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Abstract. We consider Riemannian metrics in the two-dimensional disk D (with

boundary). We prove that, if a metric g0 is such that every two interior points of
D are connected by a unique geodesic of g0, or if g0 can be extended to a complete
metric without conjugate points in R

2, then the Riemannian area of g0 is not greater
than the area of any other metric g in which the distances between boundary points

of D are not less than those in g0. Previously this fact was known only in the case
when g0 has constant curvature. We give a generalization of the main result to the
Finslerian case and an interpretation of it in terms of simply connected Lipschitz
surfaces with a fixed boundary in a Banach space.

Introduction

Let g0 be a Riemannian metric in the two-dimensional disc D (with boundary).
We say that g0 is area-minimizing if for any Riemannian metric g in D such that

distg(x, y) ≥ distg0
(x, y)

for all x, y ∈ ∂D, one has

Area(D, g) ≥ Area(D, g0).

Here distg denotes the Riemannian distance in (D, g) and Area is the Riemannian
area.

The main purpose of this paper is to prove the following

0.1. Main Theorem. Let g0 be a Riemannian metric in the two-dimensional disc
such that every two points in the disc’s interior are connected by a unique geodesic
of g0. Then g0 is area-minimizing.

Previously known results. The statement of Theorem 0.1 is known in the cases
when g0 is a metric of constant curvature K, cf. [G, §5.5]. If K = 0, it follows
from Besicovitch inequality ([Be], see also [BuZ]). If K = −1, it follows from the
volume entropy inequality for hyperbolic manifolds ([K], for higher-dimensional
case see [BCG]). If K = 1, one may assume that (D, g0) is isometric to the unit
hemisphere. In this case, the statement is equivalent to the theorem of Pu [P] about
the isosystolic constant of RP2.
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Metrics without conjugate points in R2. The condition on g0 is equivalent
to that the geodesics in the interior of the disc have no conjugate points and the
boundary of the disc contains no concave arcs. In particular, if g0 is a complete
Riemannian metric without conjugate points in R2, its restriction to any g0-convex
domain D ⊂ R2 satisfies this condition. It is easy to see that any bounded set in
such a space (R2, g0) is contained in a bounded convex domain. Since sub-domains
of an area-minimizing domain obviously inherit the area-minimizing property, we
obtain the following

0.2. Corollary. Let g0 be a complete Riemannian metric without conjugate points
in R2 and let D be a compact region (not necessarily homeomorphic to the disc) with
a piecewise smooth boundary. Then the restriction of g0 on D is area-minimizing.

Finslerian case. Theorem 0.1 remains valid for Finsler metrics if the Finsler area
is defined as the two-dimensional Holmes–Thompson volume (i. e. the symplectic
volume of the unit co-tangent bundle). To avoid the discussion of Finsler volumes,
We do not formulate the Finsler version of the theorem in this introduction. The
necessary definitions and modifications for the proof are given in §3.

Relation to filling volumes. The area-minimizing property is related to the
notion of filling volume introduced by Gromov [G]. The filling volume of a manifold
equipped with a distance function is the greatest lower bound for the volume of a
(Finsler) space spanning the given manifold as a boundary and inducing on it a
distance function which is not less than the given one. One can vary this definition
by choosing a special class of spaces within which the volume is to be minimized.
For example, one may restrict this class to a fixed topological type. In this context,
Theorem 0.1 can be formulated as follows:

(D, g0) is a “minimal filling” of its own boundary in the class of spaces homeomor-
phic to the 2-disc.

It remains unclear whether the assumption “homeomorphic to the 2-disc” can
be dropped, that is, whether it is possible to replace (D, g) by a (D′, g) where D′

is a 2-manifold with ∂D′ = ∂D. This is not known even in the case of the theorem
of Pu, i. e. when (D, g0) is the unit hemisphere.

Remarks on the equality case. It is natural to conjecture that the equality
Area(D, g) = Area(D, g0) implies that (D, g) and (D, g0) are isometric. This can
be proved in a number of partial cases, for example, if g0 is nonpositively curved.
Indeed, one can see from the proof of Theorem 0.1 that the equality of areas implies
that distg |∂D = distg0

|∂D. Then the question reduces to the boundary rigidity
problem, see [C1] and references therein. The boundary rigidity for nonpositively
curved metrics is proved in [C2].

