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1. Introduction

The main “unconditional” result of this paper, Theorem 3, states that ev-
ery two-dimensional affine disc in a normed space (that is, a disc contained
in a two-dimensional affine subspace) is an area minimizing surface among
all immersed discs with the same boundary, with respect to the symplectic
(Holmes–Thompson) surface area. To emphasize that this is not at all ob-
vious, it may be worth mentioning that a similar statement with rational
chains in place of immersed discs is incorrect (Theorem 2), and that it is not
known for surfaces that may not be topological discs. The result still may
not sound too exciting to the reader who never looked at the problem before,
even though the problem goes back to Busemann’s works in the 50th (see
[BES], [Th] and references there), and the proof heavily relies on asymptotic
geometry of tori. We belive that it is more important that we embed this
problem into a whole area of (mostly open) problems, as well as give some
partial results and suggest certain directions of how attack them.

We begin with a trivial statement:
Minimality of Flats in Euclidean Spaces. A ball in an n-dimensional

affine subspace of a Euclidean space has the smallest n-dimensional surface
area among all n-dimensional immersed discs with the same boundary.

The proof boils down to considering the orthogonal projection onto the
affine subspace, which is an area non-increasing map. Of course, the state-
ment remains true (and obvious) if “immersed discs” are substituted by
“immersed surfaces” or “Lipschits singular chains with real coefficients”.

The next statement is an easy corollary of Besicovitch’s inequality:
Riemannian Filling Volume in Euclidean Spaces. The Euclidean

volume of a bounded region in a Euclidean space is less than or equal to the
volume of this region with respect to any Riemannian metric whose distances
between boundary points majorize those of the Euclidean distance function.

Now let us formulate a volume growth theorem which is the main result
of [BI1] and served as a starting point for this research.
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Volume Growth of Riemannian Periodic Metrics. Let (M, g) be a
universal cover of a Riemannian n-torus. One easily sees that the volume of
a large metric ball of radius r → ∞ in (M, g) is C(M, g) · rn + o(rn), for a
positive constant C(M, g). The volume growth theorem asserts that

C(M, g) ≥ C(Rn, standard metric).

These three facts are closely related. First, there are obvious implications:
volume growth theorem ⇒ filling volume inequality ⇒ minimality of flats.

On the other hand, the argument proving the volume growth theorem is
based on embedding (M, g) into an appropriate Banach space V N . Then, by
a (rather tricky) choice of an auxiliary Euclidean structure in this Banach
space, the theorem is reduced to just the Minimality of Flats in Euclidean
Spaces, which is trivial.

One notices that both the target space for the embedding and the embed-
ded surface arising in the proof of the volume growth theorem carry natural
Banach (resp., Finsler) structures. The main difficulty in the proof is con-
verting these spaces into appropriate Euclidean (Riemannian) ones. On the
other hand, one naturally formulates analogs of the assertions for Banach
(Finsler) spaces. It turns out that it is even easier to show the equivalence of
these assertions to each other than for their Euclidean (Riemannian) coun-
terparts, but neither of them is obvious any more. We formulate them as
the following three problems:

Minimality of Flats in Banach Spaces (Busemann, Thompson; see
[Th] and references there): Does a ball in an n-dimensional affine subspace
of a Banach space minimize volume among all n-dimensional surfaces with
the same boundary?

Finsler Filling Volume Problem: For a bounded region in a finite-
dimensional Banach space, does its flat Finsler metric have the least volume
among all Finsler metric whose distances between boundary points majorize
those of the Banach distance function? (Here it is essential that we mini-
mize over Finsler metrics; whereas it seems that assuming that the ambient
Banach space is Euclidean does not make much difference.)

Finsler Volume Growth Problem: Does the Volume Growth Theorem
hold for Finsler tori? In other words, does the volume of balls in the universal
cover of a Finsler torus asymptotically grows at least as fast as that in a
Banach space?

In this paper we discuss the relationships between these and several re-
lated problems and give a few partial results. Certainly, the formulations
above are imprecise (especially the third one, where we have to specify the
Banach space to compare with). In order to make the formulations rigorous
we need some preliminaries.

2. Preliminaries

2.1. Finsler metrics. By a Finsler manifold we mean a smooth manifold
Mn together with a continuous function Φ: TM → R such that for every
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x ∈ M , the restriction of Φ to the tangent space TxM is a vector-space
norm, in other words, (TxM,Φ|TxM ) is an n-dimensional Banach space.

Notice that, unlike some authors, we consider only Finsler structures given
by (symmetric) norms. Riemannian manifolds are Finsler manifolds whose
Finsler structure happened to be Euclidean on each fiber of the tangent
bundle.

One may impose additional restrictions on Φ such as being smooth (out-
side the zero section) and stricly convex (i. e. such that for every x ∈M the
second derivatives of Φ2|TxM\{0} are positive definite). These additional as-
sumptions do not make any difference in the context of this paper. However,
we use them in some of our proofs (more general statements then follow by
approximation).

¿From metric viewpooint, Φ enables us to measure length of smooth
curves, namely:

Length(γ) =
∫

Φ
(
dγ

dt

)
dt.

This equips M with a distance function: the distance between two points is
the infimum of lengths of (piecewise smooth) curves connecting the points.
This distance function is denoted by dΦ, and we omit the subscript Φ if this
does not cause ambiguity.

¿From dynamical viewpoint, the function Φ2 (where Φ is smooth and
strictly convex) may be regarded as a Lagrangian, and hence it gives rise to
a Lagrangian flow on TM . In this context, Finsler manifolds are nothing but
Lagrangian systems whose Lagrangians are homogeneous of order 2. Trajec-
tories of these Lagrangian systems are just geodesics on the corresponding
Finsler manifolds. In this set-up, Riemannian geodesic flows are Lagrangian
flows with quadratic Lagrangians.

Finite-dimensional Banach spaces are trivial examples of Finsler mani-
folds. Namely, a norm ‖ · ‖ on a vector space V defines a Finsler structure
Φ on V by Φ(x, v) = ‖v‖ for x ∈ V , v ∈ TxV ∼= V . We say that a Finsler
metrics flat if it is (locally) isometric to a Banach space. An (immersed)
submanifold of a Banach space naturally carries a Finsler structure defined
by restricting the norm to the submanifold’s tangent space. In fact, ev-
ery suficiently smooth Finsler manifold is isometric to a submanifold of a
finite-dimensional Banach space ([BI2]).

2.2. Finsler volumes. For a Riemannian manifold, there are two impor-
tant aspects of Riemannian volume: it is equal to n-dimensional Hausdorff
measure, and it arises as the projection of Liouville measure from the unit
tangent bundle. After converting a Riemannian geodesic flow into a Hamil-
tonian flow on the co-tangent bundle, this volume can be viewed as a pro-
jection of the symplectic volume.

