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Abstract. Let f be a dynamically coherent partially hyperbolic
diffeomorphism of a compact three dimensional manifold whose
fundamental group is abelian. We show that the action f∗ induced
by f on the 1-dimensional real homologies, is also partially hyper-
bolic: it has an eigenvalue of modulus > 1 and an eigenvalue of
modulus < 1. In particular, there are no such diffeomorphisms on
S3. The property of dynamical coherence follows from the unique
integrability of the central distribution. We also discuss a weaker
integrability property of the central distribution.

1. Introduction and main results

Let M be a smooth, connected, compact Riemannian manifold with-
out boundary. A C1 diffeomorphism f : M →M is said to be partially
hyperbolic if there are positive real numbers

0 < λ1 ≤ λ2 < γ1 ≤ 1 ≤ γ2 < µ2 ≤ µ1

and, for each x ∈M , a df -invariant splitting of the tangent space

TxM = Es(x)⊕ Eu(x)⊕ Ec(x)

into subspaces called the stable, unstable and center subspaces, such
that

df(x)Ea(x) = Ea(f(x)) for a = s, u, c

λ1‖vs‖ ≤ ‖df(x)vs‖ ≤ λ2‖vs‖ for vs ∈ Es(x)

µ2||vu‖ ≤ ‖df(x)vu‖ ≤ µ1‖vu‖ for vu ∈ Eu(x)

γ1‖vc‖ ≤ ‖df(x)vc‖ ≤ γ2‖vc‖ for vc ∈ Ec(x) .
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The subspaces Es(x), Eu(x) and Ec(x) form Hölder continuous stable,
unstable and center distributions Es, Eu and Ec over M which, in
general, are not C1 even if f is C2 or better [Ano67]. We refer to the
direct sums Ecs = Ec⊕Es and Ecu = Ec⊕Eu as the center-stable and
center-unstable distributions, respectively. Although weaker versions
of partial hyperbolicity are meaningful and sometimes are used, we
assume throughout this paper that all three distributions Es, Eu and
Ec are nontrivial.

By a foliation W of a manifold M we mean a partition of M into
C1 submanifolds W (x) 3 x (called leaves) which depend continuously
on x ∈M in the compact-open C1 topology. For a foliation W , denote
by TW the tangent distribution of W , i.e., the collection of all tangent
planes to the leaves of W . A continuous distribution E is integrable if
there is a foliation W such that TW = E.

The stable Es and unstable Eu distributions are integrable; the cor-
responding foliations W s and W u are called the stable and unstable
foliations, respectively. Moreover, the exponential contraction and ex-
pansion imply the uniqueness of integral manifolds: if a C1 curve is
everywhere tangent to Es, then it lies in one leaf of W s, and similarly
for W u.

By analogy with ordinary differential equations we say that a con-
tinuous k-dimensional distribution E on a manifold M is uniquely in-
tegrable if there is a foliation W such that every C1 curve σ : R → M
satisfying σ̇(t) ∈ E(σ(t)) for all t, is contained in W (σ(0)) (in partic-
ular TW = E). Note that unique integrability is stronger than the
existence of an integral surface through every point. The latter condi-
tion holds for all 1-dimensional distributions, which may however fail
to be uniquely integrable.

The integrability of Ec and the integrability of Ecs and Ecu (which
are referred to as dynamical coherence) are important assumptions in
the theory of stable ergodicity for partially hyperbolic diffeomorphisms
(see [PS97], [BPSW01]). In general, the center distribution Ec fails to
be integrable (see [Wil98], [Sma67] for a counterexample).

The following two theorems are the main results of this paper.

THEOREM 1.1. Let M be a compact 3-dimensional manifold whose
fundamental group is abelian and let f : M → M be a partially hyper-
bolic diffeomorphism. Assume that either f is dynamically coherent or
the center distribution of f is uniquely integrable. Then the induced
map f∗ of the first homology group H1(M,R) is also partially hyper-
bolic, i.e., it has eigenvalues α1 and α3 with |α1| > 1 and |α3|−1 > 1.
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It seems that the assumption of unique integrability of the central
foliation can be omitted from the formulation of the theorem; however,
at the moment the authors do not have a verified argument. We will
address this issue elsewhere.

