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Abstract. We show that partially hyperbolic diffeomorphisms of
the 3-torus are dynamically coherent.

1. Introduction and formulation of results

The goal of this paper is to show that partially hyperbolic diffeomor-
phisms of the three-torus are dynamically coherent, that is that their
center, center-stable, and center-unstable distributions are uniquely in-
tegrable.

Let M be a smooth, connected, compact 3-dimensional Riemannian
manifold without boundary (a concrete choice of Riemannian metric is
of no importance for the sequel). A C1 diffeomorphism f : M → M is
said to be partially hyperbolic if there are numbers 0 < λ < γ1 ≤ 1 ≤
γ2 < µ and a df -invariant splitting of the tangent bundle

TxM = Es(x)⊕ Eu(x)⊕ Ec(x), x ∈M
into one-dimensional C0 distributions Es, Eu and Ec (called the stable,
unstable and center distributions) such that

df(x)Ea(x) = Ea(f(x)) for a = s, u, c

‖df(x)vs‖ ≤ λ‖vs‖ for vs ∈ Es(x)

µ‖vu‖ ≤ ‖df(x)vu‖ for vu ∈ Eu(x)

γ1‖vc‖ ≤ ‖df(x)vc‖ ≤ γ2‖vc‖ for vc ∈ Ec(x).

Note that there is a subtle difference between the notions of partial
hyperbolicity we employ here and in [BI]: we require here that the
constants do not depend on a point in M . Both definitions are quite
common, and we abuse terminology and use the same term for a slightly
different notion in this paper.

The distributions Es, Eu, and Ec are Hölder continuous but in gen-
eral are not C1 even if f is C2 or better [Ano67]. We refer to the direct
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sums Ecs = Ec ⊕ Es and Ecu = Ec ⊕ Eu as the center-stable and
center-unstable distributions, respectively.

In this paper, by a C0 foliation with C1 leaves we mean a continuous
foliation W of M whose leaves W (x), x ∈M , are C1 and their tangent
spaces TxW (x) depend continuously on x ∈ M . For such a foliation
W , we denote by TW the tangent distribution of W , i.e., the collection
of all tangent spaces to the leaves of W . Note that a C0 foliation with
C1 leaves is not necessarily a C1 foliation (as defined in terms of C1

charts).
The stable Es and unstable Eu distributions are integrable in the

sense that there exist C0 foliations W s and W u (called the stable and
unstable foliations, respectively) such that TW s = Es and TW u =
Eu. Moreover, the exponential contraction and expansion implies the
uniqueness of integral manifolds: if a C1 curve is everywhere tangent
to Es, then it lies in one leaf of W s, and similarly for W u.

By analogy with ordinary differential equations, one says that a con-
tinuous k-dimensional distribution E on a manifold M is uniquely inte-
grable if there is a C0 foliation W such that every C1 curve σ : R→M
satisfying σ̇(t) ∈ E(σ(t)) for all t, is contained in W (σ(0)).

The unique integrability of Ec, Ecs, and Ecu (which is referred to
as dynamical coherence) are important assumptions in the theory of
stable ergodicity for partially hyperbolic diffeomorphisms (see [PS97],
[BPSW01]).

In higher dimensions, the center distribution Ec fails to be inte-
grable even when the distributions are perfectly smooth (see [Wil98]
for a counterexample). In general, it is not known whether the central
distribution is uniquely integrable even if it is one-dimensional.

From now on, M = T3 is the 3-torus and f is a partially hyperbolic
diffeomorphism of M . The following Theorem is the main result of this
paper.

Theorem 1.1. The distributions Ecs, Ecu, and Ec are uniquely inte-
grable, i.e., f is dynamically coherent.

By passing to a finite cover we may assume that Es, Eu and Ec are
oriented. LetW s andW u denote the one-dimensional foliations tangent
to Es and Eu (recall that these distributions are uniquely integrable).
We use a tilde to denote lifts of objects to the universal cover R3 of
M = T3.

Definition 1.2. Let W be a one dimensional foliation of R3. We say
that W has quasi-isometric leaves if there exists a constant C > 0 such
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that every segment γ of a leaf of W with endpoints p and q satisfies

length(γ) ≤ C · |p− q|+ 1.

