Corrections of typos and small errors to the book "A Course in Metric Geometry" by D. Burago, Yu. Burago, and S. Ivanov

July 6, 2024

We are grateful to many mathematicians, especially M. Bonk and J. Lott, who have informed us of numerous misprints and inaccuracies in the book.

Misspelled words, missing articles and similar minor errors are not included in this list. The exclamation mark after page numbers indicates errors which affect larger (than a couple of lines) parts of the text. Some of such large corrections are included at the end of the table.

page l	ine	Description
--------	-----	-------------

Chap	Chapter 1		
6	12	$egin{array}{ccc} \left\langle v,v ight angle \left/ \left\langle w,w ight angle & \longrightarrow & \left\langle v,w ight angle \left/ \left\langle w,w ight angle \end{array} \end{array}$	
7	Ex.1.2.24	This exercise is not as obvious as claimed in the beginning of the chapter. It deserves at least a hint.	
13	-1	Add "finite" before " ε -net" and " (2ε) -net".	
19	-7	$\mathbb{R}^n \longrightarrow \mathbb{R}^d$	
20	17	$c_1 \longrightarrow x_1$	
21	-8	$B \in \mathfrak{B}_{m-1} \longrightarrow B \in \mathfrak{B}_{k-1}$	
21	-2	$\sup \longrightarrow \subset$	

22 8-11 This part of the proof uses the identity $\mu'_n(B_i) = C_n(\operatorname{diam} B_i)^n$, which is not yet proved. The proof should be modified as follows. The set \mathfrak{B} to which Theorem 1.7.14 is applied should be the set of all balls of diameter less than ε rather than the set of all balls. Then the inequality on line 11 should estimate the quantity $\mu'_{n,\varepsilon}(I^n) := C_n \mu_{n,\varepsilon}(I^n)$ rather than $\mu'_n(I^n)$. The desired inequality $\mu'(I^n) \leq 1$ follows by passing to the limit as $\varepsilon \to 0$.

22 -5 $d'-d \longrightarrow d-d'$ (two times)

Chapter 2	

 $\mathbf{26}$ Definition of Add the requirements that all constant paths are admissible and have zero length lengths. structure Add "such that $d_L(x, y) < \infty$ " after "two points x, y". 30 11 35 Proof of The proof is flawed because N = N(Y) depends on ε and hence the term 2.3.4(iv) $(N+2)\varepsilon$ does not go to zero in general. Another issue is that the proof assumes that γ is rectifiable. The proof should read as follows: (iv) Let paths γ_j converge pointwise to γ . If $L(\gamma) < \infty$, take $\varepsilon > 0$ and fix a partition $Y = \{y_i\}_{i=0}^N$ for γ such that $L(\gamma) - \Sigma(Y) < \varepsilon$. Now consider the sums $\Sigma_i(Y)$ for paths γ_i corresponding to the same partition Y. Choose j to be so large that the inequality $d(\gamma_i(y_i), \gamma(y_i)) < \varepsilon/N$ holds for all $y_i \in Y$. Then $L(\gamma) \le \Sigma(Y) + \varepsilon \le \Sigma_i(Y) + N \cdot 2\varepsilon/N + \varepsilon \le L(\gamma_i) + 3\varepsilon.$ Since ε is arbitrary, this implies (iv). In the case $L(\gamma) = \infty$ the proof is similar: choose Y such that $\Sigma(Y) > 1/\varepsilon$, then the same argument shows that $L(\gamma_j) \geq \Sigma_j(Y) \geq 1/\varepsilon - 2\varepsilon$ for all large enough j, hence $L(\gamma_j) \to \infty$. 38 sections Although we usually allow infinite distances, many statements here are obviously 2.4 - 2.5valid for finite metrics only. This condition has to be added where necessary. 39 -6The proof of Theorem 2.4.3 works only for paths whose L-length is finite. To fix this issue, change $L(\gamma|_{[a,t]})$ to $L_d(\gamma|_{[a,t]})$ and refer to Proposition 2.3.4(iii) rather than property 2 of length structure. (Note that the desired inequality is trivial if $L_d(\gamma) = \infty.$ $\mathbf{42}$ 12 $p \in A$ $x \in A$. (The letter p on the next line denotes another point.) \longrightarrow Remove "locally-compact". (This assumption is not essential and is never used.) 424th line of section 2.4.4

