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In this note we continue the study of asymptotic invariants of Riemannian tori
(e.g. see [BuI] and references there). By asymptotic invariants we mean invariants
which do not change under passing to finite covers. In [BuI] we show that the
asymptotic volume growth of a Riemannian torus is at least as fast as that of a
flat one. One may ask what are the possible values of “asymptotic isoperimetric
constants” for such metrics (see definition below). We show that the asymptotic
isoperimetric constant of a conformally flat torus is no less than that of a flat
one, while for general metrics (in dimensions higher than 2) this constant may be
arbitrarily small.

Let (M, g) be the universal cover of a Riemannian n-torus.

Definition. We define the asymptotic isoperimetric constant σ(M, g) of (M, g) by

σ(M, g) = lim sup
Voln(Ω)→∞

Voln(Ω, g)1/n

Voln−1(∂Ω, g)1/n−1

where Voln and Voln−1 are Riemannian measures (for g) of the respective dimen-
sions and Ω ranges over all open bounded subsets of M .

Clearly σ(M, g) is finite, positive, and invariant under homotheties of the metric.
We denote by σn the isoperimetric constant of the standard Euclidean n-space,

σn =
mn(Dn)1/n

mn−1(Sn−1)1/(n−1)
,

where mn and mn−1 are the standard (Euclidean) measures of the respective di-
mensions.

The proof of the following theorem is to some extent motivated by the Besikow-
itch counter-example to Loewner’s conjecture, see [Bes]. (Loewner conjectured that
if on a cylinder D2× [0, 1] we are given a Riemannian metric such that the distance
between the foundations D2 × 0 and D2 × 1 is no less than h and the area of each
”section” is of area no less than l, then the volume Vol(D2 × [0, 1]) ≥ hl). Notice
that, although the metric in the Besikowitch counter-example is conformally flat,
the Theorem does not hold for conformally flat metrics (see Proposition).
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Theorem. If n ≥ 3, then there exist Zn-periodic Riemannian metrics on Rn with

arbitrarily small asymptotic isoperimetric constants.

Proof. Let pri : Rn → Rn−1 denote the projection onto the ith coordinate hy-
perplane. Fix n congruent open balls U1, . . . Un in In−1 (where I = [0, 1]), such
that the “tubes” Gi := pr−1

i (Ui) in Rn are disjoint. This is possible since n ≥ 3.
Let v = mn−1(U1) = · · · = mn−1(Un). Now pick a small ε > 0 and construct a
Zn-periodic Riemannian metric gε on Rn such that

(1) The volume form determined by gε is equal to mn.
(2) In every tube Gj , j = 1, . . . , n, the line element of gε is given by

ds2 = ε2n−2dx2
j +

∑
i6=j

dx2
i

ε2
.

We will prove that σ(Rn, gε) → 0 as ε → 0. Consider a domain Ω ⊂ Rn and let
V = Volm(Ω, gε) = mn(Ω). We think of Rn as the union of “cells” In + k, k ∈ Zn,
each cell carrying a copy of the same metric. Let Ω′ denote the union of cells In +k
for which mn(Ω ∩ (In + k)) > 1 − v/2. To complete the proof, we will derive a
lower bound for Voln−1(∂Ω, gε) in terms of V and ε. We argue separately for the
two following cases.

Case 1: mn(Ω′) ≥ V/2. By a known Loomis–Whitney inequality [LW] the
volume of Ω′ can be estimated from above in terms of volumes of its projections:

n∏
i=1

mn−1(pri(Ω
′)) ≥ mn(Ω′)n−1.

Hence there exists j, 1 ≤ j ≤ n, for which mn−1(prj(Ω
′)) ≥ mn(Ω′)1−1/n. The

projection prj(Ω
′) is a union of (n − 1)-dimensional cells of the form In−1 + k,

k ∈ Zn−1. For every cell In−1 + k ⊂ prj(Ω
′) we have

mn−1(prj(Ω) ∩ (In−1 + k)) > 1 − v/2

and therefore
mn−1(prj(Ω) ∩ (Uj + k)) > v/2.

Note that prj(∂Ω) = prj(Ω) since Ω is bounded. The definition of gε implies that

mn−1(prj(X)) ≤ εn−1 Voln−1(X, gε) for any set X ⊂ pr−1
j (Uj + k), so

Voln−1(∂Ω ∩ pr−1
j (Uj + k), gε) ≥

v

2
· ε−(n−1).

Therefore

Voln−1(∂Ω, gε) ≥
v

2
· ε−(n−1) · mn−1(prj(Ω

′)) ≥ c(n) · ε−(n−1) · mn(Ω′)1−1/n.