For Finsler manifolds, these features are inherited by two different vol-
umes. The so-called Busemann volume is nothing but n-dimensional Haus-
dorff measure on a Finsler manifold. The other volume, which is sometimes
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called the Holmes-Thompson volume, or symplectic volume, is just defined
as the projection of the canonical symplectic volume from the bundle of unit
co-tangent balls.

More precisely, for a Finsler manifold (Mn,Φ) one defines a fiber-wise
norm Φ∗ : T ∗M → R so that for every x ∈M the restriction Φ∗|T ∗xM is the
norm dual to Φ|TxM . (Alternatively, one can say that 1

2(Φ∗)2 is the Legendre
transform of 1

2Φ2, thus (Φ∗)2 is the Hamiltonian associated with the Finsler
structure.) Then the Holmes–Thompson volume of a region A ⊂ M equals
the symplectic volume of the set

⋃
x∈A{w ∈ T ∗xM : Φ∗(w) ≤ 1}, divided (for

normalization) by the Euclidean volume of a unit ball in Rn.
In this paper, we will be mainly concerned with the Holmes–Thompson

volume. It seems to be more natural in any dynamical set-up, and it is more
convenient to operate with.

Notice that there are also notions of volume for Finsler metrics (such
as mass and mass∗ from [Gr]) that essentially substitute a Finsler metric
by a certain Riemannian one. Such volumes may be especially designed
to work with Jacobians, and for them our problems may easily reduce to
their Riemannian counterparts. While such volumes may be extremely use-
ful when working with a Riemannian problem that requires some Finsler
considerations, we do not think that they are natural in Finsler geometry.
For instance, they are often not sensitive: they can stay unchanged when a
metric is increased on an open subset of the tangent bundle.

Finsler volumes can be expressed by integral formulas in coordinates.
Namely, if Vol is a Finsler volume functional which depends continuously
on the Finsler structure, then for a region A ⊂ Rn with a Finsler structure
Φ one has

(1) Vol(A,Φ) =
∫
A

Vol(In,Φx) dx

where In = [0, 1]n is the unit cube in Rn, and Φx is a Banach norm in Rn

(regarded as a flat Finsler structure) obtained from Φ|TxRn via the identifi-
cation TxRn = Rn.

For Busemann and symplectic volumes, this can be written as follows. For
a point x in a Finsler manifold (M,Φ), define Bx = {v ∈ TxM : Φ(v) ≤ 1}
and B∗x = {w ∈ T ∗xM : Φ∗(w) ≤ 1}. If M = Rn, one identifies TxM , T ∗xM
and Rn, and then the formula (1) for Busemann volume takes the form

(2) Vol(A,Φ) =
1
εn

∫
A
mn(Bx)−1 dx,

and for symplectic volume one gets

(3) Vol(A,Φ) =
1
εn

∫
A
mn(B∗x) dx,

where mn is the standard Eucludean volume in Rn and εn is the volume of
the n-dimensional Eucildean unit ball.
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Let Vol is a Finsler volume functional, (M,Φ) a Finsler manifold, N a
smooth manifold and f : N → M an immersion. We denote by Vol(f) or
Vol(f,Φ) the volume of N with respect to the induced Finsler structure
f∗Φ = Φ ◦ df .

This is generalized to arbitrary smooth and even Lipschitz maps (also
known as “singular surfaces” in M) as follows. Let f : N →M is a Lipshitz
map, then f is differentiable almost everywhere and so yields a measurable
pull-back “Finsler structure” f∗Φ = Φ ◦ df . Then one defines Vol(f) by
integrating overN the Finsler volume form determined by f∗Φ. (The volume
form is defined similarly to (1) at points x ∈ N where dxf is injective, and
equals zero at other points).

By additivity, this definition of volume extends to (Lipschitz) singu-
lar chains in Finsler manifolds, in particular, in finite-dimensional Banach
spaces.

Note that a Lipschitz map can be approximated by smooth maps so that
the derivatives converge in L1 (implying that the volumes converge). This is
what we will mean by saying that something “follows for Lipschitz surfaces
by approximation”.

2.3. Stable norms of periodic metrics. Let (M,Φ) be a Finsler manifold
acted upon by Zn. For z ∈ Zn and x ∈M , the action of z on x is denoted by
x+ z. We assume that this action is co-compact, proper and by isometries.
This means that M/Zn is a compact Finsler manifold and the projection
M → M/Zn is a covering map; moreover Zn acts by deck transformations.
We will call (M,Φ) a periodic Finsler manifold. As the leading example, one
may think of the universal cover of a Finsler n-torus together with its deck
group. In this case M can be identified with Rn carrying a Finsler metric,
which is invariant under translations by vectors from Zn.

The stable norm of (M,Φ) is a norm ‖ · ‖ on Rn defined as follows: fix an
x ∈M , then for a z ∈ Zn set

‖z‖ = lim
k→∞

dΦ(x, x+ kz)
k

.

It is easy to see that this limit exists, does not depend on x, and that the
function ‖ · ‖ defined by this formula extends to a vector-space norm on Rn.

Another way of defining the stable norm is the following

Bounded Distance Theorem ([Bu1]). Let (M,Φ) be a periodic Finsler
manifold (more generally, a periodic length space) and ‖ · ‖ its stable norm.
Then there exists a constant C such that, for every z ∈ Zn and x ∈M ,

‖z‖ ≤ dΦ(x, x+ z) ≤ ‖z‖+ C.

In particular, this inequality implies that the Gromov–Hausdorff distance
between (M,dΦ) and the Banach space (Rn, d‖·‖) is finite. Note that this
property defines the Banach space (Rn, d‖·‖) up to a (linear) isometry. Thus

5



the isometry class of (Rn, d‖·‖) remains the same if one chooses another
action of Zn on (M,Φ).

As the matter of fact, our definition is slightly different from the classical
way of defining the stable norm on H1(M/Zn,R). They coincide, however,
in the case of the universal abelian cover; in general situation, ‖ · ‖ arises as
the projection of the norm from H1(M/Zn,R).

3. Conjectures. Statement of the Results

3.1. Main conjectures and their equivalence. In this section, a par-
ticular choice of volume functional Vol does not play any role. This may
be symplectic volume, Hausdorff measure, or any other measure monotone
with respect to Φ.

We begin with the following definition. Let (Mn,Φ) be a periodic Finsler
manifold. The asymptotic volume growth ν(M,Φ) is defined by

ν(M,Φ) = lim
r→∞

Vol(Br(x))
rn

,

where Br(x) is the metric ball of a radius r centered at a point x ∈M .
This limit exists and does not depend on x, moreover ν(M,Φ) can be

expressed by the following formula:

(4) ν(M,Φ) = Vol(M/Zn) ·mn(B)

where B ⊂ Rn is the unit ball of the stable norm of (M,Φ), and mn is
the Lebesgue measure in Rn. Indeed, the Bounded Distance Theorem im-
plies that the ball Br(x) in (M,Φ) covers the quotient space M/Zn appox-
imately N(r) times, where N(r) = card(rB ∩ Zn), that is the number of
integral points in the the r-ball of the stable norm. Hence Vol(Br(x)) ∼
N(r) ·Vol(M/Zn). Obviously N(r) asymptotically equals rn ·mn(B), so the
formula (4) follows.