42	-9	$x_1 = x_1 \longrightarrow x = x_1$
45	Ex.2.4.19	The metrics here are assumed compatible with the topological structure of X . (This can be guessed from the context but we should have said this explicitly.)
45	5	Add " $\rightarrow J$ " after " I_2 " and move " $(i = 1, 2)$ " to the end of the sentence.
45	-11	$t-t' \longrightarrow t'-t$
47	-8	$ t - t_j < \varepsilon \longrightarrow t - t_j < \varepsilon/C$
48	2	$\frac{C}{4\varepsilon} \longrightarrow \frac{4C}{\varepsilon}.$
48	6	$\gamma_i(k/N) \longrightarrow \gamma_i(t).$
51	Thm. 2.5.28	All path in the theorem are assumed naturally parametrized.
53	-10	Remove "different". (Ambiguity.)
54	15	$i=1 \longrightarrow i=0$
54	Ex 2.6.4	$\ell \longrightarrow L$ (two times).
56	-1	$y_{j-1} - y_j \longrightarrow y_j - y_{j-1}$

Chapter 3

65	12	Add "around a fixed point" after "rotations".
66	19	Remove parentheses around "semi-".
66	Ex.3.1.25	The compatibility assumptions about d_α are not needed in this exercise.
67	15	Insert "if d is a length metric, then" after "Note that"
69	2	a topological space $(P, d) \longrightarrow$ a set P
69	5	add "is either empty or" before "a face in both of them"

70	Example 3.2.9	Exercise 3.2.10 and the next paragraph, the way how they are formulated, require a condition $k \leq 2$. Indeed, it may happen that adding simplices as described can create a shorter path between two points in X.
71	-15	Replace "cardinality of an" by "cardinality of the endpoints of segments in the"
72	18	in these cases \longrightarrow in the first case
77	Lemma 3.3.6	In general, \overline{d} and d_{R_G} are only semi-metrics. There should be a remark or exercise somewhere, explaining that additional identifications do not occur if all orbits are closed.
77	9	Should read: " and with p_i being equivalent to q_{i-1} for all $i \ge 1$ " (This means essentially the same, but provides consistent notation for indices through the argument.)
77	10	$g_i(q_i) = p_{i+1} \longrightarrow g_i(p_i) = q_{i-1}$
77	-14	Omit " (q_i) " after the long composition of maps.
77	-10	$x \longrightarrow p$
79	Exercise 3.4.6	The "only if" statement is not true. It can be saved by additional assumptions: the action is faithful, X is connected, and p is a local isometry everywhere (rather than just at one point).
79	-8	of sets \longrightarrow of open sets
80	5	Connectedness of X is not needed.
83	Def.3.4.14	When we consider a group action on a topological space, we always assume that the action agrees with the topology (i.e. the groups acts by homeomorphisms). We should have said this explicitly somewhere.
84	Lemma 3.4.17	Remove "(shortest path)" and "(resp. shortest path)". (A lift of a shortest path is not always a shortest path.)
84	-7	$Y \longrightarrow X$
84	-7, -6	$ \tilde{\gamma} \longrightarrow \tilde{\gamma}_t (\text{two times}) $
84	-3	$Y \longrightarrow X$

