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1. Introduction

Before we proceed with rigorous formulations and applications, we want
to give a very informal and “easy-to-visualize” description of one of the
central results of the paper.

Assume that we are given an n-plane P ⊂ RN , n < N , a collection
of oriented n-planes ei, i = 1, 2, . . . k, and a collection of positive reals ai,
i = 1, 2, . . . k. We want to know whether there exists an oriented polyhedral
surface S such that its boundary belongs to P , each of its faces is parallel
to one of ei’s (and has the same orientation), and the total area of all faces
parallel to ei is ai.

If N = n + 1, the answer is given by the classic Existence Theorem of
Minkowski. Let ni be the unit normal to ei (where the orientation of ei
determines one of the two choices for a unit normal). Then such a surface
S exists if and only if the following obviously necessary “linear algebra”
condition is satisfied: ei’s do not lie in a hyperplane and their weighted sum∑
aini is normal to P . Furthermore, then S can be chosen among convex

surfaces.
In general case, already if n = 2 and N = 4, no condition like the

Minkowski “linear algebra” condition suffices: in generic position ei’s may
have no lines in common, so one cannot construct any polyhedral surface of
faces parallel to ei’s. Hence we reformulate the problem as follows: given P ,
ei’s and ai’s, we wonder if, for every positive ε, there is a surface such that
the total area of its faces parallel to each ei is ai, and the total area of all
other faces is less than ε.

Now the answer to this question depends on what we exactly mean by a
polyhedral surface. If one considers immersed PL-manifolds, we show that,
like in the Existence Theorem of Minkowski, such surfaces can always be
found provided the obvious “linear algebra” condition similar to that in the
theorem of Minkowski is satisfied. However, if one insists on an embedded
surface, or at least on an immersed surface whose boundary is embedded in
P , there are other (not really well understood) constraints.
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2. Preliminaries and formulations

The main purpose of the paper is to prove some restrictions or their
absence (depending on the set-up) on the (weighted) Gaussian image of a
surface of higher codimension. Our motivation to look at these problems
came from Finsler geometry, and this work grew from [BI]; however, we
believe that these results may be of interest on their own, - and they belong
to an area with many open problems. The results can also be applied to
studying the ellipticity property of surface area functionals.

2.1. Weighted Gaussian images of surfaces. Let us consider an ori-
ented k-dimensional Lipschitz singular chain (possibly with a boundary) in
Rn. Its weighted Gaussian image is a measure on the oriented Grassmannian
G(k, n). It measures “the area of that part of the chain where its tangent
plane has certain directions” (a formal definition follows below). Whereas a
general definition is given for Lipschitz chains, it is convenient to separate
a special case of polyhedral chains.

For a polyhedral chain, its weighted Gaussian image carries the following
information: the total area of faces of each (oriented) direction. That is, this
is an atomic measure concentrated on the set of directions of faces, with each
face of area s and oriented direction σ contributing an atom sδ(σ). The
corresponding affine-invariant object is a collection of indecomposable k-
vectors, where all faces parallel to each other and with the same orientation
are represented by one k-vector parallel to the faces and of the magnitude
equal to the total area of the faces.

More formally, for an oriented k-dimensional Lipschitz surface S : Ω →
Rn, its weighted Gaussian image µS is the push-forward of the Euclidean
surface area on S under the Gaussian map T : p 7→ TpS from Ω to the
Grassmannian G(k, n) of oriented k-planes (the map is defined a. e.) For a
(singular) Lipschitz chain with nonnegative coefficients (over Z, R, or Q),
the definition is generalized in an obvious way by adding weighted Gaussian
images of simplices; that is, if S =

∑
aiSi, Si : ∆→ Rn (where each ∆ is a

standard simplex and all ai’s are nonnegative), we define µS =
∑
aiµSi . Now

one can always change orientations of some simplices to make all coefficients
nonnegative.

Let us remark that all notions and constructions in this paper can be refor-
mulated using an affine-invariant language. Nonetheless, regarding our vec-
tor space as Rn and fixing a Euclidean structure turns out to be convenient
and makes the exposition and notations less cumbersome. For instance,
when considering general area functionals, we may also use the “standard
Euclidean surface area” associated with the fixed Euclidean structure.

For a measure µ on G(k, n), one defines its resulting k-vector E(µ) =∫
G(k,n) i dµ, where i : G(k, n) →

∧k(Rn) is the inclusion of the Grassman-

nian into the space
∧k(Rn) of k-vectors in the exterior algebra (the inclusion

is determined by the Euclidean structure, that is every element of G(n, k)
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is represented by a k-vector whose Euclidean k-area is 1). If µ is a weighted
Gaussian image of an affine singular k-simplex σ, then E(µ) is a decompos-
able k-vector parallel to σ and of the same area. We denote this k-vector
E(µ) and also by E(σ). For a k-chain σ =

∑
aiσi where σi are simplices,

the resulting vector obviously equals
∑
aiE(σi).

For a surface S : Ω → Rn, the kth exterior power dkS of the differential
dS is a k-form on Ω with values in the space of all k-vectors

∧k(Rn). The
resulting k-vector of the weighted Gaussian image of S can be computed as
E(µS) =

∫
Ω d

kS. The Stokes’ formula implies that the resulting vector of a
surface S depends only on its boundary ∂S, and we say that ∂S spans the
k-vector Span(∂S) =

∫
Ω d

kS. Note that both dkS and Span(∂S) are affine
objects.

Similarly, for a chain S =
∑
aiSi, Si : ∆ → Rn, we say that ∂S

spans a (possibly non-simple) k-vector Span(∂S) = E(µS), or, equivalently,
Span(∂S) =

∑ ∫
∆ dkSi. It is indeed easy to check that Span(∂S) again

depends on the boundary ∂S of S only. If the boundary ∂S of S lies in a
k-plane P , then Span(∂S) is a simple k-vector parallel to P . In particular,
Span(∂S) = 0 for a closed surface S.

There is a subtle difference between chains and surfaces (that is, chains
parameterized by manifolds). We will see that all results for chains over
Z can be carried over to the case of surfaces (see Step 2 in the proof of
Theorem 2).

2.2. Measures approximable by weighted Gaussian images of sur-
faces. The main objective of the paper is to study (the closure of) the class
of measures µ that can arise as weighted Gaussian images of surfaces (or
chains) with planar boundaries (that is, when ∂S lies in an affine k-plane).
We will then show how these results can be applied to a classical question
of ellipticity vs. convexity for surface area functionals.