On the other hand, the condition on the fundamental group is es-
sential: the geodesic flow on the unit tangent bundle of a negatively
curved surface gives an example of a partially hyperbolic diffeomor-
phism isotopic to the identity.

The next theorem is an immediate corollary of Theorem 1.1

THEOREM 1.2. A compact 3-dimensional manifold whose funda-
mental group is finite does not carry a partially hyperbolic diffeomor-
phism which either is dynamically coherent or has a uniquely integrable
center distribution. In particular, there are no such diffeomorphisms
on S3.

A diffeomorphism f is robustly transitive if every diffeomorhism suffi-
ciently close to f in the C1 topology, is topologically transitive. L. Diaz,
E. Pujals and R. Ures studied robustly transitive diffeomorphisms in
dimension 3 (see [DPU99]). They showed that such a diffeomorphism
f : M3 → M3 is generically partially hyperbolic in the sense that
TxM

3 = Es ⊕Ecu (or TxM
3 = Eu ⊕Ecs ). Assuming, in addition, the

integrability of Ecu, they proved that π1(M
3) is infinite. It seems that

their argument should go through without the assumption of robust
transitivity.

A C0 distribution E on a manifold M is called weakly integrable if for
each point x there is an immersed complete C1 manifold W (x) which
contains x and is everywhere tangent to E, i.e., TyW (x) = E(y) for
each y ∈ W (x). We refer to W (x) as an integral manifold of E. Note
that a priori the integral manifolds W (x) may be self-intersecting and
may not form a partition of M .

If the invariant distributions Ec, Ecs and Ecu of a partially hyperbolic
diffeomorphism f are weakly integrable, we call f weakly dynamically
coherent.

In Section 2 we prove Theorem 1.1. The weak integrability property
of the center distribution is discussed in Section 3. In particular we
prove that if the center distribution of a partially hyperbolic diffeo-
morphism f is 1-dimensional, then f is weakly dynamically coherent
(Proposition 3.4). We use this fact in the proof of Theorem 1.1.

2. Proof of Theorem 1.1

The proof consists of three steps.
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Step 1. We first show that if the center distribution Ec is uniquely
integrable, then the center-stable and center-unstable distributions of
f are integrable, i.e., f is dynamically coherent.

Proposition 3.4 implies that for each x ∈ M there is a complete 2-
dimensional submanifold W cs(x) which is tangent to Ecs and passes
through x. Recall that the stable distribution is uniquely integrable,
and by our assumption the center distribution is uniquely integrable. It
follows that the submanifolds W cs(x) form a partition and therefore a
foliation W cs of M called the center-stable foliation. The integrability
of Ecu follows by reversing the time.

Remark. Without the unique integrability assumption, Proposition
3.4 would only imply the weak integrability of Ecs, i.e., the existence
of a family of complete surfaces (tangent to Ecs) with at least one
through every point, but the surfaces might branch. It would be enough
to approximate Ecs by tangent distributions of foliations (and then
use a “Gromov-type compactness argument”); it seems that this may
be possible by first selecting a “minimum” subset of surfaces tangent
to Ecs, with still at least one surface through every point, and then
separating the surfaces by a small perturbation.

Step 2. Next we show that if f∗ : H1(M,R) → H1(M,R) does not
have an eigenvalue whose absolute value is greater than one, then there
is a compact leaf of W cs which bounds a solid torus.

The classical Novikov Compact Leaf Theorem states that every smooth
foliation of S3 has a compact leaf (see [Nov65]). The theorem has
been generalized to C0 foliations by Solodov (see [Sol82] and [CLN85]).
A straightforward inspection of the argument shows that actually it
proves the following stronger statement: if a C0 foliation of a closed
3-manifold admits a closed contractible curve transverse to the folia-
tion, then the foliation has a compact leaf bounding a solid torus. A
contractible closed differentiable curve which is transverse to the foli-
ation is called a transverse contractible cycle. To prove the statement
of Step 2, it is therefore enough to find a transverse contractible cycle
for the foliation W cs constructed in Step 1.