84	-2	$\gamma_{ _{[0,t)}} \longrightarrow \gamma_{ _{[0,t_0)}}$	
84	-2	$t_i < t_0 \longrightarrow 0 < t_i < t_0$	
85	1st par of Proof	$U_y \longrightarrow U_q$ (two times), connected components \longrightarrow disjoint open sets	
85	-14	$g_p^{-1} \longrightarrow g_p$ (two times)	
85	Thm 3.4.18	"the shortest path is unique" \longrightarrow "every two points from this neighborhood are connected by a unique shortest path"	
85!		The proof of Theorem 3.4.18 is incomplete. We should have proved that the set V_p is open (required in the definition of a covering map) and the set \overline{V}_p is closed (for the "compactness implies continuity" argument to work). Adding an assumption that every geodesic segment contained in our neighborhood is a shortest path makes the proof correct (and it may be even simplified). For all our applications such a weaker theorem is sufficient.	
86	8	bijective \longrightarrow homeomorphic	
88	Ex. 3.6.2	The two latter product spaces contain \longrightarrow The last product space contains	
89	2nd par of Rem 3.6.3	One has to require that the restrictions of the norm to the rays $\{x_0, y > 0\}$ and $\{x > 0, y_0)\}$ are monotone.	
91	14	$a = tx \longrightarrow a = rx$	
93	4	$\Sigma(X) \longrightarrow \operatorname{Con}(X)$	
93	Def 3.6.16	$\begin{array}{rccc} t+s\leq\pi &\longrightarrow & d(x,y)\leq\pi\\ t+s\geq\pi &\longrightarrow & d(x,y)\geq\pi \end{array}$	
99	-1	$\geq \theta(a,c) \longrightarrow \geq \theta(a,b)$	
Chap	Chapter 4		
103	14	$g_0(t) \leq g(t) \text{ (resp. } g_0(t) \geq g(t)) \longrightarrow g_0(t) \geq g(t) \text{ (resp. } g_0(t) \leq g(t))$	

Def 4.1.2 Same as above.

105	10	$c \longrightarrow p$
105	14	$\bar{c} \longrightarrow \bar{p}$
106	14	$\frac{\sqrt{3}}{2} < \frac{1}{2} \longrightarrow \frac{\sqrt{3}}{2} > \frac{1}{2}$
107	last line of Dfn 4.1.9	$ \overline{d}\overline{b} = db \longrightarrow \overline{a}\overline{d} = ad $
113	-7	$\triangle abc \longrightarrow \triangle a'b'c'$
117	-11	Add "for $\triangle pq_0s$ and $\triangle sq_0r$ " before "on different sides"
117	-6	The inequality should read: $\measuredangle p_0 q_0 s_0 + \measuredangle s_0 q_0 r_0 \le \pi$.

Chap	Chapter 5	
137	-3	$x \longrightarrow p$
137	-1	$T_x\Omega \longrightarrow T_p\Omega$
144	-3	$\varphi \colon U \in \mathbb{R}^2 \to \mathbb{R}^3 \longrightarrow \varphi \colon U \subset \mathbb{R}^2 \to \mathbb{R}^3$
146	11	$\mathbb{R}^3 \longrightarrow \mathbb{R}^2$
148	7	a curve $\gamma \longrightarrow$ a naturally parameterized shortest path γ
148	12	a certain speed \longrightarrow a certain (unit) speed
148	eq. (5.5)	$t \longrightarrow t_0$
150	eq. (5.10) and (5.11)	The equations should read: $E\frac{d^2x}{dt^2} + F\frac{d^2y}{dt^2} = -\left(\frac{1}{2}\left(\frac{dx}{dt}\right)^2\frac{\partial E}{\partial x} + \frac{dx}{dt}\frac{dy}{dt}\frac{\partial E}{\partial y} + \left(\frac{dy}{dt}\right)^2\left(\frac{\partial F}{\partial y} - \frac{1}{2}\frac{\partial G}{\partial x}\right)\right),$ $F\frac{d^2x}{dt^2} + G\frac{d^2y}{dt^2} = -\left(\left(\frac{dx}{dt}\right)^2\left(\frac{\partial F}{\partial x} - \frac{1}{2}\frac{\partial E}{\partial y}\right) + \frac{dx}{dt}\frac{dy}{dt}\frac{\partial G}{\partial x} + \frac{1}{2}\left(\frac{dy}{dt}\right)^2\frac{\partial G}{\partial y}\right).$