The main result of [Br] asserts that if the lifts of stable and unsta-
ble leaves of a partially hyperbolic diffeomorphism are quasi-isometric,
then the diffeomorphism is dynamically coherent. We derive Theorem
1.1 from [Br] by showing that the lifts of Es and Eu to the universal
cover M̃ of M have quasi-isometric leaves (see Definition 1.2).

Note that in general, the stable and unstable foliations need not
have quasi-isometric leaves. E.g., the stable and unstable foliations of
the time 1 map of the geodesic flow on a compact surface of negative
curvature are not quasi-isometric.

Theorem 1.3. W̃ s and W̃ u have quasi-isometric leaves.

By the main theorem of [Br], Theorem 1.3 implies Theorem 1.1.
The rest of the paper is devoted to a proof of Theorem 1.3.

Acknowledgements: We are very grateful to the anonymous referee
for a tremendous work of thoroughly reading a preliminary version of
the paper and helping us with improving the exposition. His/her list
of comments, corrections and suggestions, which was almost as long as
the paper, has been of invaluable help to us.

2. Preliminaries from [BI]

The proof is heavily based on the following constructions and asser-
tions from [BI].

Existence of pre-foliations. A complete surface is a proper C1

immersion F : U →M , where U is a connected smooth 2-dimensional
manifold without boundary, and the induced length metric on U is
complete.

We say that a point a ∈ U is a lift of a point p ∈M to F if F (a) = p.
A curve γ̃ : I → U (where I is an interval) is a lift of a curve γ : I →M
if γ = F ◦ γ̃. Of course, a lift of a curve is uniquely determined by a
lift of its starting point.

A neighborhood of F is an immersion F : U × R → M such that
F(x, 0) = F (x) for all x ∈ U . We say that a curve γ : I → M crosses
F if there is an interval J ⊂ I such that γ|J can be represented as F ◦ γ̃
where F is a neighborhood of F and γ̃ : J → U × R is a curve which
intersects both U × (0,+∞) and U × (−∞, 0).

We say that surfaces F and G topologically cross if there is a curve
which lies on F and crosses G. It is easy to see that this definition is
symmetric with respect to F and G.
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A branching foliation in M is a collection of complete open surfaces
tangent to a continuous 2-dimensional distribution such that no two of
the surfaces topologically cross and their images cover M .

Theorem 2.1. (Theorem 4.1 from [BI]) There exist branching folia-
tions tangent to Ecs and Ecu and invariant under any C1 diffeomor-
phism f : M → M which preserves the oriented distributions Es, Ec,
and Eu.

In the sequel, W cs and W cu denote branching foliations tangent to
Ecs and Ecu. We refer to leaves of these branching foliations as cs- and
cu-leaves.

No transverse contractible cycles. We say that a closed differ-
entiable curve in M is a transverse contractible cycle if the curve is
transverse to Ecs (or Ecu) and homotopic to a point.

Lemma 2.1. (Lemma 2.3 from [BI]) There are no transverse con-
tractible cycles.

Partial hyperblicity of the induced map in first homologies.
The following theorem is the main result of [BI].

Theorem 2.2. (Theorem 1.2 from [BI]) The induced map f∗ of the
first homology group H1(M,R) is also partially hyperbolic, i.e., it has
eigenvalues α1 and α2 with |α1| > 1 and |α2| < 1.

We use these results as well as the notations throughout the proof
of Theorem 1.1.

3. Proof of Theorem 1.3

We begin with several lemmas that refine the “no transverse cycles”
assertion and provide basic information about cs- and cu-leaves.

Lemma 3.1. A C1 curve transverse to Ẽcs cannot intersect a leaf of

W̃ cs more than once.

Proof. Suppose that a curve γ transverse to Ẽcs connects points x and
y on the same cs-leaf S ⊂ R3. Connect x and y by a C1 curve γ1 in S.
Since the foliations are oriented, the loop γ ∪ γ1 can be perturbed into
a C1 loop transverse to Ecs, i. e. there exists a transverse contractible
cycle. This contradicts to Lemma 2.1. �

Lemma 3.2. The leaves of W̃ cs are properly embedded C1-submanifolds
of R3 and have uniformly bounded geometry in the following sense:
there is a δ > 0 such that every Euclidean ball of radius δ can be
covered by a coordinate neighborhood U such that the intersection of
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every cs-leaf S with U is either empty or close to a planar disc. In the
latter case, this intersection is represented in these coordinates as the
graph of a function hS : R2 → R.