By passing to a finite cover we may assume that Es, Eu and Ec are

oriented. We lift the structure we have on M to its universal cover M̃ .
Let f̃ : M̃ → M̃ be a lift of f . We also use a tilde to denote the lifts of
the distributions and foliations associated to f .

Since M̃ is quasi-isometric to π1(M) which is abelian, M̃ is quasi-
isometric to H1(M,R) = Rk for some k. Thus the volume of balls in

M̃ has polynomial growth.
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Assume by contradiction that the absolute values of all eigenvalues
of f∗ are less than or equal to 1. Then the length of the images of any
vector under the iterates of f∗ grows sub-exponentially, and therefore so
does the diameter of the images of any compact set under the iterates of
f̃ . Thus the images are contained in a sequence of balls whose volume
grows sub-exponentially.

We now apply this observation to a segment I of an unstable leaf

W̃ u(x). The length of the images f̃(I) grows exponentially, but the
images are contained in a sequence of balls with sub-exponential volume
growth. Hence, given any ε > 0, one can find a segment of an unstable
curve of length > 1 whose endpoints are ε-close. Then, for ε small
enough, one can perturb this segment to close it up preserving its
transversality to the leaves of W cs. The image of this closed curve
under the covering map is a transverse contractible cycle. By Novikov’s
theorem, there is a compact leaf of W cs which bounds a solid torus.

Step 3. Finally we show that a closed leaf of W cs cannot bound a
solid torus. We need the following proposition.

PROPOSITION 2.1. Let f : T 2 → T 2 be a diffeomorphism of a
2-torus, and let Es, Ec be 1-dimensional continuous df -invariant dis-
tributions generated by continuous, unit vector fields vs and vc with
|df(vs)| ≤ λ|vs|, |df(vc)| ≥ γ|vc| for some λ < 1, γ > λ. Then
f∗ : π1(T

2)→ π1(T
2) has an eigenvalue α with |α| < 1.

Proof. To keep the same terminology, we refer to curves tangent to Ec

and Es as center and stable curves, respectively.
Let f̃ be a lift of f to the universal cover R2 of T2. We use ˜ to denote

the lifts to R2 of Ec, Es, vc and vs. Suppose that all eigenvalues of f∗
are ≥ 1 in absolute value. Then the images of any vector under the
iterates of f−1∗ , and hence the diameter and volume of the images of
a ball under the iterates of f−1, grow sub-exponentially. On the other
hand, the length of the images of a segment s of a stable curve under
the iterates of f̃−1 grows exponentially. Then the same argument as in
Step 2 above applied to f−n(s) shows that there exists a simple closed

curve σ in R2 which is almost tangent to Ẽs and hence is transverse to

Ẽc. The curve σ bounds a disc in R2. Since ṽc is transverse to σ, its
index is 1. Hence ṽc must vanish at some point, a contradiction. �

Assume by contradiction that T is a closed leaf of W cs which bounds
a solid torus T . Since Ecs is continuous and orientable, the volume of
such a solid torus is bounded away from 0. Therefore, by switching to
another closed leaf and a power of f we may assume that T and T are
invariant under f .
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By Proposition 2.1, the action of f on π1(T ) is partially hyperbolic.
It cannot be extended to a diffeomorphism of T because the homomor-
phism i∗, induced by the embedding i : T → T , sends one generator of
π1(T ) = Z2 to 0, and hence the image of the corresponding curve in
T must be homotopic to its multiple. This contradiction finishes the
proof of Theorem 1.1.

3. Weak integrability of the center distribution

We assume as before that all three distributions Es, Eu and Ec

are non-trivial. As we already mentioned, the stable Es and unstable
Eu distributions are uniquely integrable; the integral foliations are the
stable and unstable foliations W s and W u.

Recall that, in general, the center distribution Ec fails to be inte-
grable (see [Sma67], [Wil98] for a counterexample). However, in several
situations described below, due to their dynamical nature, the distri-
butions Ec, Ecs and Ecu are weakly integrable.

Propositions 3.2 and 3.3 imply that, given a connected component C
of the space of C1 partially hyperbolic diffeomorphisms of a compact
manifold M , either each f ∈ C is weakly dynamically coherent or none
of them are.