1513The equation should read:
$$\frac{d}{dt} \left(E\left(\frac{dx}{dt}\right)^2 + 2F\frac{dx}{dt}\frac{dy}{dt} + G\left(\frac{dy}{dt}\right)^2 \right) = 0.$$
15319Replace F by E in the first of two identical equations: " $0 = -\partial F/\partial x$ ".158-13In fact, medians do meet in one point in the sphere and in the hyperbolic plane.
We'd better choose another example...1603The formula covers only orientation-preserving hyperbolic isometries. Isometries
inverting orientation can be described as complex transformation of the form
 $T(z) = \frac{a_z^2 + b_z}{2t + b}$ where a, b, c, d are arbitrary reals with $ad - bc = -1$. The set of all
isometries is the union of two these classes.162-8Remove the minus sign before "In".165-13The first line of the long equation should read:
 $L(I \circ \gamma, a, b) = \int_a^b Iy(\gamma(t))^{-1} \left| \frac{dI(\gamma(t))}{dt} \right| dt$ 165-2of hyperbolic rigid motions
motions \rightarrow of orientation-preserving hyperbolic rigid
motions173-9 $0 > \alpha \ge \beta > \pi$ $\rightarrow \alpha$ and β (α is at the left vertical side and β is at the right
one)174-12area of a circle
motions $\rightarrow c$ -neighborhood1751Inboth inequalities, replace the constant 2 by 4.180-11($\cos \alpha, \sin \alpha, 0$) $\rightarrow (-\sin \alpha, \cos \alpha, 0)$ 183-12The argument "(p)" should be replaced by "(0, 0, 0)" everywhere in these
formulae.183cquations at
the bottom
of the pageThese formulae make sense only for $\tau \ge 0$. To make them valid in general,
replace all $\sqrt{\tau}$ by $\sqrt{|\tau|}$ and, in addition, multiply the exponents at φ_2 (but not
at φ_1 !) by the term $sign(\tau)$.

189	-16	$H_V \longrightarrow X_V$ (two times).
191	-11	$=(x,y,x_0y) \longrightarrow =(x,y,z+x_0y)$
195	-14	$T_{\varphi}(x)M \longrightarrow T_{\varphi(x)}M$ (two times).
204	-14 (item 2)	Add a sentence: "This means that f maps I^n to the parallelotope $P = [0, d_1] \times [0, d_2] \times \dots [0, d_n]$."
205	-3, -4	$1/4\pi \longrightarrow 2/\pi$ (two times)
205	-1	$1/2\pi \longrightarrow 1/\pi$
206	-16	$\frac{1}{4\pi} \longrightarrow \frac{2}{\pi}$

Chapter 6

212!	pages 212–213	The formula (6.1) is incorrect just for the reason explained two lines below in the book—computing the derivative with respect to ε , one should take into account the variable nature of a Riemannian scalar product, just like in the subsequent computations of derivatives with respect to t ! This leads to a missing term in (6.1) which is carried over through all computations on pages 212–213. As a result, the derived equations for geodesics ((5.10) and (5.11)) are incorrect (see the above comment for page 150).
213	-5	Replace ∇ by Δ
217	12–17	All notations of the form Γ_{ij}^k should be changed to $\Gamma_{ij,k}$.
218	eq.(6.4)	Another fundamentally incorrect formula. It is valid only at points where $E = G = 1$ and $F = 0$. Luckily, we never use it
228	-13	$\begin{array}{rcccc} g(t)\neg 0 & \longrightarrow & g(t) \neq 0 \\ g(t)) = & \longrightarrow & g(t) = \end{array}$
229	eq.(6.13)	The first part of the equation (namely, the statement that the scalar product involving Y is zero) is correct but only <i>a posteriori</i> . It follows from the last equation of (6.13) because Y is proportional to N .
229	-10, -2	Replace all occurrences of $\frac{D}{dx}$ by $\frac{D}{dt}$ (4 times).

232	1	Add "at γ_0 " after the formula.
232	2	V and T are unit vector fields $\longrightarrow V$ is a unit vector field
235	Lem 6.4.12	Remove piece: "For a unit vector $V \in T_q \Omega$,"
237	8	$[0,T] \longrightarrow]0,T[.$
237	Proof of Thm 6.5.1	The proof works only under the assumption $K_0 \leq 0$. (This is implicitly used in the equation on the last line of the page.) See page 14 below for another proof.