Proof. Fix a smooth unit vector field V on T3 almost orthogonal to Ecs.
Let δ be so small that Ecs and V have almost constant directions in
every ball of radius 10δ. Let p ∈ R3, S0 be a cs-surface passing through
p and B the intrinsic ball of radius 2δ in S0 centered at p. Introduce
coordinates (x, y) in B. Consider a map φ : B × (−2δ, 2δ) → R3

defined by φ(q, z) = γq(z) where γq is the integral curve of V such
that γq(0) = q. This map defines a C1 coordinate system (x, y, z) in
a neighborhood U containing the Euclidean ball of radius δ centered
at p. By Lemma 3.1, a curve γq, q ∈ B, intersects every cs-surface S
at most once, hence U ∩ S is a graph of a function defined in an open
subset of B ' R2. To finish the proof, cut off the top and bottom of U
by the inf and sup of all cs-leafs passing through γp(2δ) and γp(−2δ)
respectively. �

Lemma 3.3. There is a constant C such that, for every segment J of
an unstable leaf, one has vol(U1(J)) ≥ C · length(J) where U1 denotes
the neighborhood of radius 1.

Proof. Suppose the contrary, then for every ε > 0 there is a segment J
of an unstable leaf such that length(J) > 1 and the distance between
the endpoints of J is less than ε. Perturbing such a segment yields a
transverse contractible cycle. This contradicts to Lemma 2.1. �

Proposition 3.4. If S is a closed embedded cs-surface in T3, then
1. S is homeomorphic to the 2-torus;
2. S does not divide T3;
3. A homomorphism i∗ : π1(S) → π1(T3) induced by inclusion i :

S → T3 is injective.

Proof. The first assertion is trivial. Indeed, S is homeomorphic to the
2-torus since it is orientable and admits a nonzero tangent vector field
(e. g., Es).

Lemma 3.5. Assertions 2 and 3 are equivalent.

Proof. Note that S divides T3 if and only if the induced map i∗ :
H2(S) → H2(T3) is trivial. It remains to prove that i∗ : H2(S) →
H2(T3) is trivial if and only if i∗ : π1(S) → π1(T3) is not injective.
Since T3 is aspherical, the homotopy type of i is uniquely determined
by i∗. Hence it suffices to prove the above equivalence for linear maps
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i : T2 → T3. It is straightforward to check that degenerate (resp. non-
degenerate) linear maps T2 → T3 induce the zero map (resp. nonzero
maps) of the second homologies. �

Reasoning by contradiction, we can now assume the negations of
both assertions 2 and 3. There are two cases.

Case 1. i∗ : π1(S)→ π1(T3) is the zero map. Then S is contractible
in T3. Consider a segment of a stable leaf in S that almost recurs to
itself. One can close it up so that the resulting loop is transverse to
Eu and hence to Ecu. This loop is contractible since S is, therefore we
constructed a transverse (to Ecu) contractible loop, contrary to Lemma
2.1 (applied to f−1).

Case 2. i∗ : π1(S) → π1(T3) is a nonzero map. Then rank i∗ = 1.
Recall that S divides T3 into two components U and V . Since the set
of cs-leaves is compact in the compact-open topology, we may assume
that one of the components (say, U) has the minimal volume among
all regions bounded by closed cs-leaves. Then U (and hence S) is fn-
invariant for some n. Replacing f by fn we may assume that S is
f -invariant. We need the following lemma from [BBI].

Lemma 3.6. ([BBI], Proposition 2.1). If S is an f -invariant 2-torus,
then the induced action f∗ of f on π1(S) = Z2 is hyperbolic, that is, it
has eigenvalues |α1| > 1 and |α2| < 1.

