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1. Introduction

One of the key properties of the length of a curve is its lower semi-continuity: if
a sequence of curves γi converges to a curve γ, then length(γ) ≤ lim inf length(γi).
Here the weakest type of point-wise convergence suffices.

There are higher-dimensional analogs of this semi-continuity for Riemannian
(and even Finsler) metrics. For instance, the Besicovitch inequality (see, for in-
stance, [1] and [4]) implies that if a sequence of Riemannian metrics di on a
manifold M uniformly converges to a Riemannian metric d, then V ol(M,d) ≤
lim inf V ol(M,di). Furthermore, the same is true if the limit metric is Finsler
(where one can use any “reasonable” notion of volume for Finsler manifolds); the
proof, though, is more involved (see [2], [7]).

However, we will give an example of an increasing sequence of Riemannian met-
rics di on a 2-dimensional disc D, which uniformly converge to a length metric d
on D such that Area(D, di) < 1

10 and Area(D, d) > 1 (where by Area(D, d) we
mean the 2-dimensional Hausdorff measure). Furthermore, metrics di and d can be
realized by a uniformly converging sequence of embeddings of D into R

3.
Our motivation for studying the semi-continuity of the surface area functional

came from [3], where a more sophisticated Besicovitch-type inequality for Finsler
metrics is shown. The proof is essentially Finsler, even though the inequality makes
sense for general length spaces.

The counter example undermines a natural approach to proving length-area
inequalities for length spaces by means of approximations by Riemannian (more
generally, Finsler) metrics. Similar considerations lead to the following question:
can every intrinsic metric on a disc be approximated by an increasing sequence of
Finsler metrics? There is some evidence suggesting that the answer is likely affir-
mative in dimension two. However, we will give an example of an intrinsic metric
on a 3-dimensional ball such that no neighborhood of the origin admits a Lipschitz
bijection to a Euclidean region.

In this elementary exposition we present both counter-examples. Unfortunately,
people often choose not to publish the results of research that led to counterexam-
ples rather than proofs of desired theorems; as such, even published counterexam-
ples tend to be forgotten. Hence we cannot be confident in complete novelty of the
results. At the very least, we use this paper to raise open problems and embed
these problems into a new context.

The paper is organized as follows. In the rest of the Introduction we give rigorous
formulations of the results and outline the proofs. Sections 2 and 3 contain proofs
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of Theorems 1 and 2, respectively. Concluding Section 4 contains a brief discussion
and several open problems.

Theorem 1. There exists a length space (X, d) and a point p ∈ X satisfying the
following properties: 1) X is homeomorphic to an open Euclidean ball B ⊂ R

3;
2) No neighborhood U of p admits a homeomorphism ϕ : U → V ⊂ R

3 such that
∀x, y ∈ X, d(x, y) ≥ ρ(ϕ(x), ϕ(y)), where ρ is a Euclidean metric.

Note that this theorem actually gives us a length metric on a three dimensional
Euclidean ball that cannot be approximated from below by any Finsler metric.
Indeed, every Finsler metric is locally bi–Lipschitz equivalent to a Euclidean one.
As long as the result holds for the Euclidean metric, then it will hold for any Finsler
metric, since the Finsler metric is bounded by multiples of the Euclidean metric.

The proof of this first result proceeds as follows: we will modify the standard
Euclidean metric by constructing a metric as a limit of metrics which are changed
on a countable collection of disjoint tori. These tori are the boundaries of tubular
neighborhoods of linked circles; the circles form chains “almost” connecting two
fixed points. We will use an estimate on the distance between two linked circles
in R

3 via the lengths of the circles. If the metric space we construct could be
mapped by a Lipschitz-1 map onto a Finsler disc, this estimate would imply that
the distance between the fixed points will be zero, a contradiction.

The second result is the following:

Theorem 2. The Hausdorff measure h2 is not lower semi-continuous on length
metrics on a topological disk with respect to C0–convergence of the distance func-
tions.

One way to picture the result is as starting with a sequence {dn} of length metrics
defined on the same two dimensional disk D. We choose the metrics dn so that
they have a limit d∗ and so that the convergence of the l ength spaces (D, dn) to the
limit space (D, d∗) occurs in a C0 manner. Then the limit of the two dimensional
Hausdorff measures h2(D, dn) is strictly less than the two dimensional Hausdorff
measure h2(D, d∗).

