Lemma. For maps v : Sn → Y and w : Sp+n → Y , one has

Ξ(v, w) = Ψv(w)
× : Sp × Sn → Y.

Consequently,
Ξ([v], [w]) = Ψv([w])

×

in [Sp × Sn, Y ].

Proof. Take a point (t, z) ∈ Sp × Sn. We have µ(z) = ink(z̃) in Sn ∨ Sn for
some k ∈ {1, 2} and z̃ ∈ Sn. We have

θ(t, µ(z)) = θ(t, ink(z̃)) = (if k = 1) = in1(z̃),

(if k = 2) = in2(ϵ(t, z̃))

in Sn ∨ Sp+n. Thus

Ξ(v, w)(t, z) = ((v ∨ w) ◦ Φ)(t, z) =
= ((v ∨ w) ◦ θ ◦ (id× µ))(t, z) = (v ∨ w)(θ(t, µ(z))) =

(if k = 1) = (v ∨ w)(in1(z̃)) = v(z̃),

(if k = 2) = (v ∨ w)(in2(ϵ(t, z̃))) = w(ϵ(t, z̃)).

On the other hand,

Ψv(w)
×(t, z) = Ψv(w)(t)(z) = τv(∇n(w)(t))(z) =

= (v#∇n(w)(t))(z) = (v ∨∇n(w)(t))(µ(z)) = (v ∨∇n(w)(t))(ink(z̃)) =

(if k = 1) = v(z̃),

(if k = 2) = ∇n(w)(t)(z̃) = w(ϵ(t, z̃)).

The same.

10.3. Lemma. For elements u ∈ πp+1(Y ), v ∈ πn(Y ), and w ∈ πp+n(Y ), one
has

Ξ(v, ⌊u,v⌉+w) = Ξ(v,w)

in [Sp × Sn, Y ].

Proof. Choose a representative v : Sn → Y of v. By (11),

Ψv(⌊u,v⌉+w) = Ψv(w)

in πp(Λ
nY, v#<|). Applying Lemma 10.2 yields the desired equality.

For a map w : Sp+n → Y , introduce the map

ξ(w) : Sp × Sn ϵ−→ Sp+n w−→ Y.

For an element w ∈ πp+n(Y ), put

ξ(w) = [ξ(w)] ∈ [Sp × Sn, Y ], (15)

where w is a representative of w.
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10.4. Lemma. For en element w ∈ πp+n(Y ), one has

Ξ(0,w) = ξ(w)

in [Sp × Sn, Y ].

Proof. Choose a representative w : Sp+n → Y of w. Consider the diagram

Sp × (Sn ∨ Sn)
θ //

id×(<|∨id)

��

Sn ∨ Sp+n

<|∨w��
<|∨id

��

Sp × Sn

id×µ

aa

Φ

77

Ξ(<|,w)
,,

ξ(w)

22

id

||

ϵ

''

Y

Sp × Sn
ϵ

// Sp+n.

w

\\

Since the map

Sn µ−→ Sn ∨ Sn
<|∨id−−−→ Sn

is homotopic to the identity, the left triangle is homotopy commutative. The
other empty triangles and the square are commutative. It follows that the
parallel curved arrows are homotopic.

§ 11. Fineness of 2-similarity

Put X = Sp × Sn (p ⩾ 1, n ⩾ 2). Let Y be a space with elements u ∈
πp+1(Y ) and v ∈ πn(Y ). Consider the Whitehead product ⌊u,v⌉ ∈ πp+n(Y )
and the homotopy classes

k(t) = ξ(t⌊u,v⌉) ∈ [X,Y ], t ∈ Z

(see (15)).

11.1. Lemma. Let L be an abelian group and f : [X,Y ] → L be an invariant
of order at most r. Then

f(k(r! + t)) = f(k(t)), t ∈ Z.

Proof (after [5, Lemma 1.5]). We will use the homotopy classes

K(s, t) = Ξ(sv, t⌊u,v⌉) ∈ [X,Y ], s, t ∈ Z

21



(see (14)). By Lemma 10.4,

K(0, t) = k(t). (16)

We have
K(s,m+ t) = K(s, t) if s | m (17)

because

Ξ(sv, (m+ t)⌊u,v⌉) = Ξ(sv, ⌊(m/s)u, sv⌉+ t⌊u,v⌉) =
(by Lemma 10.3) = Ξ(sv, t⌊u,v⌉).