On the other hand, the rank-1 subgroup ker i∗ ⊂ π1(S) is f∗-invariant.
Hence the induced action of f on π1(S) has an eigenvalue α = ±1, a
contradiction. �

Proposition 3.7. There is a cs-leaf S = Scs, a plane Pcs ⊂ R3 and
R > 0 such that S is contained in the R-neighborhood of Pcs and sep-
arates R3 into two components each of which is contained in the R-
neighborhood of a half-space bounded by Pcs.

Proof. By Lemma 3.2, every cs-leaf S is properly embedded, hence it
separates R3 into two open components which we denote by S+ and
S−, where the positive direction of Eu points inward S+.

Lemma 3.8. Let S, S ′ be two cs-leaves. Then
1. One of the following possibilities holds:

S ′+ ⊂ S+, S+ ⊂ S ′+, S+ ∩ S ′+ = ∅, S− ∩ S ′− = ∅.
2. In the latter two cases the surfaces S and S ′ are disjoint.
3. In the last case S+ ∪ S ′+ = R3.

Proof. 1. Since cs-leaves have no topological crossings, S ′ is contained
in one of the closures S+ and S−. Suppose that S ′ ⊂ S+. Then S−
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is entirely contained in one of the components S ′+ or S ′−, and this cor-
responds to the first and last possibilities. Analogously the remaining
two cases correspond to the case S ′ ⊂ S+.

2. Arguing by contradiction, assume that S and S ′ are not disjoint.
Then the contradiction is obtained by inspecting the orientation of Eu

at a point where S and S ′ touch each other.
3. Follows from (2). �

Fix a cs-leaf S. Observe that W̃ cs is a branching foliation invariant
under translations by integer vectors and hence for every k ∈ Z3 the
surface S+k is again a cs-leaf. Then Lemma 3.8 applies to S and S ′ =
S + k. Since translations by integer vectors preserve the orientation of
Eu, we have (S + k)+ = S+ + k. Define

Γ+ = {k ∈ Z3 : S+ + k ⊂ S+},
Γ− = {k ∈ Z3 : S+ + k ⊃ S+},
Γ = Γ+ ∪ Γ−.

If k ∈ Z3 \ Γ, only the last two possibilities from (1) from Lemma
3.8 can occur, and hence by (2) from Lemma 3.8 the surfaces S and
S + k are disjoint.

Lemma 3.9. Γ is a subgroup of Z3.

Proof. Obviously Γ+ and Γ− are semi-groups and Γ− = −Γ+. It re-
mains to prove that k1−k2 ∈ Γ for k1,k2 ∈ Γ+. Since both sets S++k1

and S+ +k2 are contained in S+, they cannot cover R3, and by Lemma
3.8 this leaves only three possibilities: one of the surfaces is contained
in the other or they are disjoint. Consider the set S+ + k1 + k2. It is
contained in S+ + k2 since S+ + k1 ⊂ S+. Similarly, the same set is
contained in S+ + k1. Therefore S+ + k1 and S+ + k2 have nonempty
intersection, hence one of them is contained in the other. Assume for
definiteness that S+ + k1 ⊂ S+ + k2. Then S+ + (k1−k2) ⊂ S+, hence
k1 − k2 ∈ Γ+. �

Lemma 3.10. Proposition 3.7 is true if there is a point x0 ∈ R3 such
that the lattice x0 + Z3 is contained in at least one of the sets S+ or
S−.

Proof. Suppose that x0 + Z3 ⊂ S+. Consider the set

Ã =
⋂
k∈Z3

(S+ + k).

It is nonempty (since it contains x0), closed and consists of entire cs-
leaves.
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Let p ∈ R3. Choose a local coordinate system (x, y, z) in a neighbor-
hood of p as in Lemma 3.2. That is, for every cs-leaf S+k intersecting
this neighborhood, its intersection with the neighborhood is a graph
z = hk(x, y) of a function hk : R2 → R. Then the intersection of
S+ + k with the coordinate neighborhood is the epigraph of hk. The
intersection of the epigraphs is the epigraph of a function h = supk hk.

