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Abstract
We prove that two finite-dimensional commutative algebras over an al-
gebraically closed field are isomorphic if and only if they give rise to
isomorphic representations of the category of finite sets and surjective
maps.

Let ©Q be the category whose objects are the sets n = {1,...,n}, n € N
(={0,1,...}), and whose morphisms are surjective maps. Let k be a field. For
a [commutative] algebra A [over k possibly without unity], let us define a functor
Lj: Q — k-Mod (a “representation of Q”). For n € N, set La(n) = A®™. For
a morphism h: m —n, set La(h): 21 ®...Q Ty — 11 & ... Yy, Where

Y = H ;.
i€h=1(j)
The functor L4 is a variant of the Loday functor [1].

Theorem. Let the field k be algebraically closed. Let A and B be finite-
dimensional algebras. Suppose that the functors Lay and Lp are isomorphic.
Then the algebras A and B are isomorphic.

We do not know whether the assertion is true for infinite-dimensional alge-
bras. It is false for the field R (which is not algebraically closed). Indeed, take
the non-isomorphic algebras A = R[X]/(X? — 1) and B = R[Y]/(Y? +1). We
have the bases {X°}e=01 (= {1, X}) in A and {Y°}e=0,1 in B. The linear maps
Sp: A®" — BOT

Xr®..0 X" ket 4, Y ®...0Y°, €1,...,en =0,1,

where k,,, = (—1)[™/2] form a functor isomorphism s: Ly — L.

1. Preliminaries

Algebra of polynomials. If V is a vector space [over k], then the symmetric
group ¥, = Autn acts [from the left] on V®™ by the rule g(v; ® ... ® v,) =
Vg-1(1) ® ... ® Vg-1(). The symmetric powers S"(V) = (V®")y  form the
symmetric algebra

S(V)=s(v)
n=0



with the multiplication induced by the tensor one: Ty = z @y, * € VO™,
y € V@™ (the bar denotes the projection V" — S™(V)).

For a vector space U, put k[U] = S(U*). For u € U, there is the evaluation
map k[U] — k, f — f(u), which is the unital algebra homomorphism defined
by the condition v(u) = (v,u) for v € U* = S1(U*) C k[U]. For a polynomial
f € k[U] and a set X C U, there is the function f| X: X — k, u+— f(u). An
ideal P C k[U] determines the set

Z(P)={u: f(uy=0forall fe P} CU.

Symmetric tensors, isomorphism . Put D"(U) = (U®")®»,
bw) =[] p"(U).
n=0

The pairing
<_7 _): (U*)®n X U®n - k7 (1)

(M ®...0 Up,u1 ... duy) = (v1,u1) - .. (Un, Uy ), induces the pairing
(—,-): S"(U*) x D™(U) — k, (2)

(z,w) = (z,w), where w € D™(U) C U®", z € (U*)®". Summing over n € N,
we get a pairing .
(—,-): k[U] x D(U) — k.

We have the linear map
0: D(U) — k[UT",  (0(W), f) = (£, ).

If U is finite-dimensional, then the pairings (1) and (2) are perfect and 6 is an
isomorphism.

Functor Ty. Let X C Q be the subcategory of isomorphisms. We have ¥ =
3o U3y U.... For a vector space A, we have the functor Ty: ¥ — k-Mod,
Ta(n) = A®™ (with the ordinary action of ¥,). If A is an algebra, then Ty =
Lals.

Kronecker product, isomorphism k. If a group G acts on vector spaces X
and Y, then it acts on Hom(X,Y') by the rule (gt)(z) = g(t(¢~'z)). We have
Hom(X,Y)% = Homg(X,Y).

Let A and B be vector spaces. The Kronecker product Hom(4, B)®" —
Hom(A®" B®"), w ~— [w] (a notation), preserves the action of ¥, and thus
induces a linear map D"(B#4) — Homy, (A®", B®") (from now on, B4 =
Hom(A, B)). Since

Homy (T4, Tp) = H Homy, (A®", B®™),

n=0



these maps form a linear map
r: D(B*) — Homy (T4, T5).

If A and B are finite-dimensional, then « is an isomorphism.

Morphisms Ty — Tp and functionals on k[B*], isomorphism &. For
finite-dimensional vector spaces A and B we have the isomorphism ¢ that fits
in the commutative diagram

HOHQﬂIh,TB)

k[BA)*.

Ezample. A linear map u: A — B induces the functor morphism T,,: T4 — T3,
(Tu)n = u®". Then (&(T,), f) = f(u), f € k[B4].