Replacing mn(Ω′) by V in the last expression will only affect the constant.
Case 2: mn(Ω′) < V/2. Consider the cells of the form In+k, k ∈ Zn, intersecting

with Ω with mn(Ω ∩ (In + k)) ≤ 1 − v/2. It is easy to check (e.g., by applying the
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Loomis–Whitney inequality ([LW]) to the set Ω∩ Int(In + k)) that, for these cells,
the values

mn−1(∂Ω ∩ Int(In + k))

mn(Ω ∩ Int(In + k))

have a positive lower bound depending only on v and the dimension n. Since the
terms mn(Ω ∩ Int(In + k)) adds up to a value of at least mn(Ω r Ω′) ≥ V/2, this
gives us the following estimation

Voln−1(∂Ω, gε) ≥ c(n, ε) · V

for case 2.
As V → ∞, the inequalities obtained for the two cases take the form

lim sup
V 1/n

Voln−1(∂Ω, gε)1/(n−1)
≤ c(n) · ε

and

lim sup
V 1/n

Voln−1(∂Ω, gε)1/(n−1)
= 0,

respectively. Thus we obtain that σ(Rn, gε) ≤ c(n) · ε. �

Proposition. If (M, g) is a universal cover of a conformally flat torus, then σ(M, g) ≥
σn, and the equality holds if and only if the metric is flat.

Proof. Our argument is an application of the so-called length-area method and is
similar to Loewner’s proof of the 2-dimensional isosystolic inequality (see [G], page
4). Let M = Rn, and let the metric g be given by g = λgE where gE is the standard
Euclidean metric, λ is a positive smooth function on Rn, λ is periodic with respect
to some (co-compact) lattice Γ ⊂ Rn. Without loss of generality we may assume
that the volume of Rn/Γ is equal to 1 for both metrics g and gE , i.e.

∫
Rn/Γ

λn dmn = mn(Rn/Γ) = 1.

Define α :=
∫
Rn/Γ

λn−1 dmn. By Hölder inequality, the above identity implies that

α < 1 unless λ ≡ 1.
For x ∈ Rn and r > 0, denote by B(x, r) the Euclidean ball of radius r centered

at x. To prove that σ(M, g) ≥ σn it suffices to construct a sequence of regions Ωi

with volumes growing to infinity and

lim
i→∞

Voln(Ωi, g)1/n

Voln−1(∂Ωi, g)1/n−1
≥ σn.

We will show that such regions can be chosen among Euclidean balls B(x, r).
It is clear that

Voln(B(x, r), g)

mn(B(x, r))
→ 1 as r → ∞,

with the convergence being uniform in x. (Indeed, both Vol(B(x, r), g) and mn(B(x, r))
are asymptotically equal to the number of fundamental domains of Γ contained in
B(x, r)). Define

Ar(x) =
Voln−1(∂B(x, r), g)

mn−1(∂B(x, r))
,
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then Ar(x) is the average value of the function λn−1 over the Euclidean sphere
∂B(x, r). Thus the function Ar is Γ-periodic. A standard argument of Euclidean
integral geometry shows that the average value of Ar (w.r.t. the standard Euclidean
volume mn) is equal to α. Therefore for every r > 0 there is a a point x0 = x0(r) ∈
Rn such that Ar(x0) ≤ α. To complete the proof, observe that

σ(M, g) ≥ lim sup
r→∞

Voln(B(x0(r)), g)1/n

Ar(x0(r))1/(n−1)

≥
1

α1/(n−1)
·

mn(B(x0(r)))
1/n

mn−1(∂B(x0(r)))1/(n−1)
=

σn

α1/(n−1)
. �

Remark. The Proposition implies, in particular, that the asymptotic isoperimet-
ric constant of an arbitrary 2-dimensional torus is at least σ2, since all 2-tori are
conformally flat. There is a direct 2-dimensional argument, which may give better
geometric insight and suggests different candidates for “optimal” regions Ωi. We
give an outline of the argument below.

In the notations of the Proposition, denote by Ei the ellipse of maximum area
inscribed in the ball of radius i in the stable norm of g (see [BuI] for definitions).
The proof of the volume growth theorem [BuI] implies that the area enclosed in Er

in g is at least πi2 + o(i2). Choose
√

i points on Ei such that all distances between
neighboring points are equal, an let Ωi be the interior of a geodesic polygon (w.r.t.

g) with these vertices. One easily sees that limi→∞
Vol2(Ωi)
Vol2(Ei)

= 1. On the other

hand, the length of each side of Ωi differs from the distance between its endpoints
in the stable norm by no more than a constant c. This distance, in its turn, is
no greater than the distance between these endpoints in the Euclidean metric for
which Ei is a ball of radius i. Combining these inequalities, one concludes that
Vol1(∂Ωi) ≤ 2πi + c

√
i, that completes the argument.

Remark. Reasoning as above, one easily sees that, for given asymptotic volume
growth, in dimension 2 the exact value of σ(M, g) can be recovered from the stable
norm (this observation was made independently by P. Pansu.) This is no longer
true in higher dimensions, as one can observe from the examples in the proof of the
theorem.
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