Let us first explain why we want to look at the closure of the class of
measures that can be realized as weighted Gaussian images of surfaces, and
not at the class itself. First of all, if one has an atomic measure on G(2, 4),
generically no two 2-planes in the support of the measure have a common
line, and hence it is hopeless to construct a polyhedral surface with faces of
these directions. We will see that nonetheless one can construct a surface
by adding additional faces of arbitrary small total area.

We say that a measure µ on G(k, n) is realizable by a certain class of
surfaces if µ belongs to the closure of weighted Gaussian images of surfaces
from this class. The closure is considered with respect to the weak topol-
ogy; however, in the polyhedral case our results remain valid for the strong
topology as well.

Secondly, consider the following example in already R3. Choose three
linearly independent vectors a, b, d ∈ R3, and a vector c determined by
a+ b+ c = 0, and consider an atomic measure concentrated on a ∧ d, b ∧ d
and c∧d with equal weights on each. Geometrically, the faces of a polyhedral
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surface with this Gaussian image are parallel to three planes that have a line
in common. It is easy to see that such a surface cannot be closed. However,
one can construct a closed surface by adding two arbitrarily small faces not
parallel to d (the surface looks like a long prism with two small lids).

Finally, the formulation with the closure is exactly what we need for
applications to ellipticity of area functionals.

If we consider a surface whose boundary belongs to P , the fact that
Span(∂S) is parallel to P is a linear constraint on the weighted Gaussian
image of S. Hence we have a linear constraint on measures realizable by
surfaces whose boundaries belong to P .

Now we are ready to formulate the main results regarding weighted Gauss-
ian images of surfaces.

Theorem 1 shows that if a measure µ is such that E(µ) is parallel to a k-
plane P , then µ is realizable by surfaces with boundaries in P . Furthermore,
we actually show that, given a prescribed boundary (a (k − 1)-cycle D ⊂ P
with Span(D) = E(µ)), µ is realizable by chains over R with this boundary.

Theorem 4 demonstrates that there is a measure µ on G(2, 4) with E(µ)
parallel to P and which cannot, however, be realized by surfaces with non-
self-intersecting boundaries in P . The Theorem is proven by presenting a
specific non-liner constraint on weighted Gaussian images of surfaces with
planar non-self-intersecting boundaries.

2.3. Surface area functionals. The proof of Theorem 1 is based on study-
ing a certain artificially introduced surface area functional. In its turn, the
Theorems can be applied to studying relationship between ellipticity and
convexity of surface area functionals. We will see that the Theorems imply
that the question of whether flat regions are area-minimizers with respect to
a certain area functional may have different answers for surfaces as opposed
to chains over R. Let us introduce necessary definitions and notations.

First we are going to define general (translation-invariant) surface area
functionals. They arise from area functions defined on the (decomposable) k-
vectors in the same way as Riemannian metrics arise from metric tensors by
means of integration. In Riemannian geometry, the same term Riemannian
metric is used for both the (infinitesimal) metric tensor (allowing to measure
the lengths of tangent vectors) and for the functional measuring the lengths
of curves. The following definition of a surface area functional associated
with an area function on k-vectors exactly falls into the same scheme, and
we will follow the tradition of Riemannian geometry and use the same term
surface area functional for both objects.

Let GC(k, n) denote the Grassmannian cone, that is the set of all decom-
posable k-vectors in Rn). Let A be a positively homogeneous nonnegative
function A : GC(k, n)→ R+, that is A(λv) = λA(v) for all nonnegative reals
λ (note that A(v) and A(−v) are not assumed to be equal). We require that
the restriction of A to the Grassmannian G(k, n) is bounded (equivalently,
A is locally bounded).
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A k-dimensional area functional associated with A is a surface area func-
tional AreaA given by the obvious formula

AreaA(S) =
∫

Ω
A(TpS)dm(p),

where S is an oriented k-dimensional surface S : Ω → Rn, m is the Eu-
clidean surface area, and the tangent space TpS is regarded as a point in
G(n, k). Here we again use the inclusion of G(k, n) into GC(k, n) by repre-
senting a point of G(k, n) as a k-vector of unit Euclidean area. Equivalently,
AreaA(S) =

∫
G(n,k)AdµS , where µS is the weighted Gaussian image of the

surface S.
An affine-invariant (and rather useless) formula for AreaA(S) reads

AreaA(S) =
∫

Ω
A ◦ dkS(ω∗)ω,

where ω is any volume form in Ω. That is, ω is a positively oriented k-form
on Ω; ω∗ is a (dual) k-vector field determined by ω(ω∗) = 1; and A◦dkS(ω∗)
makes sense since the values of dkS are only decomposable k-vectors. This
formula assumes a very simple form when our surface is an affine k-simplex
σ: AreaA(σ) = A(E(σ)).

For a Lipschitz chain S with nonnegative coefficients (S =
∑
aiSi, Si :

∆→ Rn, where each ∆ is a standard simplex and all ai’s are nonnegative),
we define AreaA(S) =

∑
aiAreaA(Si). Now for a general Lipschitz chain,

one can always change orientations of some simplices to make all coefficients
nonnegative.

2.4. Convexity and ellipticity of surface area functionals. A surface
area function A : GC(k, n) → R is said to be convex if it can be extended
to a convex function on the vector space

∧k(Rn) of all k-vectors. We define
the convex hull ConvA of A as follows. For a k-vector v, set ConvA(v) =
inf

∑
A(vi) for all representations v =

∑
vi with vi ∈ GC(k, n). Then A is

convex iff ConvA(v) = A(v) for all decomposable k-vectors v. Equivalently,
ConvA is the maximum convex area function not exceeding A.
AreaA is said to be (semi-)elliptic (with respect to a certain class of

chains) if, whenever the boundary ∂α is equal to the boundary of a k-disc D
embedded into an affine k-plane, one has AreaA(α) ≥ AreaA(D) (see [Alm]).
One is particularly interested in ellipticity over Z and over R (that is, for
the class of chains over Z, R). Sometimes one is interested in ellipticity
with respect to chains parameterized by topological discs. This notion is
equivalent to ellipticity over Z if k > 2 (see [Gr]), whereas in 2 dimensions
the situation is rather obscure (see the last paragraph of the paper).