Consider the wedge of r copies of Sn and two copies of Sp+n

W = Sn ∨ . . . ∨ Sn ∨ Sp+n ∨ Sp+n

and the maps

Λ(d) = λ1(d1) ∨ . . . λr(dr) ∨ λr+1(dr+1) ∨ id : W → W,

d = (d1, . . . , dr+1) ∈ Er+1, as in § 3. Put

µ = µ1 ∨ µ2 : Sn ∨ Sp+n → W,

where
µ1 : Sn → Sn ∨ . . . ∨ Sn and µ2 : Sp+n → Sp+n ∨ Sp+n

are the comultiplications. Choose a map q : W → Y with

[q] = v ∨ . . . ∨ v ∨ r!⌊u,v⌉ ∨ t⌊u,v⌉.

Consider the ensemble A ∈ ⟨Y X⟩,

A =
∑

d∈Er+1

(−1)|d|<a(d)>,

where

a(d) : X
Φ−→ Sn ∨ Sp+n µ−→ W

Λ(d)−−−→ W
q−→ Y,

where Φ is as in (13). By Lemma 3.1, A
r
= 0. Clearly,

[q ◦ Λ(d) ◦ µ] = (d1 + . . . dr)v ∨ (dr+1r! + t)⌊u,v⌉

in [Sn ∨ Sp+n, Y ]. Thus, by the construction of K(s, t),

[a(d)] = K(d1 + . . . dr, dr+1r! + t)

in [X,Y ]. Thus, since f has order at most r,∑
d∈Er+1

(−1)|d|f(K(d1 + . . . dr, dr+1r! + t)) = 0.

By (17), K(d1 + . . . dr, dr+1r! + t) does not depend on dr+1 if (d1, . . . , dr) ̸=
(0, . . . , 0). Thus the corresponding summands cancel out. We get f(K(0, t))−
f(K(0, r! + t)) = 0. By (16), this is what we need.

22



Let classes E ∈ Hp+1(Y ) and F ∈ Hn(Y ) satisfy EF = 0 in Hp+n+1(Y ).
Put, as in Lemma 9.2,

∆ = ⟨u∗(E), [Sp+1]⟩⟨v∗(F ), [Sn]⟩+(−1)(p+1)n⟨u∗(F ), [Sp+1]⟩⟨v∗(E), [Sn]⟩ ∈ Z.

If Y = Sp+1 ∨ Sn with u = [in1] and v = [in2], taking obvious E and F
yields ∆ = 1. If p = n− 1 and Y = Sn with u = v = [id], taking obvious equal
E and F yields ∆ = 1 + (−1)n.

11.2. Lemma. If ∆ ̸= 0, the classes k(t), t ∈ Z, are pairwise not 2-similar.

Proof. Choose cocycles e ∈ Cp+1(Y ) and f ∈ Cn(Y ) representing E and F ,
respectively. Choose a cochain g ∈ Cp+n(Y ) with δg = ef . Consider the
corresponding Hopf invariants (see § 9)

h0 : πp+n(Y ) → Hp+n(Sp+n) and h : [X,Y ]e,f → Hp+n(X).

By Lemma 9.2,
⟨h0(⌊u,v⌉), [Sp+n]⟩ = (−1)pn+p+1∆.

We have the decomposition

k(t) : X
ϵ // Sp+n

t[id] // Sp+n
⌊u,v⌉ // Y

(the wavy arrows denote homotopy classes). Clearly, k(t) ∈ [X,Y ]e,f . Since the
Brouwer degree of ϵ is 1 and that of t[id] is t, Lemma 9.1 yields

⟨h(k(t)), [X]⟩ = (−1)pn+p+1∆t.

By Corollary 9.5, the classes k(t), t ∈ Z, are pairwise not 2-similar if ∆ ̸= 0.

Moral. Suppose that ∆ ̸= 0. The classes k(0) (= [<|]) and k(2) in [X,Y ], which
are not 2-similar by Lemma 11.2, cannot be distinguished by an invariant of
order at most 2 by Lemma 11.1. Recall that (X,Y ) can be (Sp×Sn, Sp+1∨Sn)
for any p ⩾ 1 and n ⩾ 2 or (Sn−1 × Sn, Sn) for even n ⩾ 2.
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