We are now in a position to state our main conjectures. First we formulate
them in the simplest topological set-up.

Conjecture A. Let (M,Φ) be the universal cover of a Finsler n-torus (in
other words, Φ is a Finsler metric on M = Rn invariant under Zn acting
by translations). Then ν(M,Φ) ≥ ν(Rn, ‖ · ‖), where ‖ · ‖ is the stable norm
of (M,Φ).

Conjecture B. Let X be a finite-dimensional Banach space, V ⊂ X be an
n-dimensional affine subspace, A ⊂ V be a region diffeomorphic to the disc
Dn, and f : Dn → X be an immersion (more generally, a Lipschitz map)
such that f |∂Dn is a diffeomorphism onto ∂A. Then Vol(f) ≥ Vol(A).

Note that the Lipschitz version of this conjecture follows by approximation
from the one with immersions (assuming that the latter holds for spaces X
of any dimension). Indeed, one can approximate any Lipschitz map from
Dn to X by an immersion to a higher-dimensional space X ′ ⊃ X.
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Conjecture C. Let A be a bounded region in an n-dimensional Banach
space (V n, ‖ · ‖). Let Φ be a Finsler metric on A such that

dΦ(x, y) ≥ ‖x− y‖
for all x, y ∈ ∂A. Then Vol(A,Φ) ≥ Vol(A, ‖ · ‖).

Theorem 1. For every n, the three conjectures A, B and C are equivalent.

3.2. Minimality and ellipticity. ¿From now on, we will be concerned
with symplectic volume. We reserve the notation Vol for this volume. If we
want to stress a particular dimension, we can write n-volume or Voln; for
instance, 2-volume is symplectic surface area.

One may notice that Conjecture B naturally embeds into a classical
scheme. Namely, the Finsler volume Voln defines an area functional on
n-dimensional surfaces in a Banach space X (more generally, on Lipschitz
singular chains in X). We fix an (n−1)-dimensional chain γ = ∂A contained
in an n-dimensional affine subspace of X and want to minimize Vol(β) sub-
ject to ∂β = γ. One then asks if a minimum is attained on a chain contained
in the affine subspace. In Conjecture 2, we required that β is represented by
a topological disc. Thus, one formulates the following “homological” version
of Conjecture B:

Conjecture B’. Let α be a topological n-disc in an n-dimensional affine
subspace of a Banach space X. Then α has minimal volume among all n-
dimensional singular chains β with integral coefficients such that ∂β = ∂α.

This conjecture is equivalent to that the n-dimensional volume functional
is elliptic (over Z) in any Banach space whose norm is quadratically convex.
Ellipticity is a classical and very important property in the theory of mini-
mal surfaces. We will use the term ellipticity for the property formulated in
Conjecture B’, even if the Banach norm is not quadratically convex. Con-
jecture B’ (as well as Conjecture B) has been first formulated by Busemann
(see, for instance, [BES] and refTh), who also proved it for codimension 1
(that is, when the dimension of the Banach space is n+ 1).

Conjecture B’ obviously implies Conjecture B. In fact, the two conjectures
are equivalent for every n ≥ 3. Indeed, for n ≥ 3 any n-chain over Z whose
boundary is a topological sphere can be replaced by an immersed n-disc
spanning the same boundary and having almost the same volume (see [Gr],
Appedix 2, Proposition A’). In dimension n = 2, one has to consider not
only immersed discs but also discs with handles.

The assumption that we are looking for a chain with integral coefficients
is essential. The following theorem presents a counter-example to a version
of this conjecture over rational coefficients. It also leaves little hope to have
a “simple” argument poving the conjecture. At least, classical methods of
proving ellipticity do not distinguish integer versus real coefficients.

Theorem 2. There exist a four-dimensional Banach space X, a two-dimensional
affine subspace V ⊂ X, a disc α ⊂ V , and a chain β in X represented by an
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immersed disc such that ∂β = N · ∂α and Vol2(β) < N Vol2(α), for some
natural number N (in fact, one can take N = 10).

On the positive side, the following theorem holds:

Theorem 3. Conjectures A, B, C are true for dimension n = 2.

Therefore, Conjecture B’ is true in dimension 2 for chains β represented
by immersed discs (versus “discs with handles”).

There are some non-trivial situations when ellipticity can be shown, namely
there are spaces whose 2-volume functional is elliptic over intergers but it
fails to be elliptic over reals or rationals:

Theorem 4. There exist a four-dimensional Banach space X and a two-
dimensional affine subspace V ⊂ X such that a disc α ⊂ V minimizes
area among the chains with integral coefficients spanning the same boundary
∂α, but does not minimize area among the chains with rational coefficients
spanning ∂α.

Proof of this theorem will be published elsewhere.
Let us also mention that Conjecture B’ is true in dimension 2 for Lipschits

chains whose tangent is sufficiently close to α (a.e.), and hence 2-dimensional
affine planes in normed spaces are (at least) locally area minimizers (in the
strongest sense):

Lemma 3.1. Let γ = ∂α, where α is a topological n-dimensional disc in an
n-dimensional affine subspace of a Banach space X. There exists a positive
ε such that a minimum of Vol(β) subject to ∂β = γ over all smooth chains
β over Q whose tangent space is ε-close to α a.e. is attained at α.

A proof of this Lemma can be found in Section 6.1.

3.3. Gaussian measures of surfaces. The reason why volume functional
might fail to enjoy ellipticity can be seen by looking at volume form on
the Grassmanian cone in the space of n-vectors. It has been noticed by
Busemann that volume form may fail to be convex (i.e. extendable to a
convex function on all n-vectors). Namely, there exists a four-dimensional
Banach space X and three simple 2-vectors a, b and c whose sum a+ b+ c
is also a simple 2-vector and

(5) Vol(a) + Vol(b) + Vol(c) < Vol(a+ b+ c)

(where V ol(e) might be any of the Busemann and the Holmes-Thompson
areas of a parallelogram spanned by e). This means that norms induced by
Busemann and Holmes-Thompson areas on the set of simple 2-vectors in X
cannot be extended to a convex function on the space X ∧X of all 2-vectors
(see [BES])

If one could construct a polyhedron whose boundary belongs to an affine
plane and whose faces represent the 2-vectors a, b and c, this would immedi-
ately give a counter-example to the Conjectures. This suggests the following
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problem in classical Euclidean geometry. For simplicity, we discuss it for two
dimensional surfaces.