Chap	oter 7	
242	22	Remove "Finsler". (In fact, the metric on the limit manifold is sub-Finsler.)
248	-3	The fragment "indexconvergence!uniform" should be an index entry.
253	-16	for an $x \in S \longrightarrow$ for every $x \in S$
253	-12	for an $x \in S_n \longrightarrow$ for every $x \in S_n$
263	12	S_n converge to $X \longrightarrow S_n$ converge to S
269	Ex 7.5.11	Add an assumption that X is locally simply connected. Refer to Exercise 7.5.8 instead of 7.5.9.

Chapter 8

272 Ex 8.1.2(1) Add an assumption that the diameters of X_n are uniformly bounded.

273 3 $\varepsilon_n \longrightarrow \varepsilon$ (two times)

278 -18 f(X) and $g(Y') \longrightarrow f_1(X)$ and $f_2(Y')$

280 -15, Eq. (3) $|g_1| \cdot |g_2| \longrightarrow |g_1| + |g_2|$

281 13 of x. \longrightarrow of x (up to inner automorphisms).

 $283 \quad 7 \qquad \qquad |g_1|_2 \cdots |g_n|_2 \quad \longrightarrow \quad |g_1|_2 + \cdots + |g_n|_2.$

 $\mathbf{284}$ 7 $= x_i$ \rightarrow $= y_i$ 286 9 - 10 \leq (two times) \longrightarrow \geq $\mathbf{288}$ 13 $[cf] \longrightarrow [df]$ 289 Thm 8.4.16 In the proof below we work with strictly intrinsic metrics. Using "almost shortest paths", the reader can easily adopt the argument to the situation when shortest paths may fail to exist. $\longrightarrow C$ 290 3 c $\longrightarrow X$ M $\mathbf{290}$ 4 $\mathbf{291}$ 8 $d(a,b) \longrightarrow d(b,c)$ $d(a'_i, a'_{i+1}) \longrightarrow d(b'_i, b'_{i+1})$ $\mathbf{291}$ 15 $+6kL\frac{1}{k} = \longrightarrow +6L\frac{1}{k} =$ $\mathbf{291}$ -9292! 9 2δ -neighborhood \longrightarrow 3 δ -neighborhood This correction obviously implies some changes to other constants too (like 4δ). Namely, one should replace 4δ by 6δ twice in Lemma 8.4.24 and do corresponding (obvious) changes in the proofs of Lemma 8.4.24 and of the Morse Lemma 8.4.20 on page 292. (A nice proof of the Morse Lemma also can be found in [BH]). $\mathbf{292}$ -15smallest \rightarrow biggest $\mathbf{292}$ -11ga γ \longrightarrow Omit the last term $\geq \frac{n}{q}$ $\mathbf{292}$ -7Replace the line by "Since $R \gg \delta$ (namely, $R > k^2 \delta > (20C + 8)^2 \delta > 400C\delta$), the 292 -6last inequality implies n < 9C." $K\tilde{K} \longrightarrow \tilde{K}$ 297 17 $\leq \sum x_i \|e_i\| \leq N^2 \quad \longrightarrow \quad \leq \sum |x_i| \|e_i\| \leq N$ $\mathbf{299}$ -4

300 -12 The formula does not follow from the preceding ones. Correction: replace the whole statement "Hence ..." by:

Let k be the integer such that $k \leq ||w|| < k + 1$, then $||w - kv|| \leq \varepsilon ||w|| + 1$, then

$$d(Mw) \le d(kMv) + d(Mw - kMv) \le (1 + \varepsilon)kM + CM(\varepsilon ||w|| + 1),$$

hence $d(Mw)/\|Mw\| \le 1 + \varepsilon + C\varepsilon + M/\|w\|$.