Whereas one often requires strict inequalities in the definition of ellipticity,
and the notion we defined should formally be called ”semi-ellipticity”, we
abuse terminology and also call it ”ellipticity” for brevity.

Traditionally one also considers ellipticity for surface area functionals that
may fail to be translation-invariant. We note that, even though we restrict
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ourselves to translation-invariant area functionals, this does not result in
loss of generality. Indeed, both the ellipticity and convexity are infinitesimal
notions, and they can be formulated and verified as point-wise conditions
on tangent spaces.

For an area function A : GC(k, n) → R, define its elliptic hulls AZ :
GC(k, n) → R and AR : GC(k, n) → R over Z and R as follows: for a de-
composable k-vector v, AZ(v) (resp. AR(v)) equals the infimum of A-areas
of k-chains over Z (resp. R) whose boundaries coincide with a boundary of
a k-simplex σ such that E(σ) = v. It is easy to see that AZ(v) and AR(v)
do not depend on the choice of simplex σ representing v, AZ and AR are
positively homogeneous on GC(k, n), and the associated surface area func-
tionals AreaAZ

and AreaAR
are elliptic over Z and Q respectively. Hence

AZ ( AR) is the maximal elliptic area function (over Z and R respectively)
not exceeding A.

It is obvious that convexity of A implies that AreaA is elliptic with respect
to any class of chains, and that ellipticity over R implies ellipticity over Z.
Equivalently, AZ ≥ AR ≥ ConvA for any A.

Now we are ready to explain the meaning of Theorem 3: it implies that,
for any surface area functional, convexity is equivalent to ellipticity over R.

Here is an immediate application of this Theorem to symplectic sur-
face area in a normed space (which is now also often referred to as the
Holmes-Thompson surface area). Using Busemann’s observation that this
surface area may fail to be convex for already 2-dimensional surfaces in a
4-dimensional normed space ([BES]), we conclude that it also may fail to
be elliptic over R. This means that there exists a surface whose boundary
is N times the unit circle in the xy-plane (where N is a positive integer),
and whose Holmes-Thompson area (of a certain norm) is strictly less than
N times the Holmes-Thompson area of the unit disc (in the xy-plane).

As an application of Theorem 4, we construct a surface area functional
which is non-convex but still elliptic over Z (see Section 5). This means that
ellipticity over R is not equivalent to ellipticity over Z.

Now we proceed with precise formulations and proofs.

3. Constructing a surface with prescribed weighted Gaussian
image

The main objective of this section is to prove the following

Theorem 1. Let µ be a measure on G(k, n) such that E(µ) =
∫
G(k,n) idµ is

parallel to a k-plane P . Then, for every neighborhood U of µ in the space of
measures, there exists a measure µ′ which can be represented as the weighted
Gaussian image of a surface whose boundary belongs to P . In other words,
weighted Gaussian images of surfaces with boundaries in P are dense in all
measures satisfying the linear constraint E(µ) ‖ P . In particular, weighted
Gaussian images of closed surfaces are dense in all measures with E(µ) = 0.

6



This Theorem follows from its strengthened polyhedral version, which
reads:

Theorem 2. Given a finite collection of unit decomposable k-vectors αi
and positive reals ai with

∑
aiαi = aα, where a ≥ 0 and α is also a unit

decomposable k-vector, and a positive ε, there exists a polyhedral surface S
such that

1. Its boundary ∂S belongs to an affine k-plane P parallel to α (if a = 0,
∂S = ∅, and we get a closed surface S),

2. The faces of S can be divided into two subsets. The total area of the
faces from the first subset is less than ε; each face from the second subset is
parallel to and has the same orientation as one of αi; and the total k-area
of all faces parallel to and with the same orientation as αi is equal to ai.

The second condition of the Theorem means that the weighted Gaussian
image of S is ε-close (in the norm of the strong topology) to the atomic
measure

∑
aiδα̃i , where α̃i is the point of the Grassmannian G(n, k) (an

oriented k-plane) parallel to αi.
We will obtain the Theorem as a corollary of the next Theorem 3. The lat-

ter asserts that, for any area functional, convexity is equivalent to ellipticity
over R.

Recall that, given a positively homogeneous function A : GC(k, n)→ R,
one defines the corresponding area functional (denoted by AreaA), and the
convex hull ConvA defined as ConvA(v) = inf

∑
A(vi) for all representations

v =
∑
vi with vi ∈ GC(k, n). Recall also that, if the boundary of a surface

belongs to an affine k-plane, then the k-vector Span(∂S) =
∫
dkS spanned

by the boundary of the surface is a decomposable k-vector parallel to the
plane. It is obvious that the area of S is no less than ConvA Span(∂S).
The following Theorem asserts that (if the boundary is allowed to have
self-intersections) this inequality is sharp.

Theorem 3. If an area functional is elliptic over R, then it is convex.
Equivalently, for an area functional, its elliptic hull over R is equal to its
convex hull.

Proof. Let A : GC(k, n) → R be an elliptic (over R) k-dimensional area
functional in the space V = Rn.

Let Sk(V ) be the quotient of the vector space of simplicial (PL) k-chains
over R in V by the subspace generated by degenerate k-simplices and bound-
aries of degenerate (k+1)-simplices. Equivalently, we consider all simplicial
chains and identify every chain with any of its triangulations, and every
simplex with (-1 times the same simplex with reversed orientation). We will
abuse the terminology and use the term “chain” for elements of Sk(V ).

The boundary functional ∂ : Sk(V ) → Sk−1(V ) is well-defined. An ele-
ment of Sk−1(V ) is a boundary if and only if it is closed (i.e. its boundary
equals 0). Let Ck−1(V ) denote the space of all closed chains in Sk−1(V ).
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Define a semi-norm FillA on Ck−1(V ) as follows:

FillA(c) = inf{AreaA(s) : s is a k-chain, ∂s = c}.
We call FillA the minimal filling area of c. Since A is R-elliptic, we have
FillA(∂σ) = AreaA(σ) for any affine simplex σ.

Fix a k-dimensional subspace W of V and an orientation of W . By
CWk−1(V ) (resp. SWk (V )) we denote a linear subspace of Ck−1(V ) (resp.
Sk(V )) of chains whose simplices are parallel to W .

Now the proof consists of four steps.

Step 1: construct a linear function L1 : Ck−1(V )→ R with the following
two properties:
1. L1(c) ≤ FillA(c) for all c, and
2. L1(c) = FillA(c) if c is the boundary of a positively oriented simplex
parallel to W .