Let us begin with an oriented polyhedral surface in Rm. Each (oriented)
face of the surface represents a 2-vector (which is parallel to the face and
whose length is equal to the Euclidean area of the face). If the polyhedron
has parallel faces, we add the corresponding 2-vectors together. This way
we obtain a finite collection of simple 2-vectors, which will be called the
Gaussian measure. Equivalently, for each face of the polyhedral surface,
one introduces an atomic measure on the Grassmanian manifold of oriented
2-planes. This measure is concentrated at the point representing the face
and its weight is equal to the Euclidean 2-volume of the face. The sum of
these measures gives nothing but the same weighted directions of faces.

More generally, for a smooth surface, the push-forward of Euclidean 2-
volume under the Gaussian map defines a measure on the Grassmanian
manifold. This measure will aslo be called the Gaussian measure of the
surface.

We are concerned with the following problem, which can be asked for
both polyhedral and smooth surfaces:

Given an (atomic) measure on a Grassmanian manifold, we want to know
whether it can be approximated (with any given precision) by the Gaussian
measure of a (polyhedral) surface whose boundary is a simple curve in a
2-dimensional affine subspace V .

A more natural question (which is, however, not quite equivalent to this
one) is which measures on the Grassmannian can be appoximated (with any
given precision) by a directional measure of a closed surface.

To illustrate why we want to approximate a measure instead of trying to
get it precisely, let us consider the following example regarding 2-dimensional
surfaces in R3.

Let us choose three vectors a, b, c ∈ R3 with a+ b+ c = 0, and a vector d,
and consider the atomic measure concentaited on a∧ d, b∧ d and c∧ d with
equal weights on each. Geometrically, the faces of a polyhedral surface with
this Gaussian image are parallel to three planes that have a line in common.
It is easy to see that such surface cannot be closed. However, adding an
arbitrarily small amount of faces parallel to any direction transversal to d
allows one to construct a closed surface (which looks like a long prizm with
two small lids) with this Gaussian measure.

There is an obvious linear constraint. To a point in the Grassmannian
manifold, one associates a unit 2-vector. Integrating this function against
the directional measure of a surface whose boundary belongs to V , one
obviously gets a simple 2-vector parallel to V . Analogously, for a closed
surface this integration must yield the zero 2-vector (a well-known physical
interpretation is the fact that the total force produced by the air pressure
is zero).

It is not difficult to show that, in co-dimension one, this (linear relation)
is the only constraint. The reason is that every (m − 1)-vector in Rm is
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simple. Polyheral surfaces with approximately given directional measure
can be constructed by an inductive procedure. Loosely speaking, each step
of the induction consists in merging two atomic weights in the directional
measure similarly to the example with a prizm.

In higher co-dimesions, there are other constraints, whose nature remains
rather obscure. The fact that Conjecture B is true for two-dimensional
surfaces already implies the existance of such constraints for surfaces repre-
sented by immersed discs (otherwise, a counterexample could be constructed
out of Busemann’s example of four two-vectors with a “reversed triangle in-
equality” at the beginning of this section). Moreover, the proof of Theorem
4 is based on extracting a (rather clumsy) non-linear constraint of this sort.

3.4. A related problem in convex geometry. For the reader who does
not want to think about Banach spaces, we can suggest a rather classical
formulation of a problem in Euclidean geometry, which seems to incorpo-
rate many of the features of Conjecture B. On the other hand, this problem
does not have its analogs in intrinsic geometry that would be counterparts
of Conjectures A and C, and this circumstance leaves less diversity in pos-
sible approaches to this problem (note that our proof for dimension two is
essentially intrinsic). The problem reads as follows:

Consider a (metric) n − 1-sphere α and a convex body B in an m-
dimensional Euclidean space (m > n). Is it true that a minimum of the
Euclidean volume of the Minkowski sum β+B over all surfaces with bound-
ary ∂β = α is attained on the (metric) disc bounded by α?

The answer is “yes” for surfaces of co-dimension 1, that is for m = n+ 1,
and also for n=1 (the proof we know is an easy argument relying on the
Stokes’ Theorem). In the latter case, the sphere is just a pair of points,
“surfaces” are curves connecting the points, and the problem basically asks
whether, given two points, a straight tunnel has the smallest volume among
all tunnels between that are enough to carry B (without tilting it) from one
point to the other.

4. Equivalence of Conjectures

In this section we prove Theorem 1, namely that the conjectures A (about
the asymptotic volume growth), B (about minimality of flats) and C (about
filling volume) are equivalent for any given dimension n.

We begin with simple implications A =⇒ C =⇒ B.

4.1. Conjecture C =⇒ Conjecture B. Let A ⊂ V ⊂ X be as in
Conjecture B, and let ‖ · ‖ denote the Banach norm of X. It suffices to
prove that Vol(f) ≥ Vol(A) for any immersion f : A → X such that f |∂A
is the identity map. Let Φ denote the Finsler metric on A induced by f .
Then dΦ(x, y) ≥ ‖x − y‖ for all x, y ∈ ∂A. Indeed, dΦ(x, y) is the infimum
of lengths of curves connecting x and y in the surface parameterized by f ,
and the length of any curve in (X, ‖ · ‖) connecting x and y is no less than
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‖x − y‖. Applying Conjecture C to (V, ‖ · ‖), A and Φ, we obtain that
Vol(f) = Vol(A,Φ) ≥ Vol(A, ‖ · ‖).

4.2. Conjecture A =⇒ Conjecture C. Let (V, ‖ · ‖), A and Φ be as
in Conjecture C. Introduce a lattice Γ ' Zn in V such that the images of
A under translations by elements of Γ are disjoint. Then define a Finsler
structure Φ′ on V as follows: Φ′ is the parallel translation of Φ in every
region A + z where z ∈ Γ, and Φ′ = ‖ · ‖ outside A + Γ. Then Φ′ is Γ-
periodic and piecewise continuous. Let ‖ · ‖′ denote the stable norm of Φ′.
The assumption that dΦ ≥ ‖·‖ on ∂A implies that dΦ′ ≥ ‖·‖ everywhere and
hence ‖ · ‖′ ≥ ‖·‖. Then by Conjecture A (extended to piecewise continuous
Finsler structures by approximation) one has ν(V,Φ′) ≥ ν(V, ‖ · ‖′). Since

ν(V,Φ′)
Vol(V/Γ,Φ′)

=
ν(V, ‖ · ‖′)

Vol(V/Γ, ‖ · ‖′)
by (4), it follows that

Vol(V/Γ,Φ′) ≥ Vol(V/Γ, ‖ · ‖′) ≥ Vol(V/Γ, ‖ · ‖).
Then Vol(A,Φ) = Vol(A,Φ′) ≥ Vol(A, ‖ · ‖) because Φ′ and ‖ · ‖ coincide
outside A+ Γ.

4.3. Calibrating functions. In the rest of this section we prove the impli-
cation Conjecture B =⇒ Conjecture A (i. e., we prove the volume growth
inequality assuming minimality of flats in Banach spaces). We begin with
several constructions involving periodic metrics. (These constructions are
also used in the next section).