Actually we prove a somewhat stronger statement. We construct a sequence
{Di} of embedded disks in R

3 whose boundaries are all the same Euclidean circle.
The result states that the C0 limit D0 of these disks exists, is an embedded disk
in R

3, and that the limit of the two dimensional Hausdorff measures h2(Di) of
the disks Di is strictly less than the two dimensional Hausdorff measure h2(D0)
of the limit disk D0. The reader will note that, although we use elements of both
interpretations, we favor the former one.

Let us now give an outline for the proof of the second theorem. We construct a
surface X as the union of the surface of a neighborhood of an infinite tree inside
the unit cube in R

3 and a certain Cantor set on the top face of the cube. The
neighborhood of the tree thins as we approach the top of the cube. We show that
this surface is homeomorphic to the standard Euclidean disk in R

2. The metrics dn
from the first point of view above will come from the metrics on the disk induced
on the surface of certain (finite) parts of the neighborhood of the tree; the limit
metric d∗ mentioned above will arise from the metric induced on the disk by the
metric on the constructed surface X.
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2. Proof of The Inability to Approximate From Below by a Finsler

Metric

In this section, we prove Theorem 1. We first will construct the space X by
constructing a metric on the standard Euclidean ball B in R

3 as a limit of metrics
changed on a countable collection of disjoint solid tori.

The tori will arise as tubular neighborhoods of a certain collection of linked
Euclidean circles. We will then show that the space X with the new metric d is
homeomorphic to B. Finally we will derive a contradiction if both a homeomor-
phism and a Finsler metric exist as in the statement of the theorem.

Construction 2.1. We now construct X. Let a, b ∈ B ⊂ R
3, and choose a

sequence of disjoint segments Si = [ai, bi] which are in B and which converge
pointwise to [a, b] as i → ∞ in the usual Euclidean metric.

We remark here that the metric we are constructing is not a Riemannian metric.
We regard the situation as follows: consider the complement to the segment [a, b].
This is an open manifold, and on it we will construct a true Riemannian metric.
However, we then want to glue the segment [a, b] back onto the space. What this
will amount to is in fact compactifying the space the construction of which we will
have just completed. We will also note that adding this key segment [a, b] back into
the space does not undermine the compatibility of the metrics; the metrics on the
two spaces (the open manifold and [a, b]) match.

The next step is to construct a tubular neighborhood around each segment Si.
Inside a portion of these tubular neighborhoods is where we will alter the definition
of the metric. Let us explain what will happen. For each Si, consider a tubular
neighborhood Ti of it of radius ǫi such that:
• no two tubular neighborhoods of disjoint segments Si, Sj intersect,
• none of the tubular neighborhoods Ti intersect [a, b],
• all tubular neighborhoods are contained in B, and
• ǫi → 0 as i → ∞.

Given a segment Si and its tubular neighborhood Ti, we find a sequence of ni

linked Euclidean circles Cj
i contained in Ti. See Figure 1. We desire that the total

length of all circles Cj
i be less than 10 times the Euclidean length of the segment Si.

Then to each of the circles Cj
i , associate a tubular neighborhood T j

i also contained
inside Ti such that:
• ai lies on the first circle C1

i ,
• bi lies on the last circle Cni

i ,

• the radius of each tubular neighborhood T j
i is ǫi/8, and

• no two distinct tubular neighborhoods T j
i and T k

i intersect.
We now desire to change the metric on the tubular neighborhood Ti. On the

complement Ti \∪jT
j
i of the smaller tubular neighborhoods, the metric is the usual

Euclidean metric. On each tubular neighborhood T j
i , we change the metric as

follows: first consider the smaller tubular neighborhoods T j
i (1) ⊂ T j

i (2) ⊂ T j
i (3) ⊂

T j
i around the circle Cj

i of radii ǫi/32, ǫi/16, 3ǫi/32 respectively. The plan is to

make distances very small when in some close region of the circle Cj
i , but to make

the price of reaching this region large by increasing distances around it. See Figure
2 for a sketch of these changes.

To be more specific, on the tubular neighborhood T j
i (1), we multiply the Eu-

clidean metric by a factor 1/(ini). On T j
i (2) \ T j

i (1), we multiply the Euclidean
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metric by a smooth, increasing function f which depends on the distance r from
Ci

j . Note that r ∈ [ǫi/32, ǫi/16). We also require that f(ǫi/32) = 1/(ini) and

that f(ǫi/16) = 128. On T j
i (3) \ T

j
i (2), we multiply the Euclidean metric by 128.