For a unit vector v ∈ Rm and a linear subspace L ⊂ Rm, set d(v, L) =
minw∈L ‖v−w‖. The following lemma is an immediate consequence of
the inequalities governing the contraction and expansion of the tangent
vectors by the derivative of a partially hyperbolic diffeomorphism.

LEMMA 3.1. Let f be a partially hyperbolic diffeomorphism with hy-
perbolicity constants 0 < λ1 ≤ λ2 < γ1 ≤ 1 ≤ γ2 < µ2 ≤ µ1.

Then for every α > 0 there is C(α) > 0 such that∥∥d(dfnv, Ecu(fn(x))
)∥∥ ≤ C(α)

(
λ2
γ1

)n
‖v‖

for every n > 0 and every tangent vector v ∈ TxM with d
(
v/‖v‖, Es(x)

)
≥

α.

The lemma implies that if L is a linear subspace of TxM which is
transverse to Es(x) and of complementary dimension, then dfnL is
exponentially close to Ecu

(
fn(x)

)
.

PROPOSITION 3.2. Let f be a partially hyperbolic C1 diffeomor-
phism of a compact C1 manifold M . If f is weakly dynamically coher-
ent, then there is a C1 neighborhood U of f such that every g ∈ U is
weakly dynamically coherent.
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Proof. We use sub-indices f and g to denote the invariant distributions
of f and g, respectively. We will prove the weak integrability of Ecu

g .
The weak integrability of Ecs

g follows by reversing the time. The in-
tegral manifolds of Ec

g can be constructed by intersecting the integral
manifolds of Ecu

g with the integral manifolds of Ecs
g .

Let 0 < λ1 ≤ λ2 < γ1 ≤ γ2 < µ2 ≤ µ1 be the hyperbolicity constants
of f . To show the weak integrability of Ecu

g fix x ∈ M . Denote by
W cu
f (y) the integral manifold of Ecu

f passing through y ∈M . For each

positive integer n, let Wn = gn
(
W cu
f (g−n(x))

)
. It follows from the

hyperbolicity inequalities that the invariant distributions Es
g , E

u
g and

Ec
g depend continuously on g in the C1 topology. Observe that if g

is sufficiently C1 close to f , then the hyperbolicity constants of g are
δ close to those f , and Ecu

f (y) is uniformly close to Ecu
g (y) and hence

is uniformly transverse to Es
g(y). Lemma 3.1 implies that the tangent

space to Wn is exponentially close to Ecu
g , i.e.,

Tgn(y)
(
gn
(
W cu
f (g−n(x))

))
→ Ecu

g (gn(y))

uniformly in y ∈ W cu
f (g−n(x)) and exponentially in n with rate (λ2 +

δ)/(γ1 − δ). The sequence Wn is precompact in the compact–open C1

topology and therefore has a convergent subsequence. The limit is an
integral manifold of Ecu

g passing through x. �

PROPOSITION 3.3. Let fn be a sequence of partially hyperbolic C1

diffeomorphisms of a compact manifold M . Suppose that

(1) fn → g in the C1 topology,
(2) each fn is weakly dynamically coherent,
(3) all fn have the same hyperbolicity constants 0 < λ1 ≤ λ2 <

γ1 ≤ γ2 < µ2 ≤ µ1.

Then g is partially hyperbolic and weakly dynamically coherent.

Proof. Let x ∈M and let vn ∈ Eu
fn

(x) be a sequence of unit vectors and
assume that vn → v. Then µn2 ≤ ‖dfnv‖ ≤ µn1 , and hence v ∈ Eu

g (x).
Similar arguments apply to Ec and Es. It follows that limEα

fn
(x) =

Eα
g (x) with α = u, c, s, and, in particular, g is partially hyperbolic.
As in the previous proposition we prove the weak integrability of Ecu

g .
The other two integrability properties follow by reversing the time and
taking intersections.