Let M be a manifold equipped with a Zn-periodic length metric d and ‖·‖
its stable norm. This norm is defined on the vector space V ' Zn⊗R = Rn.
We denote by V ∗ the space of linear functions from V to R and by ‖ · ‖∗ the
norm dual to ‖ · ‖, that is the norm on V ∗ defined by

‖h‖∗ = sup{h(x) : ‖x‖ ≤ 1}.
Let B∗ denote the unit ball of ‖ · ‖∗. Its boundary ∂B∗ is the unit sphere of
‖ · ‖∗, i.e. the set of unit-norm linear functions.

Definition 4.1. We say that a function F : M → R calibrates a linear
function h ∈ V ∗ if

(1) F is a Lipschitz-1 function, i.e. |F (x)−F (y)| ≤ d(x, y) for all x, y ∈
M .

(2) F (x+ z) = F (x) + h(z) for all x ∈M , z ∈ Zn.

Remark 4.2. If F satisfies the above definition, its derivative dF projects
down to M/Zn as a (measurable) closed 1-form which calibrates the length
functional and whose de Rham cohomology class (projected to V ∗) equals h.
It is known that the definition of the stable norm in terms of such 1-forms
can be interpreted as follows: ‖h‖∗ = inf{c > 0 : there exists a function
calibrating h/c}.

11



Proposition 4.3. For every h ∈ ∂B∗ there exist a function F : M → R
calibrating h and satisfying an additional property: for every x ∈ M there
is a unit-speed geodesic ray γ : [0,+∞) → M such that γ(0) = x and
F (γ(t)) = F (x) + t for all t.

Proof. Fix a point x0 ∈M and define

F (x) = lim sup
z∈Zn, |z|→∞

(h(z)− d(x, x0 + z))

for an x ∈M . We will prove that F is a desired calibrating function.
1. The values of F are finite. Indeed, since ‖h‖∗ = 1, one has |h(z)| ≤ ‖z‖

for all z ∈ Zn and there is a sequence {zi}∞i=1 in Zn such that |zi| → ∞ and
‖zi‖ − h(zi) ≤ const. By the Bounded Distance Theorem,

‖z‖ ≤ d(x0, x0 + z) ≤ ‖z‖+ const

for all z ∈ Zn. Hence

h(z)− d(x, x0 + z) ≤ h(z)− d(x0, x0 + z) + d(x0, x) ≤ d(x0, x)

for all z, and

h(zi)− d(x, x0 + zi) ≥ h(z)− d(x0, x0 + z)− d(x0, x) ≥ −d(x0, x)− const

for all i. It follows that −d(x0, x)− const ≤ F (x) ≤ d(x0, x).
2. F is Lipschitz-1 as an upper limit of Lipschitz-1 functions.
3. The second condition from Definition 4.1 follows from Zn-periodicity

of the metric:

F (x+ z) = lim sup
z′∈Zn, |z′|→∞

(h(z′)− d(x+ z, x0 + z′))

= lim sup
z′∈Zn, |z′|→∞

(h(z′ + z)− d(x+ z, x0 + z′ + z))

= lim sup
z′∈Zn, |z′|→∞

(h(z′)− d(x, x0 + z′)) + h(z) = F (x) + h(z)

(the second equality is obtained by a change of variables z′ 7→ z′ + z).
4. Given x ∈M , there exists a sequence {zi}∞i=1 in Zn such that |zi| → ∞

and F (x) = limi→∞(h(zi)−d(x, x0 +zi)). Let γi : [0, d(x, x0 +zi)]→M be a
minimal geodesic joining x and x0 + zi. A standard compactness argument
shows that a subsequence of {γi} converges pointwise to a geodesic ray
γ : [0,+∞)→M . Then γ satifies F (γ(x+ t)) = F (x) + t for all t. Indeed,

F (γ(t)) ≥ lim sup
i→∞

(h(zi)− d(γ(t), x0 + zi))

= lim sup
i→∞

(h(zi)− d(γi(t), x0 + zi))

= lim sup
i→∞

(h(zi)− d(x, x0 + zi)) + t = F (x) + t.

The inverse inequality F (γ(t)) ≤ F (x) + t follows from the fact that F is a
Lipschitz-1 function. The proposition follows. �
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Remark 4.4. The formula for F in the above proof is similar to the classical
definition of Busemann functions. The Busemann function of a geodesic
ray γ is obtained from distance functions of points γ(t) as t → ∞. The
above formula for F can be interpreted as the same construction applied to
distance functions of a family of parallel “hyperplanes” h−1(t) in Zn ⊂ M ,
where the inclusion Zn ↪→M is given by z 7→ x0 + z. (In fact, one could use
affine hyperplanes if M is the universal cover of an n-torus and is identified
with Rn.) In this interpretation, the geodesic constructed in the last part
of the proof is an analog of an asymptotic ray.

4.4. Equivariant embeddings. Consider the vector space `∞(∂B∗) of bounded
real-valued funtions on ∂B∗ equipped with the standard norm ‖·‖∞, ‖f‖∞ =
sup |f |. Then V admits a canonical linear embedding I into `∞(∂B∗),
namely the image I(v) of a v ∈ V is the function given by I(v)(h) = h(v).
The duality theorem for convex bodies (saying that B∗∗ = B) implies that
I is an isometric map, i.e. ‖I(v)‖∞ = ‖v‖ for all v ∈ V .

Calibrating functions discussed in the previous section allow us to contruct
a Lipschitz-1 equivariant map IM : M → `∞(∂B∗), where equivariance is
considered with respect to the action of Zn in M and the action of I(Zn) in
`∞(∂B∗) by parallel translations, namely that IM (x+ z) = IM (x) + I(z) for
all x ∈ M , z ∈ Zn. Since IM is Lipschitz and equivariant, its image stays
within a bounded distance from the linear n-subspace I(V ) ⊂ `∞(∂B∗).

Such a map IM can be constructed as follows. Fix a point x0 ∈ M and
associate to every h ∈ ∂B∗ a calibrating function Fh such that Fh(x0) = 0
(this can be achived because one may add constants to calibrating functions).
Define IM (x)(h) = Fh(x) for x ∈ M , h ∈ ∂B∗. Then IM (x) is a bounded
function on ∂B∗, so IM is a map from M to `∞(∂B∗). The Lipschitz-1
property and equivariance follow immediately from the two conditions of
Definition 4.1.

In fact, we will use only finite-dimensional approximations to these maps.
Let RN

∞ denote the space RN equipped with the l∞-norm ‖ · ‖∞ given by
‖(x1, . . . , xN )‖∞ = max |xi|. Given a collection h1, . . . , hN ∈ ∂B∗, one de-
fines a coordinate projection Ph1,...,hN

: `∞(∂B∗) → RN
∞ by Ph1,...,hN

(f) =
(f(h1), . . . , f(hN )). This projection is obviously a Lipschitz-1 map. Com-
posing Ph1,...,hN

with I and IM , one obtains Lipschitz-1 maps

Ih1,...,hN
: V → RN

∞, x 7→ (h1(x), . . . , hN (x))

and
IM,h1,...,hN

: M → RN
∞, x 7→ (Fh1(x), . . . , FhN

(x)).
If {h1, . . . , hN} is a sufficiently fine net in ∂B∗, the map Ih1,...,hN

is “almost
isometric” in the Lipschitz sense, i.e.