We define a linear function l : SWk (V ) → R (the “algebraic area”) to be
l(c) = A(E(c)), if E(c) is positively oriented, and −A(−E(c)) otherwise.
Equivalently, for a positively oriented k-simplex s, l(s) = FillA(∂s), and
then l is extended by linearity to all k-chains in SWk (V ). It is easy to see
that the “algebraic filling area” of a simplex (parallel to W ) is proportional
to its signed Lebesgue measure.

Consider the following linear function L0 : CWk−1(V ) → R: for a (k − 1)-
cycle c ∈ Ck−1(W ) let L0(c) = l(s), where s is a (unique) k-chain s ∈ SWk (V )
such that ∂s = c. That is, L0(s) is the “algebraic filing area” of a chain
bounded by s.

Lemma 3.1. |L0(c)| ≤ FillA(c) for all c ∈ CWk−1(V ).

Proof. An easy covering argument shows that L0(c) = FillA(c) if c is a
boundary of a positively oriented cube parallel to W . Then the proof goes
as follows: first we show that the inequality L0(c) ≤ FillA(c) holds if c is a
sum of boundaries of cubes parallel to W (but lying in different k-planes)
and obtained from one another by parallel translations. Then we derive the
inequality for all chains c ∈ CWk−1(V ).

1. Let s =
∑m

i=1 si where si are translations of the same cube in W , and
let Wi be the k-planes containing si. For a large positive integer N , consider
the chain sN =

∑
sNi where sNi is a cube in plane Wi obtained from si by

homothety in N times with respect to the center of si. This chain sN can
be covered (that is, represented as the sum) by Nk translations of s. Hence
FillA(∂sN ) ≤ Nk FillA(∂s).

On the other hand, by adding to sN a number of collars of total area
O(Nk−1), one can get a chain whose boundary equals m∂sN1 . Thus

mNkL0(∂s1) = mNk FillA(∂s1) = mFillA(∂sN1 ) =

= FillA(∂sN ) +O(Nk−1) ≤ Nk FillA(∂s) +O(Nk−1).
8



Hence
L0(∂s) = mL0(∂s1) ≤ FillA(∂s) +O(1/N).

Passing to the limit as N →∞, we get the desired inequality for c = ∂s.
2. Suppose the assertion is false; then l(s) = L0(∂s) > FillA(∂s) for some

s ∈ SWk (V ). Fix a sufficiently large cube in W , consider a collection of
translations of this cube covering all simplices of s, and let σ be the sum of
these translations. Represent s =

∑
aiσi where {σi} is a triangulation of σ

into positively oriented simplices, and let a = max{|ai|}. Then observe that
aσ = s+

∑
(a− ai)σi, therefore

aFillA(∂σ) ≤ FillA(∂s)+
∑

(a−ai) FillA(∂σi) < l(s)+(a−ai)l(σi) = al(σ),

since a and a− ai are nonnegative. Thus l(σ) > FillA(dσ), contrary to the
statement proved in the first step. Here we use the fact that that l(σi) =
FillA(∂σi) by definition, since σi are affine simplices. �

Observe that FillA is a semi-norm on Ck−1(V ). Then by the Hahn-Banach
theorem, there is a linear function L1 : Ck−1(V )→ R extending L0 and such
that L1 ≤ FillA.

Step 2: extend L1 to a locally bounded linear function L defined on all
(k − 1)-dimensional simplicial chains.

Define a linear function L : Sk−1(V )→ R extending L1 as follows. For a
chain s, set L(s) = L1(Cycle(s)) where Cycle(s) = ∂(Joint(s, 0)). In other
words, we extend L1 from the space of (k−1)-cycles to the space of all (k−1)-
chains by assigning zero value to all simplices with one of the vertices at the
origin. For example, if k = 2, we set L([a, b]) = L0([a, b] + [b0] + [0a]).

Since L is an extension of L1, we have
(1) L(c) ≤ FillA(c) for all closed (k − 1)-chains c, and
(2) L(c) = FillA(c) if c is the boundary of a positively oriented simplex

parallel to W .
For every s ∈ Sk−1(V ), the function L(s + v) is locally Lipschitz in

v ∈ V where s + v denotes the parallel translation of s by v. Indeed,
|L(s)−L(s+ v)| can be estimated from above by the area of a surface span-
ning the chain Cycle(s)− Cycle(s+ v). It easy to see how to fill this chain
with a “collar” (parameterized by Cycle(s)× [0, 1]) of area no greater than
const ·Area(Cycle(s)) · |v|.

Step 3: smoothen L in such a way that the relations (1) and (2) persist.

Let L̃ be a convolution (w.r.t. the parallel translations) of L with a
smooth function K on V (and of total integral 1). That is,

L̃(c) =
∫
V
L(c+ v)K(v)dv,
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where c + v is the translation of c by vector v ∈ V . The above properties
(1) and (2) of L are inherited by L̃.

Fix an oriented linear (k − 1)-subspace P of V . The absolute value of
L is bounded by the (k − 1)-area multiplied by a locally bounded function
(e.g. the distance from the origin times supG(n,k)A). Hence the value of L on
chains parallel to P is equal to the integral of a density function fP : V → R.
That is, if a chain c is a weighted sum of positively oriented simplices

∑
aici,

then L(c) =
∑
ai

∫
ci
fP with respect to the Lebesgue measure. This function

fP is measurable since it can be obtained from Lipschitz functions using
arithmetics and limits.

For L̃, one defines a collection of functions f̃P in the same way as we con-
structed fP . Each f̃P is obtained from fP by a convolution with a smooth
function, and hence each f̃P is smooth (the dependency on the direction of
P is still unclear).

Step 4: turn the family of functions {f̃P } into a differential (k− 1)-form
on V .

The collection of functions fP determines a single function ω on (k − 1)-
tuples of tangent vectors in V : if vi ∈ TqV , i = 1, 2, . . . , k − 1, and if P is a
(k−1)-dimensional linear subspace containing the Vi’s, then ω(v1, v2, . . . vk−1) =
fP (q)·S, where S is the oriented Lebesgue area of the parallelepiped spanned
by the vi’s

Obviously ω is skew-symmetric.

Lemma 3.2. ω is linear in each argument.