Fix x ∈ M , and let Wn(x) be an integral manifold of Ecu
fn

passing
through x. Since the center-unstable distribution Ecu

g depends con-

tinuously on g in the C1 topology, the sequence Wn is precompact in
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the compact–open C1 topology and therefore has a convergent sub-
sequence. The limit is an integral manifold of Ecu

g passing through
x. �

As we mentioned in the proofs of Propositions 3.2 and 3.3, the weak
integrability of Ecu

f and of Ecs
f imply the weak integrability of Ec

f by
taking intersections of the integral manifolds. It is not clear whether
in general the weak integrability of Ec

f implies weak dynamical coher-
ence. If the center distribution of a partially hyperbolic diffeomorphism
is 1-dimensional, it is weakly integrable by the existence theorem of or-
dinary differential equations.

PROPOSITION 3.4. Let f be a C1 partially hyperbolic diffeomor-
phism of a compact manifold M . Suppose the center distribution Ec of
f is 1-dimensional. Then f is weakly dynamically coherent.

Proof. We will show that Ecu is weakly integrable. The weak integra-
bility of Ecs follows by reversing the time. Let σ be a complete integral
curve of Ec. Let Wε(σ) be an immersed C1 submanifold of M obtained
by ε- thickening of σ approximately in the direction of Eu. If Eu is 1-
dimensional, such an immersed submanifold Wε(σ) can be constructed
by approximating the unstable foliation W u with a smooth foliation

W̃ u and drawing the leaf of W̃ u of length 2ε through each point x ∈ σ
so that x is the middle point of the leaf. In the general case such an
immersed submanifold Wε(σ) can be constructed by approximating Eu

with a smooth distribution Ẽu and drawing through each point x ∈ σ
all geodesics σ : [0, ε)→M with σ̇(0) ∈ Ẽu.

Fix x ∈M and a complete integral curve σ 3 x of Ec. For each n > 0
consider the complete integral curve σn = f−n(σ) of Ec, its ε-thickening
Wε(σn) in the unstable direction and its image Vn = fn

(
Wε(σn)

)
under

fn. The C1 submanifolds Vn contain σ. Denote by ds the distance
along the stable leaves. Let y ∈ σ and let zn ∈ Vn and zn+1 ∈ Vn+1 be
the intersections of a local unstable leaf of W s in a neighborhood of y
with Vn and Vn+1. Then wn = f−n(zn) and wn+1 = f−n(zn+1) lie on
W s
(
f−n(zn)

)
and ds(wn, wn+1) ≤ Cε by the construction of Wε(σk).

It follows that ds(zn, zn+1) ≤ Cελn2 , and therefore the submanifolds Vn
converge in the C0 topology. If ε is small enough, then, by Lemma
3.1, the tangent planes of Wε(σn) are close to Ecu, and the tangent
planes to Vn are exponentially close to Ecu. Therefore the submani-
folds Vn converge in the C1 topology. The limit W cu(σ) is an integral
manifold of Ecu containing σ. It follows immediately from the uniform
contraction in the stable direction that W cu(x, σ) =

⋃
y∈σW

u(y).
8



The integral manifold W cu(σ) need not be complete. Its boundary
consists of unstable leaves. However, it follows from the previous ar-
gument that for each integral curve σ of Ec there is a unique integral
manifold W cu(σ) of Ecu containing σ. Let y be a boundary point of
W cu(σ) and let σy : (−∞,∞) → M be a complete integral curve of
Ec such that σy(0) = y and σy(t) ∈ W cu(σ) for t ∈ (−∞, 0). The
union W cu(σ)

⋃
W cu(σy) is an integral manifold of Ecu. A countable

repetition of this construction produces a complete integral manifold
of Ecu.

The above argument is reminiscent of the corresponding construc-
tions in [HPS77]. There is an alternative and more direct (but longer)
argument which proves that for every center curve σ the union

⋃
y∈σW

u(y)

is a C1 submanifold of M . It is based on a C0 interpretation of the
commutator of the vector fields tangent to Ec and Es. If the corre-
sponding center-stable-center-stable rectangle R is closed by a short
unstable curve αu, one gets a contradiction between the growth rate
of the area of fn(R) (which is ≤ (λ2γ2)

n) and the growth rate of the
length of fn(αu). �
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