(1− ε)‖v‖ ≤ ‖Ih1,...,hN
(v)‖∞ ≤ ‖v‖

for all v, where ε can be made arbitrarily small by the choice of N and {hi}.
Indeed, the pull-back of ‖ · ‖∞ under Ih1,...,hN

is the norm on V whose unit
ball is the polyhedron {v ∈ V : |hi(v)| ≤ 1 for all v}. Such a polyhedron
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(i.e. a polyhedron bounded by a collection of hyperplanes supporting B) can
approximate B arbitrarily close, and the above inequality holds whenever it
is contained in the set (1− ε)−1B.

4.5. Conjecture B =⇒ Conjecture A. Now assume that (M,Φ) is the
universal cover of a Finsler n-torus and d = dΦ. We identify M with Rn,
so Φ is a Zn-periodic Finsler structure in Rn and the stable norm ‖ · ‖ is
defined on V = Rn.

Fix a small ε > 0 and choose a collection h1, . . . , hN ∈ ∂B∗ such that

‖Ih1,...,hN
(v)‖∞ ≥ (1− ε)‖v‖

for all v ∈ V (see the previous section). For brevity, we denote the maps
Ih1,...,hN

: V → RN
∞ and IM,h1,...,hN

: M → RN
∞ by I and IM resp. Since IM

is a Lipschitz-1 map, it is a volume non-increasing map.
Given an r > 0, consider a surface F in RN

∞ parameterized by the map
IM restricted to rB ⊂ V = M (note that rB is the ball of radius r in the
space (V, ‖·‖)). Consider a surface Fc in RN

∞ parameterized by ∂(rB)× [0, 1]
so that every fiber x × [0, 1] (where x ∈ ∂(rB)) parametrizes the straight
line segment from IM (x) to I(x). This surface is a “collar” joining the
boundaries IM (∂(rB)) and I(∂(rB)) in RN

∞. Since I and IM are Lipschitz
maps and ‖IM (x) − I(x)‖∞ is bounded uniformly in x, the volume of the
collar has an upper bound of the form const · rn−1. The union of F and
Fc is a Lipschitz surface (parameterized by a disc) spanning the boundary
I(∂(rB)) = ∂(I(rB)). Since I(rB) ⊂ I(V ) and I(V ) is an n-dimensional lin-
ear subspace ofRN∞, Conjecture B yields that Vol(F )+Vol(Fc) ≥ Vol(I(rB)).
Thus

Vol(rB,Φ) ≥ Vol(F ) ≥ Vol(I(rB))−Vol(Fc)

≥ (1− ε)n Vol(B, ‖ · ‖)rn − const · rn−1.

On the other hand, the Bounded Distance Theorem implies that there is a
constant C such that the set rB is contained in the ball (with respect to the
metric dΦ) of a radius r + C centered at 0. Therefore

ν(M,Φ) ≥ lim
r→∞

(1− ε)n Vol(B, ‖ · ‖)rn − const · rn−1

(r + C)n

= (1− ε)n Vol(B, ‖ · ‖) = (1− ε)n · ν(V, ‖ · ‖).
Since ε is arbitrary, Conjecture A follows.

5. Two-dimensional case

The goal of this section is to prove Theorem 3. We will do it by showing
that the Volume Growth Conjecture A is true in dimension n = 2. Let
(M,Φ) be the universal cover of a Finsler 2-torus and ‖ · ‖ its stable norm
defined on V ∼= R2. We keep on using terms and notations for periodic
metrics and stable norms introduced in the previous sections.

Since ‖ · ‖ and ν(M,Φ) depend continuously on Φ, we may assume that
Φ is smooths and quadratically convex.
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We denote by UT ∗M the unit co-tangent bundle of (M,Φ), that is,
UT ∗M = {w ∈ T ∗ M : Φ(w) ≤ 1}. Identify M and V by means of a
Z2-equivariant diffeomorphism and fix an orientation on these spaces. This
orientation induces a cyclic ordering on the unit sphere ∂B∗ in V ∗ and the
fibers of the unit co-tangent bundle UT ∗M (note that ∂B∗ and the fibers of
UT ∗M are homeomorphic to S1).

Lemma 5.1. Let functions F1, F2, F3 : M → R calibrate distinct linear
functions h1, h2, h3 ∈ ∂B∗ and satisfying the additional property from Propo-
sition 4.3. Let x ∈ M and suppose that derivatives dxF1, dxF2 and dxF3

exist. Then these derivatives are unit co-vectors and their cyclic order in
UT ∗xM is the same as that of h1, h2 and h3 in ∂B∗.

Proof. For i = 1, 2, 3 let γi : [0,+∞) → M be a unit-speed geodesic ray
such that γi(0) = x and Fi(γi(t)) = Fi(x) + t (cf. Proposition 4.3). Then
g′i(0) is a unit vector and dxFi(g′i(0)) = 1, implying that ‖dxFi‖ ≥ 1. On
the other hand, ‖dxFi‖ ≤ 1 because Fi is a Lipschitz-1 function. Hence
dxFi ∈ UT ∗xM .

The stable norm of a two-dimensional torus (with smooth quadratically
convex metric) is strictly convex in the sense that the boundary of its unit
ball contains no straight line segments (cf. [Ba]). Hence for every i = 1, 2, 3
there is a unique vector vi ∈ ∂B such that hi(vi) = 1. Moreover vi and hi
are related by an orientation-preserving homeomorphism from ∂B to ∂B∗.
A similar homeomorphism (in fact, the Legendre tranform) from UTxM to
UT ∗xM maps the derivatives ‖dxFi‖ to vectors γ′i(0). Thus it suffices to
prove that the vectors γ′i(0) in UTxM are cyclically ordered in the same way
as the vi in ∂B.

Since we have identified M and V , we have a (non-invariant) vector space
structure on M . Using this, the bounded distance theorem can be wriiten
as ∣∣dΦ(y, z)− ‖y − z‖

∣∣ ≤ const, x, y ∈M.

Hence

lim sup
t→∞

‖γi(t)− x‖
t

≤ 1

because γi is a unit-speed geodesic. On the other hand, the function Fi−hi
is Z2-periodic and hence bounded. By the choice of γi we then have

lim
t→∞

hi(γi(t)− x)
t

= lim
t→∞

Fi(γi(t))− Fi(x)
t

= 1.

It follows that
γi(t)− x

t
converges to vi as t→∞.