Proof. Suppose the contrary: for some q ∈ V and v1, . . . , vk−2, vk−1, v
′
k−1 ∈

TqV one has

ω(v1, . . . , vk−2, vk−1+v′k−1)−ω(v1, . . . , vk−2, vk−1)−ω(v1, . . . , vk−2, v
′
k−1) = δ 6= 0.

The vi’s and v′k−1 are linearly independent (otherwise they lie in a (k − 1)-
dimensional subspace P , where ω = fP · dV ol, and the linearity is obvious).
Thus the vi’s and v′k−1 form a basis of a k-dimensional linear subspace, and
the latter can be regarded as the product of the 2-space spanned by vk−1

and v′k−1, and the (k − 2)-dimensional space spanned by v1, v2, . . . vk−2

Consider a “prism-shaped” product Q = T × S where T is the 2-simplex
with edges E1 = −vk−1, E2 = −v′k−1 and E3 = vk−1 + v′k−1, and S is the
parallelepiped spanned by v1, v2, . . . vk−2. Consider the family of (k − 1)-
cycles ε∂Q, ε > 0, where TqV is identified with V in the standard way, so
that the origin of TqV is placed at q). We are going to show that L̃(ε∂Q) =
εk−1δ + o(εk−1). The boundary ε∂Q of each εQ = ε(S × T ) consists of two
parts: ε(T × ∂S) and ε(∂T × S). The faces of the first part ε(T × ∂S)
split into pairs corresponding to pairs of opposite faces of S. Each pair
consists of two parallel but oppositely oriented faces at the distance of order
ε from each other. Hence the values of L at these faces cancel out up to
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a term of order εk, thus L̃(ε(T × ∂S)) = o(εk−1). For the second part
ε(∂T × S) = ε((E1 ∪ E2 ∪ E3)× S), we have

L̃(ε(∂T × S)) = εk−1f(v1, . . . , vk−2, vk−1 + v′k−1)−

− εk−1f(v1, . . . , vk−2, vk−1)− εk−1f(v1, . . . , vk−2, v
′
k−1) + o(εk−1)

= δεk−1 + o(εk−1)

(recall that E1, E2, E3 are the sides of the triangle T ).
It follows that |L(ε∂Q)| ≥ const·εk−1 for small ε. On the other hand, since

|L| ≤ FillA on closed chains, we have L(ε∂Q) = O(εk). Contradiction. �

Now we are ready to conclude the proof of the Theorem. Since ω is linear
in each argument, and it is smooth on coordinate (k − 1)-tuples, it is a
smooth differential (k − 1)-form. Consider the k-form dω. Then L̃ of the
boundary of a simplex is equal to the integral of dω over the simplex. Fix a
point q ∈ V and consider small k-simplices near q. The inequality L̃ ≤ FillA,
along with the fact that FillA(∂σ) = AreaA(σ) for every k-simplex σ, imply
that dωq ≤ A on the Grassmannian cone with equality at decomposable
k-vectors parallel to W . So dωq, regarded as a linear function on

∧k V , is a
supporting function for A at the point corresponding to W . The convexity
of A follows.

To see that the elliptic hull of a surface area functional is equal to its con-
vex hull (the second statement of the Theorem), one argues in the standard
way: the elliptic hull is elliptic, and hence convex (by the first statement of
the Theorem); on the other hand, the elliptic hull is always greater than or
equal to the convex hull; finally, the convex hull is the maximum of convex
functions that are bounded from above by A on GK(n, k). Combining these
inequalities, one gets the desired equality. �

Proof of Theorem 2. The proof consists of two steps:
Step 1: first we construct a chain S̃ satisfying the requirements of the

Theorem (for ε′ = ε/2) and whose boundary is the boundary is a given
simplex σ of area a in W ;

Step 2: we modify S̃ to get a desired surface S (that is, adding additional
faces of area not exceeding ε/2.

Note that in the case k = 2, the second step is trivial, because an ap-
propriate multiple of a rational chain can always be parameterized by a
two-dimensional PL-manifold.

For brevity, we will say that a surface S satisfying the requirements of the
Theorem is “a surface with the data

∑
aiαi = aα, up to faces of the total

area ε”.

Step 1. We are given a finite collection of unit decomposable k-vectors
α1, . . . , αN , α, and nonnegative coefficients a1, . . . , aN , such that

∑
aiαi =

11



aα, a ≥ 0. We will argue by induction on the number of nonzero coefficients
among a1, a2, . . . , aN , a.

If a = 0, this means that we want to construct a closed surface. We want
to stay away from this situation. Indeed, if a = 0, we can choose a non-zero
aj and consider the data 1 · (−αj) =

∑
i 6=j

ai
aj
αi. Hence it suffices to consider

the case a 6= 0. Thus we assume that all coefficients ai’s and a are positive.
Choose a subset {β1, β2, . . . , βM} ⊂ {α1, α2, . . . , αN} with the following

property: aα can be represented as a linear combination of βi’s with positive
coefficients in a unique way. Without loss of generality, we assume that
βi = αi for i = 1, 2, . . . ,M , that is, βi’s are the first M k-vectors the list of
αi’s. Let aα =

∑
biβi.

Since the representation aα =
∑
biβi is unique, a linear map Σ : RM →∧k(Rn) : Σ(x1, x2, . . . xM ) =

∑
xiβi is injective. Hence there is a constant

λ such that |Σ(x1, x2, . . . xM )| ≥ λ
∑
|xi|. Choose such a λ ≤ 1. Since Σ is

linear, we have

|Σ(x1, x2, . . . xM )− aα| = |Σ(x1, x2, . . . xM )− Σ(b1, b2, . . . bM )|,

and hence

(1) |Σ(x1, x2, . . . xM )− aα| ≥ λ
∑
|xi − bi|.

Introduce the following (area) function A : GC(k, n) → R: A(βi) = 0,
and for every k-vector σ not parallel to any of the βi’s, as well as parallel to
a βi and of the opposite orientation, we set A(σ) = 1.

Obviously, for the convex hull ConvA of A we have ConvA(aα) = 0. By
Theorem 3, for the elliptic hull of A over R, we have AR(aα) = 0. Hence,
given any k-simplex σ′ with E(σ′) = aα and any δ > 0, there exists a (real)
k-chain S with ∂S = ∂σ′ and AreaA(S) < δ. We will choose a simplex σ′

later. Set δ = λε/5. Then the total area of faces of S that are not parallel
to any of the βi’s, cannot exceed λε/5.