Finally, on T j
i \ T j

i (3), we multiply the Euclidean metric by a smooth, decreasing

function g depending on the distance r from Cj
i satisfying g(3ǫi/32) = 128 and

g(ǫi/8) = 1. To summarize, on each tubular neighborhood T j
i , we construct a new

metric by multiplying the Euclidean metric by a smooth function h depending on
the distance r from Cj

i , such that h
∣

∣

[0,ǫi/32]
= 1/(ini), h

∣

∣

[ǫi/32,ǫi/16]
is increasing,

h
∣

∣

[ǫi/16,3ǫi/32]
= 128, h

∣

∣

[3ǫi/32,ǫi/8]
is decreasing, and h(ǫi/8) = 1.

We have defined a new metric d on each tubular neighborhood Ti. On the
complement of all tubular neighborhoods in B \ [a, b], let d be the usual Euclidean
metric. In this way, we have defined a new metric d on all of B \ [a, b].

Figure 1. A sketch of the tubular neighborhood Ti

Figure 2. The change in metric.
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The final step is to glue the segment [a, b] back onto our manifold. This gluing
completes the construction of the space X.

We note that gluing the segment [a, b] back onto the manifold is the same as
compactifying the manifold. To demonstrate this fact concretely, we need to prove
the following

Lemma 2.2. Given two points p, q ∈ [a, b] ⊂ (X, d), the segment [p, q] ⊂ [a, b]
remains the shortest path between p and q.

Proof. To begin, we note one important property of d:
• On any given tubular neighborhood Ti, d is sandwiched between 1/(ini)dE from
below and 128dE from above.

With this property in mind, let us make an estimate on the length of a segment
going through a tubular neighborhood T j

i . The length of a segment through T j
i

which intersects Cj
i has length

2

∫

ǫi

8

0

h(x) dx ≥ 2

∫

ǫi

32

0

1

ini
dx+ 2

∫

3ǫi

32

ǫi

16

128 dx =
ǫi

16ini
+ 8ǫi.

Thus, any shortest path with respect to the Euclidean distance which originally
passed through the smaller tubular neighborhood T j

i (1) will be shorter in the met-
ric d. However, any shortest path with respect to the Euclidean distance which
originally passed through every smaller tubular neighborhood of T j

i will see its
length increase drastically. Also, given two points, if the shortest path between
them with respect to the Euclidean distance did not pass through every smaller
tubular neighborhood of T j

i , the shortest path between them with respect to d will

not pass through every smaller tubular neighborhood of T j
i either.

Notice, then, that the shortest path between points p, q on the segment [a, b]
under the metric d will be along [a, b]. �

We have been stating without proof that d is a metric on the space X. We now
prove this formally, since d is not bounded away from zero.

Lemma 2.3. d is a metric on X.

Proof. To show that d is a metric, we will show that distances under d are finite
and that no distinct points are identified as having zero distance with respect to d.

To see that d-distances are finite, it is enough to notice that the segment between
two points still has finite distance under d. Therefore, the d-distance between any
two points is less than or equal to the length of the segment between those two
points under d. The length of this segment under d is no more than 128 times its
Euclidean length, and thus, d-distances are finite.

Now we want to show that if d(p, q) = 0, then p = q. First notice that we did
not change the metric on [a, b] ∪ (∪Ti)

c. Thus if both p and q are in [a, b] ∪ (∪Ti)
c,

then there are neighborhoods of p and q in which the shortest path is a segment.
This segment must have non-zero length in these neighborhoods, and so d(p, q) 6= 0
unless p = q.

If p and q are in ∪Ti, let p ∈ Tj , q ∈ Tk, where both metrics are finite. At worst,
p, q are both in an tubular neighborhood T l

j(m) for m = 1, 2. But if this is true,
the distance between p, q is bounded from below by 1/(jnj)dE(p, q).

The final case to consider is if p ∈ [a, b], q ∈ ∪Ti. But again, let q ∈ Tj , and then
d(p, q) ≥ dE(p, q) as above. �
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Our next step is to show that the topology of B is unchanged under the change
in metric.

Lemma 2.4. Given a sequence {xn} in B, it converges under the metric d if and
only if it converges under the Euclidean metric dE.