Antisymmetrization. For a vector space V', we have the operator alt,, : V" —
ven,
alt, (w) = Z sgng gw.
geEX,

2. The determinant

Let A and B be vector spaces of equal finite dimension m. Put U = B#. Choose
bases e1,...,e,m € A and f1,..., f, € B. Put

E=alt,(e1®...Q0ep) € A", F=alt,(fi®...® fn) € B®™.
We have the bases o fm € BT, (fi, fi) = 5{ (51j is the Kronecker delta)
and I} € U*, i, j=1,...,m, (I,u) = (f7,u(e;)). Put

H= > sgngll,@.. 0l €U
S

Then H € k[U] is the determinant, so
H(u) = detu, uel. (3)
We have (f' @...® f™, [v](E)) = (H,v), v € U®™. Hence
(fre...@ ™% [w](E®")) = (H®", w), weU®™, reN. (4
For w € D™ (U), we have

[w](B®") = (H', w)F*". (5)



Indeed, E®" belongs to the image of alt®": A®™" — A®™"  The image of
alt®": B®mr . B®™MT is generated by F®" since the image of alt,,: B®™ —
B®™ is generated by F. The map [w]: A®™" — B®™" preserves the action
of ¥,y and thus commutes with alt®”. Therefore, [w](E®") = tF®" for some
t € k. From (4), we get t = (H®", w) = (H ,w).

For a morphism s: T4 — T, we have

smr(E®7) = (€(s), H)F®",  reN. (6)
This follows from (5): if s = x(W), W € D(U), then s, = [Wy,] and
(€(s), H) =(H ,Wiy).
3. Homomorphisms A — B and morphisms L4 — Lp

Let A and B be finite-dimensional algebras. Put U = B,
Multiplicativity ideal. Take x,y € A and p € B*. We have the linear form
n,eUr,

(I, u) = (pulzy)), welU

(the multiplication in A is used) and the tensor J2 , € (U*)%?,
(JPypu@v) = (pu@)o(y), wvel
(the multiplication in B is used). Put

gg,y =Jb, — Igy € k[U).
We have
ghy(w) = (pu(@)u(y) —u(zy)), wel
Let M C k[U] be the ideal generated by the polynomials g2, z,y € A, p € B*.

Lemma 1. The set Z(M) C U coincides with the set of algebra homomor-
phisms A — B. O

Note that Homqg(L 4, L) C Homs (T4, T5s).

Lemma 2. Let s € Homy(T4,T5). Then the conditions s € Homg(La, Lp)
and £(s) L M are equivalent.

Thus we establish an isomorphism Homgq (L4, Lp) — (k[U]/M)*.

Proof. For n € N, define the morphism 7,,: n+2 — n+1 by the rules 1 — 1
and ¢ — ¢ — 1, 4 > 1. The category 2 is obtained from ¥ by adjunction of
the morphisms 7,,. Therefore, the condition s € Homg (L4, Lg) is equivalent to
commutativity of the diagrams

Sn+42

A®(n+2) B®(n+2)
LA(Tn)i \LLB(TW)
A®(n+1) St BOM+)



n € N. Consider the discrepancy

Tn = LB(Tn) O 8n4+2 — Sp+1© LA(Tn): A®(n+2) - B®(n+1)‘

For z € A, g € B*, we have the linear form {4 € U*, (12, u) = (q,u(z)), u € U.
These forms generate U*. For n € N, z,y,21,...,2, € A, p,q1,...,qn € B,

put
G Py quein = gb [0 (9 € K[U).

T,Y;215-445%n 7?} z1 "z

These polynomials linearly generate M. Therefore, it suffices to prove that
(P~ (™)) = (€(s), G2 Lt

where 27 =2 QYR 21 ® ... Q0 2y, PT =P X ... R ¢n.
‘We have

(™ [wi](La(m) (@) = {12, @17, wi),  wp e U,
(0™, Lo (7o) ([wo] (27)) = (J2, @ 17 wa),  wp € USOHD,

where [~ = [' ® ... ® [ (direct check). By construction,

G e = JP @~ T2, @I,

T,Yy215-5%n

We have s = k(W) for some sequence W € D(U), so s, = [W,]. We have

(™ (@) = (™, Lp(1) ((Wat2](27)) — ™, Wata](La(ma)(27))) =
= (J:Iv),u ® I~ Wn+2) - ( ® lN7 n+1) =

= (W), Gf@ii:...’fim =(€(s), G ). O
Proof of Theorem. let s: Ly — Lp be a functor isomorphism. Then
s1: A — B is an isomorphism of vector spaces. Put m = dimA = dim B.
Choose bases in A and B. Let the tensors E, F and H be as in § 2. We
seek an algebra homomorphism u: A — B with detu # 0. Assume that there
exists no such a homomorphism. Then, by (3) and Lemma 1, H | Z(M) = 0.
By Hilbert’s Nullstellensatz, H € M for some r € N. By (6) and Lemma 2,
Smr (BE®7) = (€(s), H YF®" = 0. This is absurd since E®" # 0 and s,,,. is an
isomorphism of vector spaces. O
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