In the Finsler case the equality Area(D, g) = Area(D, g0) does not imply that
the spaces are isometric. For every metric g0 satisfying the conditions of Theorem
0.1, there is an infinite-parameter family of non-isometric Finsler metrics g with
distg |∂D = distg0

|∂D and Area(D, g) = Area(D, g0). In fact, any C2-small pertur-
bation of the function distg0

|D×∂D fixed at ∂D × ∂D is a distance function of a
Finsler metric having the same area as g0.

Structure of the paper. The proof of Theorem 0.1 is contained in sections 1
and 2. In sections 3 and 4 we briefly discuss the Finsler case and related issues
about minimal surfaces in Banach spaces.
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The proof (more precisely, the arguments in sections 2 and 3) is based on the same
ideas as a similar result about asymptotic areas of periodic Finsler metrics obtained
jointly with D. Burago (see the forthcoming paper [BuI]). Section 1 contains a
construction that allows us to apply the technique from [BuI] to the discussed
problem.

1. Special distance-like functions

Note that the assumption on g0 implies that every geodesic in (D, g0) is a shortest
path between any two its points. Furthermore, any boundary point can be jointed
to any interior point by a unique g0-geodesic. We denote by |xy|0 and |xy| the
Riemannian distances between points x and y in the spaces (D, g0) and (D, g)
respectively.

For a p ∈ ∂D define a function fp : D → R by

(1) fp(x) = max
q∈∂D

(|pq|0 − |xq|).

The maximum here is achieved due to compactness of ∂D.

1.1. Lemma. Let p ∈ ∂D. Then

1. fp is a nonexpanding function with respect to g, i. e. |fp(x) − fp(y)| ≤ |xy|
for all x, y ∈ D.

2. If x ∈ ∂D, then fp(x) = |px|0.
3. If g = g0, then fp(x) = |xp| for all x ∈ D, p ∈ ∂D.

Proof. 1. fp is a supremum of nonexpanding functions x 7→ −|xq| + |pq|0, hence it
is nonexpanding.

2. Since x ∈ ∂D, we have |xq| ≥ |xq|0 for all q ∈ ∂D. Then |pq|0 − |xq| ≤
|pq|0 − |xq|0 ≤ |px|0 by the triangle inequality. One the other hand, letting q = x
yields |pq|0 − |xq| = |pq|0.

3. Suppose g = g0 and let q∂D be a point where the geodesic from p through x
hits the boundary. Since this geodesic is minimal, we have |pq| = |px|+ |xq|. Hence
fp(x) ≥ |pq| − |qx| = |px|. On the other hand, fp(x) ≤ fp(p) + |px| = |px| by the
first two statements of the lemma. �

Remark. Let X = ℓ∞(∂D), the Banach space of bounded functions ϕ : ∂D → R

with the norm ‖ϕ‖∞ = sup |ϕ|. Consider the map F : D → X defined by F(x)(p) =
fp(x). The first statement of Lemma 1.1 means that ‖F(x) − F(y)‖∞ ≤ |xy|, i. e.
F is a nonexpanding map. The second statement implies that the restriction of F
to ∂D does not depend on g and coincide with the canonical Gromov’s embedding
of the metric space (∂D,distg0

) into X . There are other ways to obtain a map with
these properties (for example, one could define fp(x) = minq∈∂D(|pq|0 + |qx|)).
However the maps defined by (1) satisfy an additional requirement on their deriva-
tives (Lemma 1.2) which is essential for our proof.

We denote by grad f the gradient of a function f : D → R with respect to g.
Since every function fp is Lipschitz, grad fp is defined almost everywhere and is a
measurable vector field.

We use the notation | · | for the fiber-wise Euclidean norms on TD and T ∗D
determined by g. The bundles of unit vectors and co-vectors are denoted by UTD
and UT ∗D, respectively. Fix an orientation of D. It induces cyclic orderings on
∂D and every fiber of UTD. By means of the natural isomorphism TD ∼= T ∗D a
cyclic order is then defined on the fibers of UT ∗D.
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1.2. Lemma. 1. If p ∈ ∂D, x is an interior point of D and fp is differentiable at
x ∈ D, then |df(x)| = 1.