Chapter 9				
308	10	$\sqrt{k} \longrightarrow 1/\sqrt{k}$		
308	11	$1/\sqrt{k} \longrightarrow \pi/\sqrt{k}$		
308	-17	$U - I \longrightarrow U_i$		
313	1	$\leq r \longrightarrow < r$		
313	2	$\leq r \longrightarrow < r$		
313	12	paths starting \longrightarrow parts in U starting		
314	-18	three \longrightarrow four		
314	-16	$d \longrightarrow x$		
314	-3	$ a_0b_0 = \bar{a}\bar{b} \longrightarrow a_0x_0 = \bar{a}\bar{x} $		
315	5	second $\measuredangle bxc \longrightarrow \measuredangle axc$		
315	9	(Theorem 4.5.6) \longrightarrow (for $k = 0$ it is Theorem 4.5.6)		
315	16	$\bar{x}, \bar{x}' \longrightarrow \bar{x}, \bar{y}$		
316	10	$C \in \mathbf{X} \longrightarrow C \subset \mathbf{X}$		
316	Figure 9.1	Letters X_1 and X_2 should be interchanged		
318	3	Hopf–Rinow Theorem \longrightarrow simple implication $(i) \Rightarrow (iii)$ in the Hopf–Rinow Theorem (This implication does not require local compactness of X.)		

318	7	Hopf-Rinow theorem \longrightarrow the implication mentioned above.		
320	-12	$d(x,y) \longrightarrow xy $		
324	17	$\triangle pab \longrightarrow \widetilde{\triangle} pab$		
324	18	$ pa = O\tilde{a} , pb = O\tilde{b} \longrightarrow \bar{p}\bar{a} = O\tilde{a} , \bar{p}\bar{b} = O\tilde{b} $		
324	19	$\measuredangle apb \ge \longrightarrow \measuredangle \bar{a}\bar{p}\bar{b} \ge$		
333	13	$\operatorname{convex} \longrightarrow 1\operatorname{-convex}$		
336	-16	surface $T_1 \cup T_2 \longrightarrow \text{surface } T_3 \cup T_4$		
336	-12	$T_1 \cup T_2 \longrightarrow T_3 \cup T_4$		
338	-2-3	$p \longrightarrow q$ (3 times)		
339	7	$\operatorname{Pressmann} \longrightarrow \operatorname{Preissmann}$		
340	1	the set of sums \longrightarrow the set of positive sums		
341	-2	$\mathbb{R}^{3n} \longrightarrow \mathbb{R}^{3N}$		
341	-1	$\dots, x_n, y_n, z_n \longrightarrow \dots, x_N, y_N, z_N$		
342	9	The formula should read $K((v_1, v_2, \dots, v_N), (v_1, v_2, \dots, v_N)) = \frac{1}{2} \sum_{i=1}^N m_i \langle v_i, v_i \rangle,$		
348	-18	$a_{a+1} \longrightarrow a_{i+1}$ (two times)		
Chapter 10				
353	- 12-13	The equation should read		

$$\widetilde{\measuredangle}ba'd + \widetilde{\measuredangle}da'c + \widetilde{\measuredangle}ca'b \le \measuredangle ba'd + \measuredangle da'c + \measuredangle ca'b \le (\measuredangle ba'd + \measuredangle da'a) + (\measuredangle aa'c + \measuredangle ca'b) = 2\pi.$$