For each i = 1, . . . ,M , consider the faces of S parallel to βi’s and of the
same orientation. Let xiβi be the resulting vectors of these faces. By (1),
we have

λ
∑
|xi − bi| ≤ |

∑
xiβi − aα| ≤ λε/5.

Hence
∑
|xi − bi| ≤ ε/5.

Now consider two cases:
Case 1: bi ≤ ai for all i = 1, . . . ,M . Then we construct the desired chain

as the union of the just constructed chain S (where we set σ′ = σ, that is
we require that the boundary of S is the boundary of the same simplex σ),
and a closed chain S′ with the same collection {αi} of oriented directions of
faces and with weights a1 − b1, a2 − b2, . . . , aM − bM , aM+1, . . . , aN , up to
faces of total area at most ε/2. The latter surfaces exists by the inductive
hypothesis.

Case 2: bj > aj for some j. Let ν = aj/bj , 0 < ν < 1, be the smallest of
the ratios ai/bi, 1 ≤ i ≤M . Let us divide σ into two simplices σ1 and σ2 of
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areas νa and (1 − ν)a respectively. We now require that the boundary ∂S

of S is the boundary of σ′ = ν−1/kσ1, where multiplication by ν−1/k means
homothety in ν−1/k times. Then construct the desired chain as the union
of the ν1/kS (again, a homothety of S in ν1/k times), and a surface with
boundary ∂σ2 and with the data

(a1 − νb1)α1 + · · ·+ (aj−1 − νbj−1)αj−1 + 0 · αj+
+ (aj+1 − νbj+1)αj+1 + · · ·+ (aM − νbM )αM+

+ aM+1αM+1 + · · ·+ aNαN = (1− ν)aα

up to faces of total area ε/2. The latter surface exists by the inductive hy-
pothesis.

Step 2. Now we have constructed a simplicial chain with a given weighted
Gaussian image (up to faces of total area at most ε) and whose boundary
is the boundary of a given simplex. We are going to multiply this chain
by a large integer, and then we transform this chain into another chain
parameterized by a manifold. (Of course, we want to keep the boundary
and obtain a surface with almost the same weighted Gaussian image).

First of all, we approximate S (the chain constructed in Step 1) by a
rational chain S′ with the same boundary, and then choose an integer Q
such that QS′ is an integer chain. Recall that every integer chain can be
parameterized by a PL-pseudo-manifold, and furthermore for a given pa-
rameterization of the boundary, it can be extended to a parameterization
of the whole chain. We will parameterize the boundary ∂QS′ by a disjoint
union of Q (k− 1)-dimensional spheres M1,M2, . . . ,MQ, and then extend it
to a parameterization f : M → Rn, where M is a PL-pseudo-manifold with
∂M =

⋃
Mi.

Let U be a small neighborhood of the (k − 3)-dimensional skeleton of M
such that M \ U is a manifold (with boundary ∂M ∪ ∂U). We construct a
manifold M̃ from the following building blocks:

– the complement M \ U ;
– a tube ∂U×[0, 1], attached to the first block via the natural identification

of ∂U × {1} and ∂U ;
– a copy M ′ \ U ′ of M \ U , attached to the other end of the tube via the

identification ∂U × {0} and ∂U ′ ' ∂U ;
– a disjoint union of Q k-dimensional disks, attached to the remaining

part ∂M ′ of the boundary of the block M ′ \ U ′.
Note that ∂M̃ = ∂M .
Now define a map f̃ : M̃ → Rn as follows. First, f̃ = f on the first block

M \ U . On the tube, define f̃(x, t) = tf(x); this means that the tube is
mapped to the cone over f(∂U). Finally, the rest of M̃ is sent to the origin.

Now one easily sees that f̃ parameterizes the same chain as f up to an
additional chain of arbitrarily small area, and therefore defines almost the
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same weighted Gaussian image. To complete the proof, consider a suitable
homothety of f̃ , namely Q−1/kf̃ . �

4. Non-linear constraints for weighted Gaussian images of
two-dimensional surfaces

Theorem 4. There exist a measure on G(4, 2) whose resulting vector is
a decomposable 2-vector, but the measure cannot be approximated (in the
weak topology) by weighted Gaussian images of surfaces whose boundaries
are simple planar curves.

We will prove the theorem by an explicit example of an atomic measure
with three atoms. Consider a standard coordinate Euclidean space R4 with
the basis e1, e2, e3, e4. Then, for instance, an atomic measure with equal
weights concentrated on the oriented planes corresponding to the following
three 2-vectors (of equal magnitude):

w1 = (e1 + e3) ∧ (e2 + e4),

w2 = (e1 − e3) ∧ (e2 − e4),
w3 = 2e4 ∧ e3,

cannot be approximated by weighted Gaussian images of surfaces whose
boundaries are simple curves in the (e1, e2)-plane (even though v1+v2+v3 =
2e1 ∧ e2). In the proof we use another collection of 2-vectors, which is more
convenient to deal with and which is affine equivalent to this one.

Recall that in the definition of ellipticity of surface area functionals one
considers chains that have the same boundary as a (standard) simplex.
Under this condition, restricting ourselves to surfaces with simple planar
boundaries is equivalent to considering integer chains.

Proof of Theorem 4. Fix ε = 10−10. Define three 2-vectors v1, v2, v3 in R4

by the following formulae

v1 = (e1 +
ε

2
e3) ∧ (e2 +

ε

2
e4),

v2 = (e1 −
ε

2
e3) ∧ (e2 −

ε

2
e4),

v3 =
1
2
ε2e4 ∧ e3,

Observe that the sum of these vectors equals 2e1 ∧ e2. Introduce an atomic
measure µ0 concentrated on the oriented planes corresponding to v1, v2, v3

with weights |v1|, |v2| and |v3| respectively. We are going to show that this
measure cannot be approximated by weighted Gaussian images of surfaces
whose boundaries are simple curves in the (e1, e2)-plane.

We will say that the coordinate (e1, e2)-plane is horizontal, or the h-plane,
and the (e3, e4)-plane vertical, or the v-plane. We choose orientations in
these two planes so that the basis (e1, e2) of the h-plane is positive and the
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basis (e3, e4) of the v-plane is negative. Let Pv and Ph denote the orthogonal
projection operators from R4 to the v-plane and h-plane, respectively.