2. Let x be an interior point of D and {pi}
n
i=1 be a collection of points in ∂D.

Suppose that the functions fpi
are differentiable at x and their derivatives dfpi

(x)
are mutually different. Then the cyclic order of these derivatives in UT ∗

x D is the
same as the cyclic order of the points pi in ∂D.

Proof. We will prove the statements for gradients instead of derivatives and will
use Lemma 1.1 without referring to it explicitly. Fix a point x in the interior of D.
We call a q ∈ ∂D a point of maximum for a p ∈ ∂D if maximum in (1) is achieved
at q, i. e. fp(x) = |pq|0 − |xq|. Let p ∈ ∂D, fp be differentiable at x, q be a point of
maximum for p, and γ : [0, |xq|] → D be a unit-speed g-shortest curve connecting
x to q, i. e. γ(0) = x, γ(|xq|) = q and |γ(t)γ(t′)| = |t − t′| for all t, t′ ∈ [0, |xq|]. An
initial arc of γ is contained in the interior of D and hence is a geodesic. In particular,
γ is differentiable at 0 and |γ′(0)| = 1. Since fp is a nonexpanding function and
fp(q) = |pq|0 = fp(x) + |xq|, we have fp(γ(t)) = fp(x) + t for all t ∈ [0, |xq|]. In
other words, fp grows at unit rate along γ. Since this is a maximal possible growth
rate for fp, it follows that grad fp(x) = γ′(0). In particular, | grad fp(x)| = 1.

Before proving the second statement of the lemma, observe the following: under
the same assumptions as in the first one, a nearest to x point of maximum for p
is unique and is connected to x by a unique minimal g-geodesic. Indeed, if q is a
nearest point of maximum and γ is as above, then γ(t) /∈ ∂D for all t ∈ [0, |xq|)
because otherwise the equality fp(γ(t)) = fp(x) + t = fp(x) + |xγ(t)| implies that
γ(t) is another point of maximum. Thus γ (except the endpoint) is contained in
the interior of D, hence it coincides with the unique g-geodesic emanating from x
with the initial velocity grad fp(x). The uniqueness of q now follows from the fact
that q is the point where this geodesic hits ∂D.

It is sufficient to prove the second statement of the lemma for n = 3 only, because
the cyclic ordering of a set is determined by orderings of its three-element subsets.
Let {pi}

3
i=1 be as in the second statement of the lemma. For each i ∈ {1, 2, 3} let

qi be the nearest to x point of maximum for pi, and let γi be the (unique) minimal
geodesic connecting x to qi. Observe that the points qi are mutually different
because the vectors γ′

i(0) = grad fpi
(x) are. Since D is a two-dimensional disc, the

Jordan curve theorem implies that the points qi obey the same cyclic order in ∂D
as the vectors γ′

i(0) do in UTxD. Therefore it is sufficient to prove that the cyclic
orderings of the triples (p1, p2, p3) and (q1, q2, q3) in ∂D coincide. As the first step,
we prove the following

1.3. Lemma. qi 6= pi for all i ∈ {1, 2, 3}. Furthermore, if i, j ∈ {1, 2, 3} and i 6= j,
the pair {pi, qj} does not separate {pj , qi} in ∂D provided that the four mentioned
points are mutually different.

(We say that a pair {a, b} of points in ∂D separates a pair {c, d} if c and d belong
to different components of the complement ∂D \ {a, b}).

Proof. Suppose the contrary. For definiteness, we may assume that p1 = q1 or
{p1, q2} separate {p2, q1} in ∂D. In both cases, any curve in D connecting p1 to
q2 intersect (possibly at an endpoint) any curve connecting p2 to q1. Let z be a
common point of two g0-shortest paths connecting p1 to q2 and p2 to q1. Then

|p1q2|0 + |p2q1|0 = |p1z|0 + |zq2|0 + |p2z|0 + |zq1|0 ≥ |p1q1|0 + |p2q2|0
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by the triangle inequality. Hence

|p1q2|0 − |xq2|+ |p2q1|0 − |xq1| ≥ |p1q1|0 − |xq1|+ |p2q2|0 − |xq2| = fp1
(x) + fp2

(x).