Proof. First, assume that a sequence {xn} converges to a point x with respect
to the metric d. We must show that {xn} converges to x with respect to the

Euclidean metric dE . There are two cases. If x ∈ T j
i (m) for m = 1, 2, for some

i, j, then for large enough n, xn ∈ T j
i (m) for m = 1, 2 also. In this case, d(xn, x) ≥

1/(ini)dE(xn, x). So, d(xn, x) → 0 implies 1/(ini)dE(xn, x) → 0, which in turn
means that dE(xn, x) → 0. Thus {xn} converges to x in dE .

If we assume, on the other hand, that x is not in some T j
i (m) for m = 1, 2,

then d(xn, x) ≥ dE(xn, x). Thus if a sequence converges in the former metric, it
converges in the latter.

Now we must show that if a sequence {xn} converges to x with respect to dE ,
then the sequence converges to the same point in (B, d). Since d is bounded from
above by 128dE , if dE(xn, x) → 0, then d(xn, x) → 0 as well. �

Using the previous lemmas, we note that (X, d) is homeomorphic to (B, dE). For
this particular ball, we have thus proven the first property of Theorem 1.

To prove the second property for this ball B, we now must show that one cannot
choose both a (Finsler) metric ρ on B and a homeomorphism ϕ : X → B as in the
theorem. We will assume for the sake of a contradiction that both do exist. To
find the contradiction, we require another lemma, one that estimates the distance
between linked curves in terms of their lengths.

Lemma 2.5. There is a constant C such that for any Finsler metric ρ, there
is an ǫ > 0 such that given two linked curves γ1, γ2 of length less than ǫ, then
ρ(γ1, γ2) ≤ Cmin(lρ(γ1), lρ(γ2)).

Proof. First, we reduce the problem to looking at constants associated to a Eu-
clidean metric. Then we will show that finding a constant in that case is straight-
forward. So, given a Finsler metric ρ, choose ǫ > 0 such that every 100 ǫ-ball
admits a 10 bi–Lipschitz homeomorphism to a Euclidean region. Having done this,
we can now concentrate on the case of a Euclidean metric. Let γ1, γ2 be two linked
curves the lengths of which are less than ǫ. Assume without loss of generality that
γ1 is the shorter of the two curves. Thus, γ2 intersects any immersed disc whose
boundary is γ1. Choose a point x on γ1. Consider the immersed disc D defined by
connecting every point of γ1 to x by a shortest path. Each of these shortest paths
must have length less than or equal to |γ1|/2. Since γ2 intersects this immersed
disc D (and hence, one of the segments [x, γ1(t)]), it must be within |γ1|/4 of the
boundary ∂D = γ1. So we have shown in this case that the constant is 1/4. The
constant for the Finsler metric ρ will then be at most 10/4. �

With this lemma in hand, we can complete our result for this ball.

Lemma 2.6. There does not exist both a (Finsler) metric ρ on B and a homeo-
morphism ϕ : X → B such that d(x, y) ≥ ρ(ϕ(x), ϕ(y))∀x, y ∈ X.

Proof. Assume for the sake of a contradiction that both a metric ρ on B and a
homeomorphism ϕ as above exist. As mentioned, we will need the previous lemma
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to find the contradiction. As such, if ρ exists and we can show that d(ai, bi) ≤
∑

d(Ci
k, C

i
k+1), we will have found a contradiction.

First, note that the length of a circle Cj
i in the metric d is 2π/(ini). Then if the

assumption above is true, for large enough i, the lengths of the curves are less than
the given ǫ. Thus,

ρ(ϕ(ai), ϕ(bi)) ≤ d(ai, bi) ≤
ni
∑

k=1

l(Ci
k)+

ni−1
∑

k=1

d(Ci
k, C

i
k+1) ≤ 2π

(

1

i
+(ni−1)C

1

ini

)

,

which goes to zero as i goes to infinity. But this implies that ρ(ϕ(a), ϕ(b)) = 0, a
contradiction with the fact that ϕ was a homeomorphism. �

To prove Theorem 1 in full generality, fix a point p ∈ B and repeat the described
procedure on a sequence of disjoint balls whose radii tend to zero and which converge
to p. Since the result is true on each ball in the sequence, it is true for any
neighborhood of p.