Therefore Ã is a 3-dimensional submanifold with boundary in R3 and
moreover its boundary is a limit (in the compact-open topology) of cs-

leaves. Since our branching foliation is complete, the boundary of Ã is

a union of cs-leaves. Since Ã is invariant under integer translations, it
projects down to a submanifold A of T3 bounded by closed cs-leaves.
Let T be a boundary component of A. Since T admits a nonzero
tangent vector field, it is homeomorphic to the 2-torus. By Proposition
3.4, the map i∗ : π1(T ) → π1(T3) induced by the inclusion i : T → T3

is injective. Hence i is homotopic to a non-degenerate linear map from
T ' T2 to T3. Then any lift of T to R3 stays within a bounded distance
from a plane and can be taken as a desired cs-leaf Ccs. �

Now we can assume that the assumption of Lemma 3.10 does not
hold, that is, for every x ∈ R3 the lattice x+Z3 intersects both S+ and
S−. This means that

(1)
⋃
k∈Z3

(S+ + k) =
⋃
k∈Z3

(S− + k) = R3.

Lemma 3.11. Γ = Z3.

Proof. Suppose the contrary and let k0 ∈ Z3 \ Γ. For definiteness
assume that S+ ∩ (S+ + k0) = ∅. Then for every k ∈ Z3 \ Γ one has
S+ ∩ (S+ + k) = ∅. Indeed, suppose that there exists k ∈ Z3 \ Γ
such that S− ∩ (S− + k) = ∅. Then S+ + k ⊃ S− ⊃ S+ + k0. Pick
a point x ∈ S+ ∩ (S+ + k). Then x + k0 ∈ S+ + k0 ⊂ S+ + k and
x + k0 ∈ S+ + k + k0. Thus S+ + k and S+ + k + k0 have nonempty
intersection, then so do S+ and S+ + k0, a contradiction.

It follows that for every pair k1,k2 ∈ Z3 the sets S+ +k1 and S+ +k2

are either disjoint (if k1− k2 /∈ Γ) or nested (if k1− k2 ∈ Γ). Consider
the set U :=

⋃
k∈Γ(S+ + k). Then for every pair k1,k2 ∈ Z3 the sets

U + k1 and U + k2 are either disjoint (if k1 − k2 /∈ Γ) or coincide (if
k1 − k2 ∈ Γ). Since these sets are open and R3 is connected, they
cannot cover R3, contrary to (1). �

Let Γ0 = Γ+∩Γ−. Obviously Γ0 is a subgroup of Z3 and S is invariant
under Γ0. If rank(Γ0) = 3 then S projects down to a closed cs-leaf in
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T3 and the proposition follows similarly to the proof of Lemma 3.10.
From now on we assume that rank(Γ0) < 3.

Lemma 3.12. Γ+ and Γ− are half-lattices. That is, there is a plane
P ⊂ R3 (containing the origin) such that each set Γ+ and Γ− is con-
tained in a half-space bounded by P .

Proof. Let A+ and A− be the convex hulls of Γ+ and Γ−, respectively.
If the interiors of A+ and A− are disjoint, they are separated by a plane
since they are nonempty open convex sets. This plane is a desired P .

It remains to consider the case when the intersection A+ ∩A− has a
nonempty interior. Pick three linearly independent vectors y1, y2, y3 ∈
A+ ∩A− with rational coordinates. Each yi is a positive rational com-
bination of points from Γ+ and at the same time a positive rational
combination of points from Γ−. Hence a positive multiple of yi belongs
to Γ0 for i = 1, 2, 3. Then rank(Γ0) = 3, contrary to our assump-
tion. �

For x ∈ R3 let O+(x) = (x + Z3) ∩ S+ and O−(x) = (x + Z3) ∩ S−.
We have O+(x) 6= ∅ and O−(x) 6= ∅ (otherwise apply Lemma 3.10).
Observe that O+(x) + Γ+ ⊂ O+(x) and O−(x) + Γ− ⊂ O−(x). Since
Γ+ and Γ− are half-lattices separated by a plane P (cf. Lemma 3.12),
it follows that the sets O+(x) and O−(x) are non-strictly separated
by a plane Px parallel to P . Choose a δ > 0 as in Lemma 3.2 and
let {xi}, i = 1, . . . , N , be a (δ/2)-net in the fundamental domain of
Γ. Let Pi = Pxi

and let H+
i and H−i denote the half-spaces of Pi

containing O+(xi) and O−(xi) respectively. Then S+ is contained in
the δ-neighborhood of the half-space

⋃
kH

+
i and S− is contained in

the δ-neighborhood of the half-space
⋃

kH
−
i . The intersection of these

half-spaces is a slice between two parallel planes and S lies in this slice.
This finishes the proof of Proposition 3.7. �

Corollary 3.13. There is R1 > 0 such that every cs-leaf lies in the
R1-neighborhood of a plane parallel to Pcs.