For a T > 0 let pi(T ) denote the first intersection point of γi and the
convex Jordan curve ΓT = x+ T · ∂B ⊂ V . Then pi(T )/T → vi as T →∞.
Thus if T is large enough, the points p1(T ), p2(T ) and p3(T ) have the same
cyclic order in ΓT as v1, v2 and v3 in ∂B. On the other hand, the curves
γi have no common points except x because they are minimal geodesics
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in M . Then the Jordan curve theorem implies that their initial velocities
γ′1(0), γ′2(0) and γ′3(0) in UTxM are cyclically ordered in the same way as
the points p1, p2 and p3 in ΓT . The lemma follows. �

We are now in a position to prove Conjecture A for the two-dimensional
case. Choose a (sufficiently fine) cyclically ordered collection of linear func-
tions h1, h2, . . . , hN ∈ ∂B∗. All indices below are taken modulo N . Let
Fi : M → R be their calibrating functions as in Proposition 4.3. For
i = 1, . . . , N , define a linear map Li : V → R2 and a (Lipschitz) map
Gi : M → R2 by Li(v) = (hi(v), hi+1(v)) and Gi(x) = (Fi(x), Fi+1(x)).
Consider a measurable 2-form ωi = dFi ∧ dFi+1 on M . This form is the
pull-back under Gi of the Euclidean area form in R2, and it is Z2-periodic,
so it can be thought of as a 2-form on M/Z2. We want to compute the
integral of ω over M/Z2. Observe that Gi is equivariant with respect to
the given action of Z2 on M and the action of Li(Z2) on R2, and that the
quotient map from M/Z2 to a flat torus R2/Li(Z2) has degree 1. Hence the
integral of ω over M/Z2 equals the integral of the Euclidean area form over
R2/Li(Z2), thus ∫

M/Z2

dFi ∧ dFi+1 = m2(R2/Li(Z2))

where m2 is the two-dimensional area coming from R2.
A value of a 2-form inM at a point x ∈M is a bi-vector in the vector space

T ∗xM . Such bi-vectors can be represented by oriented areas of subsets of
T ∗xM . In particular, the 2-form 1

2dFi∧dFi+1 is represented by the area of the
triangle with vertices 0, dxFi and dxFi+1, taken with the appropriate sign.
The above Lemma 5.1 implies that the co-vectors {dxFi}Ni=1 are cyclically
ordered in UT ∗xM , hence the sum (over all i) of the areas of these triangles
equals the area of their convex hull. Thus

1
2

N∑
i=1

m2(R2/Li(Z2)) =
∫
M/Z2

N∑
i=1

area(conv{dxF1, . . . , dxFN}) dx

where area(. . . ) dx denotes the differential form represented by a given sub-
set of T ∗M . Denote by B∗xM the unit co-tangent ball at an x ∈ M , i. e.
B∗xM = {w ∈ T ∗xM : Φ∗(w) ≤ 1}. Recall that the two-dimensional Holmes–
Thompson volume is given by

Vol2(M/Z2) =
1
π

∫
M/Z2

area(B∗x) dx.

Since the dxFi are unit co-vectors, their convex hull is contained in the unit
ball, and we conclude that

1
2

N∑
i=1

m2(R2/Li(Z2)) ≤
∫
M/Z2

area(B∗xM) dx = πVol(M/Z2,Φ).
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The same computation for the flat Banach space (V, ‖ · ‖) with functions
hi in place of Fi yields

1
2

N∑
i=1

m2(R2/Li(Z2)) = (1− σ)πVol(V/Z2, ‖ · ‖)

where σ is defined by

area(conv{h1, . . . , hN}) = (1− σ)area(B∗).

Thus Vol(M/Z2,Φ) ≥ (1−σ) Vol(V/Z2, ‖·‖). Since σ can be made arbitrar-
ily small, it follows that Vol(M/Z2,Φ) ≥ Vol(V/Z2, ‖ · ‖). This is equivalent
to Conjecture A.

6. Example

The goal of this section is to prove Theorem 2, namely to construct a four-
dimensional Banach space in which the (Holmes-Thompson) area functional
is not elliptic over Q. In other words, we are going to give an example of
a singular chain with rational coefficients such that the area of the chain
is strictly less than the area of an affine disc with the same boundary. We
will not worry about smothness of Banach norms in our construction since
an example with a non-smooth norm can be smoothened. Indeed, if an
example can be constructed in a Banach space with a non-smooth norm,
the same surface would give examples for all sufficiently close norms due to
the continuity of area functional with respect to the Banach norm.

We will show that every Banach space from a certain class has non-elliptic
2-volume. First let us give one explicit example of a space from this class.

Let B∗ ⊂ R4 be the convex hull of a curve parameterized by

(sin t, cos t, sin 3t, cos 3t), t ∈ R.

This set B∗ is a compact symmetric convex body, hence it is a unit ball of
some norm ‖ · ‖∗. Let ‖ · ‖ be the dual to norm ‖ · ‖∗. Then the 2-volume
defined by ‖ · ‖ is not elliptic over Q; more precisely, a disc contained in the
first coordinate plane does not minimize 2-volume in the class of rational
chains.

Now we pass to the proof. First we begin with a computation that explains
where Busemann’s examples of “reversed” Inequality 5 come from. This
computation will enable us to construct such examples in Banach spaces
with certain additional properties.

6.1. Stokes’ Formula for Holmes-Thompson Area. Let X be a four-
dimensional vector space, and let X∗ denote the dual space (of linear func-
tions X → R). Two-dimensional oriented linear subspaces of X will be
called planes. For every plane V ⊂ X there is a natural linear map from
X∗ to V ∗, namely the restriction operator f 7→ f |V . We call this map the
projection to V ∗ and denote it by PrV (if one identifies each space with its
dual via a scalar product in X, this map turns to an orthogonal projection).
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Denote by K2(X) the two-dimensional Grassmanian cone of X, that is
the subset of X ∧X consisting of simple bi-vectors. For a nonzero bi-vector
W ∈ K2(X) we denote by P (W ) the plane in X spanned by W . Observe
that W canonically defines an area form in the dual plane P (W )∗; indeed,
a bi-vector W is a linear function on P (W )∗ ∧ P (W )∗, or, equivalently, a
bi-linear skew-symmetric function on P (W )∗. We denote by AreaW the
Lebesgue measure on P (W )∗ determined by this area form.

For a unit bi-vector W in a Euclidean space, AreaW is just the standard
Euclidean area in P (W )∗ ' P (W ). One has AreaλW = λAreaW for every
λ > 0.

Let ‖ · ‖ be a Banach norm on X, and B∗ ⊂ X∗ be the unit ball of the
dual norm. First we express the symplectic area Vol2 in (X, ‖ · ‖) in terms
of projections of B∗. We represent this area as a positively homogeneous
function on the Grassmanian cone K2(X) ⊂ X ∧X. Namely, Vol2(W ) for a
W ∈ K2(X) equals the area of a parallelogramm spanned by W . Then we
have

Vol2(W ) =
1
π

AreaP (W )(PrP (W )(B
∗)),

i. e., our functional (on unit bi-vectors or just planes in a Euclidean space)
is given by areas of projections of the convex body B∗. Indeed, for a plane
P ⊂ X, the dual unit ball of the restriction of ‖ · ‖ to P equals PrP (B∗),
then the above formula follows from the definition of Vol2 (cf. formula 3).