On the other hand, |p1q2|0 − |xq2| ≤ fp1
(x) and |p2q1|0 − |xq1| ≤ fp2

(x) by the
definition of fpi

. Therefore these inequalities turn to equalities, in other words,
both q1 and q2 are points of maximum for p1 as well as for p2. This contradicts the
choice of qi and the uniqueness of the nearest point of maximum. �

Lemma 1.3 alone implies the desired coincidence of cyclic orders. We will now
prove this implication (which is just a combinatorial fact about six points in a circle
and could be verified by exhaustion of possible cyclic orders). We may assume that
the six points {pi} and {qi} are mutually different. This can be achieved by a small
perturbation (it is easy to see that a small perturbation does not invalidate the
property formulated in Lemma 1.3). Consider two cases.

Case 1. For all pairs (i, j) where i, j ∈ {1, 2, 3} and i 6= j, the points pi and qi

separate {pj , qj} in ∂D. In this case there is a homeomorphism ϕ : ∂D → S1 which
maps each pair (pi, qi) to a pair of opposite points in the circle. Since the central
symmetry of S1 preserves the orientation, the triples {ϕ(pi)}

3
i=1 and {ϕ(qi)}

3
i=1 are

ordered similarly. So are the triples (p1, p2, p3) and (q1, q2, q3).

Case 2. For definiteness, {p1, q1} do not separate {p2, q2}. By Lemma 1.3, {p1, q2}
cannot separate {p2, q1}. Hence {p1, p2} separates {q1, q2}. The points p1, q1,
p2 and q2 divide ∂D into four arcs: [p1, q1], [q1, p2], [p2, q2] and [q2, p1], denoted
according to their endpoints. We now consider two subcases: p3 ∈ [p1, q1] and p3 ∈
[q1, p2]. Other possible locations of p3 can be reduced to these two by interchanging
the indices 1 and 2. We will show that q3 ∈ [q1, p2] ∪ [p2, q2] in both subcases.

Subcase 2a. p3 ∈ [p1, q1]. Then p3 divides [p1, q1] into two arcs: [p1, p3] and
[p3, q1]. Applying Lemma 1.3 to i = 3 and j = 1, we obtain that q3 /∈ [p3, q1].
Applying Lemma 1.3 to i = 3 and j = 2, we obtain that q3 /∈ [q2, p1]∪ [p1, p3]. This
determines the position of q3 with respect to q1 and q2, namely q3 ∈ [q1, p2]∪[p2, q2].

Subcase 2b. p3 ∈ [q1, p2]. Then p3 divides [q1, p2] into two arcs: [q1, p3] and
[p3, p2]. Applying Lemma 1.3 to i = 3 and j = 2, we obtain that q2 ∈ [p3, p2] ∪
[p2, q2] ⊂ [q1, p2] ∪ [p2, q2].

Since q3 ∈ [q1, p2]∪[p2, q2], it follows that (q1, q3, q2) ∼ (q1, p2, q2) ∼ (p1, q1, p2) ∼
(p1, p3, p2) in both subcases, where ∼ denotes the coincidence of cyclic orders. This
completes the proof of Lemma 1.2. �

2. Proof of Theorem 0.1

Let P = {p1, . . . , pn} be a cyclically ordered collection of points in ∂D. Fix a
homeomorphism ϕ : ∂D → S1 and let δ = δ(P ) denote the maximum length of the
arcs into which the points ϕ(pi) divide the circle. The reader should think of P
as a member of a family (or a sequence) of partitions with δ(P ) → 0. All indices
below are taken modulo n = n(P ).

Define a 2-form ωP in D by

ωP =

n∑
i=1

dfpi
∧ dfpi+1
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where fpi
are functions defined in the previous section. Since fpi

are Lipschitz
functions, ωP is an almost everywhere defined measurable differential form.

Let dA denote the oriented area form of the metric g. Every measurable 2-form
in D is represented in a form ω = A(ω) dA where A(ω) is a measurable real-valued
function on D.

2.1. Lemma. A(ωP ) ≤ 2π almost everywhere. If g = g0, then A(ωP ) → 2π a. e.
as δ(P ) → 0.

Proof. 1. Fix a point x in the interior of D such that the functions fpi
are differen-

tiable at x. We will show that A(ωP )(x) ≤ 2π. Denote dfpi
(x) by vi. Observe that

the quantity 1
2A(dfpi

∧ dfpi+1
) equals the oriented area of the triangle △0vivi+1 in

T ∗

x D (the Euclidean structure in T ∗

x D is determined by g). To estimate the sum of
these quantities we will study how these triangles can overlap.