358 10 dilatation \longrightarrow distortion

Γ

361	12	of $p. \longrightarrow \text{ of } q.$
361	-7	in Step 2, \longrightarrow in Step 2 and such that the angle condition fails just at c ,
362	2, 11, -5	Figure 10.3 \longrightarrow Figure 10.1 (three times)
365	15	$\measuredangle zy'z' = \measuredangle yz'y' = 0, \longrightarrow \measuredangle zz'y' = \measuredangle yy'z' = 0,$
366	2	$\geq k \longrightarrow \geq 1$
366	5	$maximal \longrightarrow minimal$
366	Def 10.5.3	straight lines \longrightarrow parallel straight lines
367	-10	$= \bar{a}\bar{c} + \bar{a}c\bar{b} = \bar{a}\bar{c} . \longrightarrow = \bar{a}\bar{c} + \bar{c}\bar{b} = \bar{a}\bar{b} .$
367	-8	$ ar{a}ar{c} \longrightarrow ar{a}ar{b} $
369	5,6	$\gamma_q \longrightarrow \gamma_x$
369	6	through $q. \longrightarrow$ through x .
383	4	$-2\delta \longrightarrow -\frac{\varepsilon}{2}$
383	-1	Add "Note that $ pa_2 < a_2b_2 $, $ pb_2 < a_2b_2 $, so Lemma 10.8.13 is applicable to the 1-strainer (a_1, b_1) for p and points $q = a_2$, $q = b_2$." before "Then".
384	6	$\widetilde{\measuredangle} b_1 p b_2 \longrightarrow \widetilde{\measuredangle} b_1 p a_2$
384	-17	$-2\delta \longrightarrow -\frac{\varepsilon}{2}$
384	-13	$+ p_2 \longrightarrow + pb_2 $
386	7	$ x_n a_{i_0} < x_{n+1} a_{i_0} \longrightarrow x_n a_{i_0} > x_{n+1} a_{i_0} $
386	16	$\widetilde{\measuredangle}a_i x_n x_{n+1} \longrightarrow \widetilde{\measuredangle}x_n a_i x_{n+1}$
387	-13	$< \rightarrow >$
391	-13	$t \to \infty \longrightarrow t \to 0$

 $\mathbf{392}$ 9 $p_i \gamma_i(r) \longrightarrow p_i = \gamma_i(r)$ **39**4 $|\xi\eta_i|$ -10 $\rightarrow |\xi_i \eta_i|$ \mathbb{C}^k $\longrightarrow \mathbb{C}^{k+1}$ 400 -3 $(z_1,\ldots,z_3) \longrightarrow (z_1,z_2)$ 4011 $\longrightarrow K_0(\mathbb{CP}^1)$ \mathbb{CP}^1 401 4 \mathbb{CP}^2 $\longrightarrow K_0(\mathbb{CP}^2)$ 401 4

Large corrections

Proof of Theorem 6.5.1

First we prove the theorem under an additional assumption that Y_0 does not vanish on]0, T[. Let $g_0(t) = |Y_0(t)|$, $g_1(t) = |Y_1(t)|$. Then the functions g_0 and g_1 satisfy the equations

$$\ddot{g}_i(t) = -K_i(t)g_i(t)$$
 subject to $g_i(0) = 0, \ \dot{g}_i(0) = 1$

where the dot denotes the derivative with respect to t.

We want to prove that $g_1(t) \leq g_0(t)$ for all $t \in [0, T]$. Consider a function $\varphi(t) = \frac{g_0(t)}{g_1(t)}$ defined on]0, T[. Observe that $\lim_{t\to 0} \varphi(t) = 1$ by the L'Hopital rule. We will prove that φ is (non-strictly) monotone increasing and hence $\varphi(t) \geq 1$ for all t.

To prove the monotonicity of φ , it suffices to verify that $\dot{\varphi}(t) \geq 0$ for all t. We have

$$\dot{\varphi}(t) = \frac{\dot{g}_0(t)g_1(t) - g_0(t)\dot{g}_1(t)}{g_1(t)^2}$$

Denote the numerator of the last formula by $\psi(t)$. Since the denominator $g_1(t)^2$ is positive, we have to prove that $\psi(t) \ge 0$. Observe that $\psi(0) = 0$ because $g_0(0) = g_1(0) = 0$. So again it suffices to prove that $\psi(t) \ge 0$ for all t. From the equations for g_0 and g_1 one gets

$$\dot{\psi}(t) = \ddot{g}_0(t)g_1(t) - g_0(t)\ddot{g}_1(t) = (K_1(t) - K_0(t))g_0(t)g_1(0) \ge 0.$$

since $K_1(t) \ge K_0(t)$. Thus we have proved that $\varphi(t) \ge 1$ for all $t \in [0, T[$ and hence $g_1(t) \le g_0(t)$ for all $t \in [0, T]$.

It remains to get rid of the assumption that Y_0 does not vanish. Suppose this is not the case, and let T_0 be the first point where Y_0 vanishes. Then the above argument applies to the interval $]0, T_0[$ instead of]0, T[, and we conclude that $|Y_0(T_0)| \ge |Y_1(T_0)| > 0$, contrary to the choice of T_0 .