An oriented plane T is said to be ε-vertical (respectively ε-horizontal) if
Pv|T (resp. Ph|T ) is an orientation-preserving map (with respect to the cho-
sen orientations of the coordinate planes) and its inverse is (1+ε)-Lipschitz.
Observe that the planes corresponding to the 2-vectors v1 and v2 are ε-
horizontal, and the plane corresponding to v3 is vertical.

Let Uv ⊂ G(4, 2) be the interior of the set of ε-vertical planes (Uv is a
small neighborhood of the “vertical” point in G(2, 4)), and Um ⊂ G(2, 4)
be the complement to the union of the set of ε-vertical and the set of ε-
horizontal planes. Observe that µ0(Um) = 0 and µ0(Uv) > 0. Let µ be the
weighted Gaussian image of a surface S in R4 whose boundary is a simple
curve in the h-plane. The following proposition, which immediately implies
that µ(Um) ≥ 1

300µ(Uv), completes the proof.

Proposition 4.1. Let S be a compact piecewise smooth surface in R4 whose
boundary ∂S is a simple curve in the h-plane. Consider the following subsets:
SV is the set of points p ∈ S where TpS is ε-vertical; SH is the set of points
p ∈ S where TpS is ε-horizontal; and finally SM = S \ (SV ∪ SH) is the
complement.

Then |SM | ≥ 1/300|SV |.

We precede a formal proof of the Proposition by a very informal illustra-
tion of a very special case, with the entire goal of facilitating understanding
the idea of the proof; a reader who would not mind struggling through a
series of weakly motivated inequalities may bypass this illustration and pro-
ceed directly to the proof.

We want to discuss a situation of a surface S whose ε-vertical parts SV

is a disc of radius 1 in the v-plane. We also assume that the center p of this
disc is at least distance 2 away from the boundary of the surface. Since our
goal is to show that the mixed part SM is not too small, we are arguing
by contradiction assuming that it is so small that can be neglected in all
considerations.

Consider a ball in the intrinsic metric of S of radius 2 and centered at p.
This ball is contained in a 2-ball in the ambient Euclidean metric, hence so
does its orthogonal projection to the h-plane. Since the boundary of S is a
simple curve in the h-plane, the projection of S is a region in the h-plane
covered with total multiplicity 1. If the projection to the h-plane reverses
orientation at some point, the point belongs to SM , and hence all points
except a set of a negligibly small area are covered exactly once. Therefore
the area of the projection of the 2-ball is approximately 4π or less. Note
that the SH -part is projected by an almost area preserving map, and hence
the area of the annulus between the 1-ball and 2-ball is approximately 4π
or less (we can neglect the SM -part, and there is no SV -part there).

Now we look at the family of circles of radii from 1 to 2 forming the
annulus. By the co-area formula, the average length of such a circle is
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approximately 4π or less. On the other hand, if we project the annulus to the
v-plane, we are going to get a set of a very small area. Hence the projection
of each of the circles surrounds a region of approximately the same area as
the first circle in the family (the one that bounds a disc of radius 1). By
the isoperimetric inequality, we conclude that the length of the projection of
every circle is about 2π or more. To see a contradiction, it suffices to recall
that the average length of a circle is approximately 4π or less, whereas the
projection shrinks the length in about 1/

√
ε times everywhere in SH (and,

as usual, we neglect SM , and there is no SV in the annulus).
Having this motivating example in mind, we proceed with a formal proof

for the general case.

Proof of Proposition 4.1. We may assume that S is an immersed smooth
surface (by means of approximation). Then we can freely use the intrinsic
metric of the surface (induced by the immersion).

We begin with extending S by adding to it the region in the h-plane
outside the boundary of the surface, thus obtaining an unbounded surface
coinciding with the h-plane everywhere but a compact part. This modifi-
cation does not change the sets SV and SM . In the sequel all notions are
considered for the extended surface.

Next we slightly modify the sets S’s and first prove an estimate similar
to the one in the Proposition for the new sets. Namely, introduce
Sv = SV ,
Sh to be a maximal subset of SH that projects injectively to the h-plane,
Sm = S \ (Sh

⋃
Sh) the complement.

By Br(p) (sometimes Br for brevity) we denote the intrinsic metric ball
of radius r centered at p. Let Bv

r (p) (or Bv
r ), Bh

r (p) (or Bh
r ), and Bm

r (p) (or
Bm
r ) be the intersections of Br(p) with Sv, Sh and Sm respectively.
We need one more constant a = 1

100 .

Lemma 4.2. If |Bv
r | ≥ aπr2 and |Bv

2r| ≤ aπ(2r)2, then |Bm
2r| ≥ a

2πr
2.

Proof. We need the following estimate: for any ρ > 0,

(2) |Bh
ρ | ≤ πρ2(1 + ε)2 ≤ 2πρ2.

To prove it, observe that the set Bh
ρ is contained in the ball of radius ρ in

the ambient Euclidean metric, it projects injectively to the h-plane, and the
projection multiplies the area by a factor of at least (1 + ε)−2.

Introduce the following notation: let Lv(t), Lh(t) and Lm(t) be the lengths
of the intersections of the intrinsic metric circle of radius t (centered at
p) with the sets Sv, Sh and Sm respectively. By the co-area formula,∫ 2r

0 Lv(t) dt = |Bv
r |, and similarly for Lh and Lm.

Reasoning by contradiction, assume that |Bm
2r| ≤ a

2πr
2. For every t ∈

[r, 2r], consider the (oriented) area Av(Bt) of the projection of the intrinsic
ball Bt to the v-plane. We have

Av(Bv
t ) ≥ Av(Bt

r) ≥ aπr2(1 + ε)−2 ≥ aπr2(1− 2ε)
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from the assumption on Bv
r , and

|Av(Bm
t )| ≤ |Bm

t | ≤ |Bm
2r| ≤

a

2
πr2,

and
|Av(Bh

t )| ≤ ε|Bh
t | ≤ ε|Bh

2r| ≤ 8πεr2

by (2). Here we used the fact that the projection Pv restricted to an ε-
horizontal plane is a

√
ε-Lipschitz map . Thus

Av(Bt) ≥ Av(Bv
t )− |Av(Bm

t )| − |Av(Bh
t )| ≥ πr2(a/2− 10ε).

Then, by the isoperimetric inequality, the length of the projection of the
boundary of Bt is at least 2πr

√
a/2− 10ε.