Proof. Let k ∈ Z3 be such that dist(k, Pcs) > 2R. The surfaces Pcs +
nk, n ∈ Z, split R3 into components each of which lies in a slice of
width dist(k, P ) + 2R between two planes parallel to Pcs. �

Swapping “stable” and “unstable” we obtain a plane Pcu such that
(a) every cu-leaf lies within a uniformly bounded distance from a

plane parallel to Pcu, and
(b) there exists a cu-leaf Scu separating R3 into two regions each of

which contains a half-space.
We may assume that the planes Pcs and Pcu contain the origin of R3.
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Fix a lift f̃ : R3 → R3 of f . The branching foliations W̃ cs and W̃ cu

are invariant under f̃ . Let f∗ : R3 → R3 be the induced linear transfor-

mation of the first homology group. Note that |f̃(x) − f∗(x)| ≤ const
for all x ∈ R3.

Lemma 3.14. The planes Pcs and Pcu are invariant under f∗.

Proof. Note that f̃(Scs) lies within bounded distance from f∗(Pcs).

Hence if f∗(Pcs) 6= Pcs, the surfaces Scs and f̃(Scs) would have a topo-
logical crossing, contradiction. �

Proposition 3.15. Pcs 6= Pcu.

Proof. Let αi, i = 1, 2, 3, be the eigenvalues of f∗, |α1| ≥ |α2| ≥ |α3|.
Recall that |α1| > 1 and |α3| < 1.

We assume that |α2| ≤ 1 (if |α2| > 1, just use f−1 instead of f).
Then α1 is a single real eigenvalue. Passing to f 2 if necessary, we may
assume that α1 > 0, then α1 > 1. We decompose R3 = E1 ⊕ E2,3

where E1 is the eigenline of f ∗ corresponding to α1 and E2,3 is the
invariant plane corresponding to α2 and α3. We are going to show that
Pcs = E2,3 and Pcu ⊃ E1.

Let Pr1 : R3 → E1 and Pr2,3 : R3 → E23 be the projections defined
by this decomposition. Since α1 > 1, |α3| < 1 and |α2| ≤ 1, there is a
norm ‖ · ‖ on R3 such that

‖Pr1(f∗(x)− f∗(y))‖ = α1 · ‖Pr1(x− y)‖,
‖Pr2,3(f∗(x))‖ ≤ ‖Pr2,3(x)‖.

for all x ∈ R3. Since ‖f̃ − f∗‖ ≤ const, these inequalities imply that

‖Pr1(f̃n(x))‖ ≤ αn
1 · ‖Pr1(x)‖+ C0(2)

‖Pr1(f̃n(x)− f̃n(y))‖ ≥ αn
1 · (‖Pr1(x− y)‖ − C0),(3)

‖Pr2,3(f̃n(x))‖ ≤ ‖x‖+ nC0.(4)

for all n ≥ 1 and some constant C0.
Let J be a unit-length interval of an unstable leaf. Then (2) and (4)

imply that

diam Pr1(f̃n(J)) ≤ const · αn
1 ,

diam Pr2,3(f̃n(J)) ≤ const · n.

Hence f̃n(J) is contained in a tube of volume const ·n2αn
1 . On the other

hand, length(f̃n(J)) ≥ µn where µ is the constant from the definition
of partial hyperbolicity. Then Lemma 3.3 implies that α1 ≥ µ.
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Suppose that Pcs 6= E2,3. Then there exist x, y ∈ Scs such that
‖Pr1(x− y)‖ > C0. Then by (3) we have

‖f̃n(x)− f̃n(y)‖ ≥ const · αn
1 .