We may assume that vi 6= vi+1 for all i. Indeed, if vi = vi+1, the point pi can be
removed from the collection P without affecting the value of ωP at the discussed
point x. If the co-vectors vi are mutually different, Lemma 1.2 implies they are
cyclically ordered in UT ∗

x D. Therefore the sum of oriented areas of the triangles
△0vivi+1 equals the area of the convex polygon v1v2 . . . vn in T ∗

x D. Since this
polygon is inscribed in the unit circle UT ∗

x D, is area is less than π. Hence

A(ωP )(x) = 2
∑

i

(oriented area of △0vivi+1) < 2π.

If some of the vectors vi coincide, we may assume that v1 = vk for some k,
2 < k < n. Consider i ∈ {2, . . . , k − 1} and j ∈ {k + 1, . . . , n} such that vi 6= v1

and vj 6= v1. Since the cyclic orders of the triples (pi, pj , p1) and (pi, pj , pk) are
different, Lemma 1.2 implies that vi = vj . It follows that all vectors vi that are not
equal to v1, coincide, i. e. there are only two different vectors among {vi}

n
i=1. In

this case it is easy to see that A(ωP )(x) = 0.
2. Let g = g0. Then fp(x) = |px| by Lemma 1.1, hence fp is differentiable

everywhere in the interior of D and grad fp(x) is the vector opposite to the initial
velocity of the unique geodesic from x to p. Therefore the rule p 7→ dfp(x) defines
a homeomorphism from ∂D to UT ∗

x D. The vertices vi of the polygon discussed
above are images of the points pi under this homeomorphism. Hence this poly-
gon approaches the circle UT ∗

x D and its area approaches π as δ(P ) → 0. Thus
A(ωP )(x) → 2π as δ(P ) → 0 for every interior point x. �

Proof of Theorem 0.1. The 2-form ωP is a pull-back of the form
∑

dxi ∧ dxi+1 in
Rn under the Lipschitz map FP : D → Rn defined by

FP (x) = (fp1
(x), . . . , fpn

(x)).

The second statement of Lemma 1.1 implies that the restriction FP |∂D is determined
by P and g0. Since the form

∑
dxi ∧ dxi+1 is closed, it follows that the integral∫

D
ωP depend only on P and g0 but not on g. The first part of Lemma 2.1 implies

that

I(P ) :=

∫
D

ωP ≤ 2π Area(D, g).

On the other hand, the second part of Lemma 2.1 implies that

lim
δ(P )→0

I(P ) = 2π Area(D, g0)
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and the theorem follows. �

Remark. The integral
∫

D
ωP can be explicitly rewritten in terms of distg0

|∂D by
means of the Stokes’ formula. The resulting expression is a finite-sum approxima-
tion of the Santalo’s integral formula for the area of a metric with no conjugate
points in terms of boundary distances, cf. [S], [G].

3. The Finsler case

A Finsler manifold is a smooth manifold M equipped with a function Φ: TM →
R whose restriction on every fiber TxM is a vector-space norm. Riemannian man-
ifolds are a special case where these restrictions are Euclidean norms. Similarly
to the Riemannian case, one defines the length of smooth curves and the distance
between points. We will mainly consider smooth (outside the zero section) and
strictly convex Finsler structures. The latter means that the function Φ2 has pos-
itive definite second derivatives on the fiber TxM r {0} for every x ∈ M . These
requirements ensure the existence of smooth geodesics and an exponential map.

The co-tangent bundle of a Finsler manifold (Mn,Φ) is naturally equipped with
a fiber-wise norm dual to Φ. We use the notation | · | for both Φ and the dual norm.

The Holmes–Thompson volume of (M,Φ) equals, by definition, the canonical
symplectic volume of the set B∗M := {w ∈ T ∗M : |w| ≤ 1}, divided by the volume
of the Euclidean unit ball in Rn. For an oriented manifold, this can be interpreted
as follows. Every fiber T ∗

x M as a vector space carries a natural n-dimensional
measure valued in

∧n
T ∗

x M . Thus the measures of the balls B∗

xM = B∗M ∩ T ∗

x M ,
x ∈ M , define a section of

∧n
T ∗M , that is, a differential n-form on M . The

integration of this form over M yields the canonical symplectic volume of the set
B∗M .