3. Proof of the Non-Lower-Semicontinuity of the Hausdorff

Measure on Length Metrics on a Topological Disk

In this section, we provide a proof of Theorem 2. To give an example of a se-
quence of spaces which converge to a space but where the limit of the 2-dimensional
Hausdorff measure of the spaces is strictly less than the 2-dimensional Hausdorff
measure of the limit space, we will first construct an infinite tree in the unit cube
in R

3 whose branches tend to the top face of the cube. The surface we construct
will be the surface of a certain neighborhood of the tree; the neighborhood will thin
as we travel “up” the tree. Also included in the surface will be a Cantor set in the
top face of the cube. Proceeding with the proof, we will show that this surface is
homeomorphic to the standard 2-disc in R

2. Then, our sequence of spaces will arise
from each step of the tree, and we will show the desired claim.

Construction 3.1. In order to determine x and y coordinates of the points on
the tree, consider the following Cantor set construction. At step zero, we have
the unit interval. At step 1, remove the center interval of length 1/4 (so we have
[0, 3/8] ∪ [5/8, 1]). At step k of the procedure, one removes from the remaining
subintervals the 2k−1 center intervals such that each of the removed intervals has
the same length and the total length of the removed intervals on that step is 1/2k+1.
In this way, the resulting Cantor set will have positive Lebesgue measure. For each
of the 2k endpoints of the removed intervals at step k, we associate the two endpoints
of the removed subinterval in step k + 1 that lie between an endpoint from step
k and the closest endpoint from step k − 1. We also introduce the notation cik to
mean the center of the ith removed interval at step k.

Now, we construct the tree. As the initial vertex, choose the point (1/2, 1/2, 0).
From this vertex extend 4 edges, one to each point (x, y, 3/4), where x, y ∈ {3/8, 5/8}.
We then proceed by induction. More specifically, at step k, given a point of the tree
(x, y, 1−1/4k) (where each of x and y is an endpoint from a removed subinterval at
step k of the Cantor set construction described above), we add 4 edges from each
these points, extending to points (x1,2, y1,2, 1 − 1/4k+1), where x1,2 are the two
points associated to x from step k+1 of the Cantor set construction, and similarly
for y1,2. We then have 4 new points; we extend one edge to each point. In this way,
we have constructed a tree T in the unit cube.
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Now we will use the tree as a skeleton around which to build a body — a
topological surfaceX. First, around the tree we construct a tube-like neighborhood.
Fix a positive ǫ < 1. Around each vertex at height 1 − 1/4k, we consider the
Euclidean ball of radius ǫ/4k+2. Around each edge which connects vertices at
heights 1 − 1/4k and 1 − 1/4k+1, we consider the tubular neighborhood of radius
ǫ/4k+3. Note that the choice of radii of the tubular neighborhoods prevents the
intersection of tubular neighborhoods around distinct edges. We require, in regions
where the tubular neighborhood around a vertex and tubular neighborhood around
an edge intersect, that we adjust our neighborhoods so that they meet smoothly.
We also require that the ball around the first vertex (the one at height 0) be a
half-sphere. This requirement is present in order to keep our space within the unit
cube. It is also because of this requirement, and the fact that tubular neighborhoods
cannot thin as we have described, that we drop the term “tubular neighborhood”
in favor of “tube-like neighborhood.”

Because of the inductive nature of the construction of the tree, we will consider
the construction of the topological surface X as a step-by-step process by labelling
each successive tube-like neighborhood. Let X0 be the half-sphere of radius 1/16
centered at the point (1/2, 1/2, 0) in the unit cube. X1 is the space defined by
the (boundary of the) tube-like neighborhood of the (partial) tree consisting of 5
vertices (1 vertex at height 0 and 4 vertices at height 3/4) and the edges connecting
them. As such, to form X1, we consider the addition of what we shall call capped
neighborhoods ontoX0. Each capped neighborhood is the tube-like neighborhood
around an edge “capped” by the sphere around the vertex at the end of the edge
with higher z coordinate. See Figure 3 for an illustration.

Figure 3. A sketch of the space X1

We proceed inductively. Given the space Xn, we define the space Xn+1 as the
union of Xn, the tube-like neighborhoods around all vertices at height 1− 1/4n+1

and the set of tube-like neighborhoods around all edges connecting those vertices
to points of Xn. In other words, Xn+1 is the union of Xn and the 4n+1 capped
neighborhoods emanating from Xn. In essence, any space Xn are pieces of spheres
and cylinders glued together in a particular way.
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We make one final addition to complete our definition of the space X, and that
is to consider the closure of the union of the spaces Xn above. The limit points we
add are at height 1, and we will associate them to points of a certain Cantor set in
the disc D.