On the other hand, x and y are connected by a curve γ tangent to Ẽcs,
hence

‖f̃n(x)− f̃n(y)‖ ≤ const · length(f̃n(γ)) ≤ const · γn2 � µn ≤ αn
1

where γ2 and µ are from the definition of partial hyperbolicity. This
contradiction shows that Pcs = E2,3.

Suppose that E1 6⊂ Pcu. Then Pcu = E2,3 since Pcu is f∗-invariant
(by Lemma 3.14) and E2,3 is the only f∗-invariant plane not containing
E1. Let J be an interval of an unstable leaf. Then for every n ≥ 0,

f̃n(J) lies within a uniformly bounded distance from a plane parallel

to E2,3 Then (4) implies that f̃n(J) lies within a uniformly bounded
distance from a two-dimensional ball of radius const · n. On the other
hand, the length of f̃n(J) grows exponentially in n. This contradicts
Lemma 3.3. Thus E1 ⊂ Pcu

Since Pcs = E2,3 and E1 ⊂ Pcu, it follows that Pcs 6= Pcu. �

Denote Lc = Pcs ∩ Pcu. Proposition 3.15 implies that Lc is an eigen-
line of f∗. Let αc denote the corresponding eigenvalue of f∗.

Lemma 3.16. |αc| ≤ max{1, γ2} where γ2 is the maximum expansion
in the central distribution.

Proof. Consider surfaces Scs and Scu from Proposition 3.7. Their in-

tersection is a union of curves tangent to Ẽc. Recall that each of Scs

and Scu splits R3 into components containing half-spaces (bounded
by planes parallel to Pcs and Pcu). This implies that the intersection

Scs ∩ Scu contains an unbounded component U . The images f̃n(U),
n ≥ 0, stay within a uniformly bounded distance from lines parallel

f̃n(x) + Lc. Let x, y ∈ U be sufficiently far away from each other.
Then an argument similar to the proof of Proposition 3.15 shows that

‖f̃n(x)− f̃n(y)‖ ≥ const · |αc|n

provided that |αc| > 1. On the other hand, for the segment J of U
connecting x and y we have

length(f̃n(J)) ≤ const · γn2 .

Thus |αc| ≤ γ2 if |αc| > 1. �
11



Proof of Theorem 1.3. Let us prove the theorem for unstable leaves
(for stable ones replace f by f−1). Fix a vector k ∈ R3 such that
dist(k, Pcs) > 3R where R is from Proposition 3.7. The surfaces Scs +
ik, i ∈ Z, divide R3 into regions each of which is contained in a slice
of width 5R between two planes parallel to Pcs and contains a similar
slice of width R.

Lemma 3.17. There is L0 > 0 such that every interval of length L0

of W̃ u intersects at least one of the surfaces Scs + ik, i ∈ Z.

Proof. Suppose the contrary, then for every n ≥ 0 there exist a unit-

length interval Jn of an unstable leaf such that f̃n(Jn) does not intersect
any of these surfaces and therefore is contained in the 5R-neighborhood
of a plane parallel to Pcs. By Corollary 3.13 (with swapped “stable”
and “unstable”) the unstable leaves lie within uniformly bounded dis-

tance from planes parallel to Pcu. Hence the curves f̃n(Jn) lie within
uniformly bounded distance from lines parallel to Pc. Then an iteration
argument similar to those in Proposition 3.15 and Lemma 3.16 shows
that

diam(f̃n(Jn)) ≤ const · |αc|n ≤ const · γn2 .
Hence the 1-neighborhood U1(f̃n(Jn)) of f̃n(Jn) lies within uniformly

bounded distance from a segment of length const ·γn2 , and therefore the

volume of U1(f̃n(Jn)) is at most const · γn2 . On the other hand, the

length of f̃n(Jn) is at least µn � γn2 . This contradicts Lemma 3.3. �

Since every unstable leaf intersects a cs-leaf at most once (by Lemma
3.1), the above lemma implies that every unstable leaf of length nL0

intersects at least n of the surfaces Scs + ik, i ∈ Z and therefore the
distance between its endpoints is at least (n− 1)R. Thus the foliation

W̃ u has quasi-isometric leaves.
This completes the proof of Theorem 1.3. As we have already men-

tioned, Theorem 1.3 implies Theorem 1.1.
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