Hence Lv(t) + Lm(t) +
√
εLh(t) ≥ 2πr

√
a/2− 10ε. Integrating from r

to 2r, and using the integration from 0 to 2r in the left-hand side of the
inequality, one gets

|Bv
2r|+ |Bm

2r|+
√
ε|Bh

2r| ≥ 2πr2
√
a/2− 10ε .

On the other hand, |Bh
2r| ≤ 8πr2 by (2), and one of the conditions of the

lemma is the inequality |Bv
2r| ≤ 4aπr2. Recalling the numerical values for a

and ε, one has

|Bm
2r| ≥ πr2(2

√
a/2− 10ε− 8

√
ε− 4a) >

1
20
πr2 >

a

2
πr2,

a contradiction. �

Let DSv denote the set of density points of Sv, and for every p ∈ Sv, let
r(p) be the maximum r such that |Bv

r (p)| ≥ aπr2.
We need the following well-known folklore lemma:

Lemma 4.3. If a separable metric space is covered by a collection of open
balls, there is a countable sub-collection Bri(pi) such that it still covers the
whole space, and Bri/3(pi) do not overlap.

By applying this lemma to the covering of DSv by the balls B6r(p)(p), we
get a collection of points pi and radii ri = r(pi) such that

(1) |Bv
ri(pi)| ≥ aπr

2
i ;

(2) |Bv
2ri

(pi)| ≤ 4aπr2
i ;

(3) |Bv
6ri

(pi)| ≤ 36aπr2
i ;

(4) the balls Bv
2ri

(pi) do not overlap;
(5) the balls Bv

6ri
(pi) cover DSv.

By the first two of these conditions, Lemma 4.2 applies to p = pi and r = ri,
hence

|Bm
2ri(pi)| ≥

a

2
πr2

i ≥
1
72
|Bv

6ri(pi)|.

Since the balls Bv
2ri

(pi) do not intersect and the balls Bv
6ri

(pi) cover DSv,
we conclude that

(3) |Sm| ≥ 1
72
|Sv| = 1

72
|SV |.
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Now we want to get an estimate on |SM | (rather than on |Sm|). Recall
that Sm \SM = SH \Sh, and Sh is a subset of SH which projects bijectively
onto the h-plane. We are going to show that the area |SH \ Sh| is small.
To do this, we project everything orthogonally to the h-plane and estimate
the oriented area (with multiplicity) Ah(SH \ Sh) of the projection of the
set SH \ Sh. Since S coincides with the h-plane outside a compact region,
the projection Ph|S is a map of degree 1, i.e., the h-plane is covered by the
projection of S with total multiplicity 1. Since Sh projects bijectively (and
preserving the orientation), it follows that the set

S \ Sh = Sv ∪ Sm = SV ∪ SM ∪ (SH \ Sh)

projects to the h-plane with total multiplicity 0, hence

0 = Ah(S \ Sh) = Ah(SV ) +Ah(SM ) +Ah(SH \ Sh).

Thus
|Ah(SH \ Sh)| ≤ |Ah(SM )|+ |Ah(SV )| ≤ |SM |+ ε|SV |.

Then

|Sm| − |SM | ≤ |SH \ Sh| ≤ (1 + ε)2|Ah(SH \ Sh)| ≤
≤ (1 + ε)2(|SM |+ ε|SV |) ≤ 2|SM |+ 2ε|SV |.

Thus 3|SM | ≥ |Sm| − 2ε|SV |. Substituting this into (3) and estimating
1
72 − 2ε > 1

100 , we finally get

|SM | ≥ 1
300
|SV |.

This completes the proof of Proposition 4.1 and Theorem 4. �

5. Applications

We will give two immediate corollaries of the results from the previous
sections.

First of all, we show that there exists a non-convex area functional, which
is, nonetheless, elliptic over Z.

Theorem 5. There exists a surface area functional generated by a function
A : GC(2, 4) → R such that AreaA is elliptic over Z, but A cannot be
extended to a convex function on the whole

∧2(R4).

This means that one can find a collection of 2-vectors ”violating the tri-
angle inequality” for AreaA, but still flats are area-minimizers.

Proof. We use notations from the proof of Theorem 4. We introduce A0 :
GC(2, 4)→ R by setting A0(w1) = A0(w2) = A0(w3) = 0, and A0(w) = |w|
whenever w is not positively proportional to any of w1, w2, w3. Let A be the
elliptic hull over Z of A0. By Proposition 4.1, A(e1 ∧ e2) > 0 (we use here
that every 2-dimensional integer chain can be parameterized by a surface).
Hence A is not convex (and it is elliptic by construction). �
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Of course, the area functional constructed in the Theorem is very de-
generate (in particular, it assumes zero values on non-zero vectors). One
can easily fix this by adding to it the standard surface area multiplied by
a small constant. Note also that the elliptic hull of an area functional is
automatically continuous.

As the other application, we re-prove a result from [BI], where we con-
sidered surface area functionals in normed spaces. In a normed space, there
are a number of surface area functionals naturally associated to the norm.
Perhaps the most important of them is the one that is now usually referred
to as the Holmes-Thompson, or symplectic surface area. It was probably
considered first by Busemann (see [Th], [Al], [BI], [SW] for details). For the
Holmes-Thompson surface area generated by a certain norm in R4, in [BI]
we gave an explicit (and rather cumbersome) example of a surface whose
boundary is N times the unit circle in the xy-plane (where N is a large
number), and whose Holmes-Thompson area is strictly less than N times
the Holmes-Thompson area of the unit disc (in the xy-plane). It had been
noticed already by Busemann in the ’50s ([BES]) that the Holmes-Thompson
surface area may fail to be convex, and now the existence of such a surface
follows immediately from Theorem 3. Let us remark, however, that the con-
struction from [BI] produced a surface which is topologically an immersed
disc, whereas this implicit argument gives no control on the topology of the
surface: it possibly may have handles. It is relevant to remark here that for
chains over Z bounding a 2-disc, it is quite an intriguing problem whether
this difference may play any role: in [BI], we show that flat 2-discs are
area minimizers (for the Holmes-Thompson area) among all surfaces (with
the same boundary) parameterized by a disc. It would be very amazing if
there existed a surface with handles whose area is smaller than that of the
flat disc, however this is an open problem. It is also not known whether
flat discs are area minimizers in higher dimensions. It seems that both di-
rections of generalizing the 2-dimensional result from [BI] encounter very
similar difficulties.
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