One can integrate positively homogeneous functions on K2(X) over sin-
gular 2-chains in X, and integrating the above function Vol2 yields the
symplectic area of a surface. Our goal is to compare Vol2 (for a suitable
B∗) with a linear function L on X ∧ X restricted to K2(X). Note that
the intergral of a linear function over a chain depends only on the chain’s
boundary because a linear function on X ∧X is nothing but a 2-form in X
with constant coefficients.

Fix a plane V ⊂ X. Now we restrict ourselves to bodies B∗ of special
form. Namely we assume that B∗ is the convex hull of (the image of) a
C2-smooth curve γ : S1 → X∗ such that the projection PrV ◦γ is a simple,
regular, right oriented and strictly convex closed curve in V ∗. To simplify
notation, we use the same letter γ for the map and its image.

Now define a function L : X∗ ∧X∗ → R by

L(W ) =
1

2π

∫
S1

(γ(t) ∧ γ′(t)) ·W dt,

where the dot, of course, denotes the application of a 2-form to a bi-vector.
Obviously L is linear. Let W ∈ K2(X) and let P = P (W ) be the plane
spanned by W . Since

(w1 ∧ w2) ·W = (PrP (w1) ∧ PrP (w2)) ·W

for all w1, w2 ∈ X∗, we have

(γ(t) ∧ γ′(t)) ·W = ((PrP ◦γ)(t) ∧ (PrP ◦γ)′(t)) ·W.
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Note that the area form defined by W on the dual plane P ∗ = P (W )∗ is
nothing but multiplication of a 2-form by W . So one can interpet the last
expression as the oriented area AreaW spanned by a vector in the projected
curve PrP ◦γ and its velocity. Hence the quantity

πL(W ) =
∫
S1

1
2

((PrP ◦γ) ∧ (PrP ◦γ)′) · (W )

equals the area of the region(s) bounded by the projected curve PrP ◦γ,
counted with respective multiplicity (how many times the curve surrounds a
region). In particular, if the projection is a simple and right oriented curve,
then πL(W ) is the area of the region that it bounds. If the plane P = P (W )
is sufficiently close to our fixed plane V , then the projection is simple, right
oriented and convex, so

πL(W ) = AreaW (Conv(PrP (γ))) = AreaW (PrP (B∗)) = πVol2(W ).

Thus we obtain the following

Lemma 6.1. L = Vol2 for all planes that are sufficiently close to V .

If the projection PrP ◦γ is a simple curve, then one always has Vol2(W ) ≥
L(W ) because the area of a region in not greater than the area of its convex
hull. However if the projection has self-intersections, some parts of the
convex hull may be surrounded by the curve more than once (counted with
multiplicity greater than one). As a result, it may happen that Vol2 < L
for some planes. For instance, in the example given in the beginning of this
section, the projection of the curve to the last coordinate plane is the triply-
covered circle and therefore L = 3 Vol2 > Vol2 on this plane. We summarize
our observatons in the following

Lemma 6.2. There exists a norm ‖ ·‖ on X = R4 = {(x, y, z, t)} and a lin-
ear function L : X∗∧X∗ such that Vol2 = L for all planes in a neighborhood
of the xy-plane and Vol2 < L for the zt-plane.

6.2. A chain of small area. We will show that a norm from Lemma 6.2
is not elliptic over Q. More precisely, we will construct a polyhedral surface
β, parameterized by a planar polygon, such that its boundary ∂β wraps n
times around the boundary of a region A in the xy-plane, but Vol2(β) <
n · Vol2(A), for some natural number n. Define a function δ : K2(X) → R
by δ(W ) = Vol2(W ) − L(W ). Then the desired inequality is equivalent to
that ∫

β
δ = Vol2(β)−

∫
β
L < 0

because the integral of L over a chain β depends only on the chain’s bound-
ary, and in our case equals n

∫
A L = nVol2(A).

Fix an α > 0 such that Vol2 = L for all planes that form angles less than
3α with the xy-plane (here we use the first property from Lemma 6.2).

First we describe the triangulation of out surface. Let n be sufficiently
large. Let a1b1a2b2 . . . a3nb3n be a regular (6n)-gon in the plane centered
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at the origin O, and let c1 . . . c3n be a large regular (3n)-gon obtained
from a1 . . . a3n via a homothety centered at O. We triangulate the poly-
gon Q = c1 . . . c3n into the polygon a1 . . . a3n and the triangles aibiai+1,
aicibi, bici+1ai+1 and bicici+1 (all indices are taken modulo 3n). We will
construct the desired surface as a map β : R4 which is affine in each element
of this triangulation.

For the vertices ai, define β(ai) = pi where p1 . . . p3n is a regular polygon
in the zt-plane such that |pi| = 1 for all i. Let ε(n) = |pipi+1|, the side of
this polygon (measured in the Euclidean metric).

Let v1, v2, v3 be three unit vectors in the xy-plane forming angles 2π/3
with each other. Define

β(bi) = qi :=
pi + pi+1

2
+
ε(n)
α
· vi mod 3

for i = 1, . . . , 3n. This defines the images of the triangles aibiai+1; they
are thin equilateral triangles whose lateral sides are almost parallel (form
angles less than α) to vectors v1, v2, v3. Finally, choose a very large R > 0
and define

β(ci) = ri := R ·
v(i−1) mod 3 + vi mod 3

2
.

This determines the images of all vertices and thus defines the map β : Q→
R4. Observe that the β-image of the boundary ∂Q wraps n times around
the triangle A = 4r1r2r3 which is contained in the xy-plane.

It remains to prove that
∫
β δ < 0 provided that n and R are large enough.

First observe that the triangles containing “distant” points ri = β(ci) are
almost parallel to the xy-plane in the sense that their two-dimensional ori-
ented directions are (3ε)-close to the xy-plane (if R = |ri| is no less than, say,
10/ε). Therefore δ = 0 for these triangles (by lemma 6.1, hence the integral∫
β δ is composed of the integral over the polygon p1 . . . p3n and the integrals

over the triangles piqipi+1. The former is negative and bounded away from
zero (as n → ∞) since δ < 0 for the zt-plane and the area of the polygon
converges to a positive constant. On the other hand, the total area of the
triangles piqipi+1 goes to zero as n → ∞, so does the corresponding term
in the integral of δ. Thus for a large enough n, the negative contribution
to
∫
β δ coming from integration over the polygon p1 . . . p3n outweigths the

possible positive contribution coming from integration over the triangles,
and therefore

∫
β δ < 0. This completes the proof of Theorem 4.
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