Unlike in the Riemannian case, there are many different notions of Finsler volume
suitable for different purposes. For example, in the Finsler case the Hausdorff
measure is generally not equal to the Holmes–Thompson volume.

Theorem 0.1 remains valid if g0 and g are smooth and strictly convex Finsler
structures and Area means the two-dimensional Homes–Thompson volume. Note
that the regularity assumptions on g can be relaxed by means of an approximation
argument.

The proof of the theorem works for the Finsler case with little modifications.
The only thing to change in the proof is to get rid of Riemannian gradients. Our
use of gradients was twofold. First, in Lemma 1.2 we use the fact that the gradient
is a vector pointing to the direction of the fastest growth of a function, and that
| grad f | = |df |. Second, we use that the gradients are obtained from the derivatives
by means of a fiber-wise orientation-preserving homeomorphism from T ∗D to TD
(in the Riemannian case, this homeomorphism is a linear map). These properties
hold in the Finsler case as well if one defines the “gradient” of a function as the
Legendre transform of its derivative with respect to Φ2 where Φ is the Finsler
structure. With this definition of “Finsler gradient”, the arguments in the proof of
Theorem 0.1 lead to estimates of the Holmes–Thompson area (compare the proof
of Lemma 2.1 with the above interpretation of the Finsler volume as the integral
of a differential form defined by the sets B∗

xM).

Relations to minimal surfaces

Finally we point out an interpretation of Theorem 0.1 and its proof in terms of
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minimal surfaces in Banach spaces. One can define the area of a two-dimensional
Lipschitz surface in a Banach space as the two-dimensional Holmes–Thompson
volume of its intrinsic metric. This intrinsic metric corresponds to a measurable
Finsler structure and the definition of volume trivially extends to this case. We
will use the loose notation Area(F (D)) for the area of Lipschitz map F from D to
a Banach space,

Let X = ℓ∞(∂D). Consider the map

F0 : D → X , F0(x)(p) = |xp|0; x ∈ D, p ∈ ∂D.

The conditions on g0 imply that F0 is a distance-preserving map from (D, g0) to X .
Regardless to the choice of a Finsler area functional, the statement of Theorem
0.1 is equivalent to that the resulting surface F0(D) ⊂ X is area-minimizing in the
class of Lipschitz surfaces parameterized by the two-dimensional disc and spanning
the same boundary.

One implication is almost obvious. Let F : D → X be a Lipschitz map with
F |∂D = F0|∂D and let distF denote the intrinsic distance induced by F . Then for
all p, q ∈ ∂D

distF (p, q) ≥ ‖F (p) − F (q)‖ = distg0
(p, q).

By Theorem 0.1 extended to the case where g is a measurable Finsler structure, it
follows that

Area(F (D)) ≥ Area(D, g) = Area(F0(D)).

The converse implication is seen from the proof of the theorem. As a matter
of fact, we proved just the inequality between areas of surfaces: Area(F0(D)) ≤
Area(F (D)), where F : D → X is a map defined by means of the functions fp,
see the remark after the proof of Lemma 1.1. The theorem itself is an immediate
consequence of this inequality, because F0 is distance-preserving w. r. t. g0 and F is
distance-nonincreasing w. r. t. g. Note that this argument does not depend on the
choice of a Finsler area functional, provided that the area depends monotonously
on the metric.

The proof of the inequality Area(F0(D)) ≤ Area(F (D)) for the case of Holmes–
Thompson area is contained in Lemma 2.1 and uses a method similar to the cal-
ibrating form technique. Namely we constructed a closed 2-form (

∑
dxi ∧ dxi+1)

which does not exceed the area form at F (D) and equals (more precisely, almost
equals) the area form at the surface F0(D) (more precisely, its finite-dimensional
approximation). However the comparison of this 2-form ωP and the area form at
F (D) essentially relies on the fact (Lemma 1.2) that the tangent planes of finite-
dimensional approximations of the surface belong to a special set of planes, namely
those planes in which the restrictions of coordinate functions are cyclically ordered.
(This fixes a combinatorial type of the intersection of the plane with the coordi-
nate cube.) It can be shown that a true calibrating form for F0(D) does not exist.
Moreover, the surface F0(D) is not area-minimizing in the class of rational chains,
cf. [BuI] for similar examples.
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