Now that the construction of X is complete, we show that X is homeomorphic to
the two-dimensional disc D. We proceed in two steps. First, we inductively define
a sequence of maps (which will in fact be homeomorphisms) between the spaces Xi

and the two-dimensional unit disc. We then show that the limit of the sequence of
homeomorphisms is itself a homeomorphism.

Lemma 3.2. Each space Xi is homeomorphic to the two-disc D.

Proof. To begin, we map X0 (recall that this is the half-sphere of radius 1/16
centered at the point (1/2, 1/2, 0) of the unit cube) to the standard unit disc D
in R

2 via a homeomorphism F0. To define the map F1, consider the unit disc D
as divided into five regions: four are smaller discs of radius 1/4 about the points

(±1/
√
8,±1/

√
8), and the fifth region is the complement of those four discs in

the disc D. On that complement, let F1 = F0. On each of the four smaller
discs, define F1 to be a homeomorphism between one of the four capped tube-like
neighborhoods of X1 to one of the four smaller discs defined previously. We require
that at the boundary of the smaller discs, F1 is smooth. We proceed by induction.
Given a homeomorphism Fn between the spaceXn andD, define a homeomorphism
Fn+1 : Xn+1 → D as follows: consider the smallest 4n discs of radius 1/4n on which
Fn 6= Fn−1. View each of these discs D as consisting of five parts: four smaller
discs of radius 1/4n+1 centered at points which are at distance 1/22n+1 from the
center of D and the complement of those smaller discs. On that complement, let
Fn+1 = Fn. Otherwise, define Fn+1 to be a homeomorphism between one of the
capped neighborhoods (whose cap has center at height 1− 1/4n+1) and one of the
four smaller discs. We again require that Fn+1 is smooth on the boundary of the
four smaller discs. �

Now, we define a map F between the space X and D as the limit of the homeo-
morphisms Fn above.

Lemma 3.3. F : X → D is a homeomorphism.

Proof. Notice that because F is defined between compact spaces, we need only show
that it is injective and that it is continuous to prove that it is a homeomorphism.

First, to show that F is injective, choose two points x1 6= x2 ∈ X. If x1 or x2 is
in the union ∪nXn, assume without loss of generality that x1 ∈ Xk. Then F = Fk

in a small neighborhood of x1, in which case it’s a homeomorphism (and hence,
injective). Now, assume that x1 and x2 are distinct points in X \ (∪nXn). Fix two
sequences {xn

1} and {xn
2} converging to x1 and x2 respectively. For any n, consider

the capped neighborhoods in Xn \ Xn−1. The sequence {xn
1} must eventually

remain in one of (the extensions of) those specific capped neighborhoods; call this
(extension of a) capped neighborhood X1

n. A similar situation occurs for {xn
2},

yielding X2
n. Since x1 and x2 are distinct, for some N , X1

N 6= X2
N , and thus the

images of the sequence under maps Fk will always be a given distance apart. This
implies that the distance between F (x1) = limn F (xn

1 ) and F (x2) = limn F (xn
2 )

must be non-zero. Thus F is injective.
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To show that F is continuous, we consider convergent sequences {xn} in X
which converge to a point x. We want to demonstrate that the sequence {F (xn)}
converges to F (x). If x ∈ ∪nXn, then it is in Xk for some k. Hence, {xn} must
eventually be in Xk+1. Therefore, F (xn) = Fk+1(xn) for large enough n, and
so the sequence of images must converge to F (x). If x ∈ X \ (∪nXn), then we
can associate to x a word from the language with 4 symbols. We proceed by
induction. Begin by associating to the capped neighborhoods in X1 the values
of 1, 2, 3, or 4 based on what quadrant the projection of the cap lies in (using the
Cartesian coordinate system whose origin is (1/2, 1/2)). Then, given an assignment
A1A2 . . . AN to a capped neighborhood in XN (Ai ∈ {1, 2, 3, 4}), we can then
assign to each of the four capped neighborhoods stemming from it in XN+1 a
value A1A2 . . . ANAN+1. The value AN+1 ∈ {1, 2, 3, 4} is determined by what
quadrant the projection of the cap from the new capped neighborhood is in, using
the Cartesian coordinate system whose origin is determined as follows: if the center
of the cap is (x, y, 1− 1/4N ), where x is an endpoint of the ith subinterval and y is

an endpoint of the jth subinterval at step N , then the origin is found at (ciN , cjN ).
Now, notice that the points in D which are not in the image of any Fn can also be
numbered in a similar way. Indeed, F is seen to map points in X \ (∪nXn) with
associated word A1A2 . . . to points in D with the same associated word. Therefore,
images of convergent sequences in X converge in D to the image of the limit. �

Because F is a homeomorphism (as well as all the Fn), we endow X and each
Xn with the induced metric from D, induced by the associated homeomorphism.
That is, the metric d∗ on X is defined by d∗(x, y) = dE(F (x), F (y)), where as usual
dE is the standard Euclidean metric. Similarly, we have metrics dn on Xn induced
by the homeomorphisms Fn : Xn → D.

In order to refer to all Xn and X as D, we need to show that the intrinsic metric
d induced from the ambient space determines the same topology on X or Xn as the
intrinsic metric d∗ or dn respectively. It will suffice to show the equivalence under
d and d∗, and indeed, using only points x, y ∈ X \ (∪nXn). The arguments for at
least one point in ∪nXn is similar.

Let x, y be two distinct points in X \ (∪nXn). We want to find constants
C1 and C2 such that d(x, y) ≤ C1d

∗(x, y) and d∗(x, y) ≤ C2d(x, y). Let x =
A1A2 . . . AN . . . and y = B1B2 . . . BN . . . , where Ai, Bi ∈ {1, 2, 3, 4} as in the proof
of the continuity of F . In addition, let N be the number such that AN 6= BN but
Ai = Bi for all i < N . Then the distance between x and y in the ambient metric
is bounded above by the twice the sum of the lengths of half of a great circle on
spheres at each of the heights 1− 1/4N upward plus the sum of the lengths of the
segments between the centers of those spheres at each height. One shows that this
sum is then strictly less than 4/4N . However, the distance in the induced metric
d∗(x, y) between the points x and y is no less than the distance between two cir-
cles of radius 1/4N+1 as detailed in the construction of the homeomorphisms Fn.
With some calculation, one shows that d∗(x, y) ≥ (1/4N )/5. We conclude that
d(x, y) ≤ 20d∗(x, y).

We now must find the constant C2. Since x and y have the same representation
in 4 digits until the N th term, their images under the homeomorphism F can be
no more than 1/4N apart. However, the distance between x and y in X is certainly
no less than the twice the length of a segment from x to the center of the sphere at
the height where they separate. Namely, d(x, y) ≥ 2/4N . Thus, d∗(x, y) ≤ 2d(x, y),
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and we see that the topologies are equivalent under the metrics d and d∗. Since all
Xn and X are homeomorphic to D, we now refer to them as D.

To complete the proof of Theorem 2, we now need to show

Lemma 3.4. The limit of the two-dimensional Hausdorff measures of (D, dn) is
strictly less than the two-dimensional Hausdorff measure of (D, d∗).

Proof. Recall that the radius of the tubes was a factor of some chosen ǫ. Therefore,
the two-dimensional Hausdorff measure of the spaces (D, dn) can be made as small
as one wishes by decreasing the value of ǫ. On the other hand, the two-dimensional
Hausdorff measure of (D, d∗) is bounded from below by the Hausdorff measure of
the Cantor set which makes up the points of X \ (∪nXn), which is strictly positive.
Hence with the proper choice of ǫ, limn h2(D, dn) < h2(D, d∗), and the failure of
lower semi-continuity of the Hausdorff measure on topological disks is shown. �

4. Discussion of Open Problems

In this concluding section, we would like to discuss several open problems and
directions for further research with regard to the two questions that began our
paper. These questions are related to problems posed in [5], [6], and [3].

In two dimensions, it seems likely that every length metric is the limit of an
increasing sequence of Finsler metrics. The following fact serves as supporting
evidence: every two-dimensional disc with a length metric admits a Lipschitz-1
surjection to a Euclidean region. So far, we cannot rule out the situation when this
surjection collapses some (connected) parts of the disc to single points, but we have
a feeling that this can be fixed.

In higher dimensions, the situation is less clear. One possible question to ask
is, what “reasonable” restrictions (if any) can be placed on a class of sequences
of Finsler metrics such that all manifolds with length metrics can be obtained as
limits of those sequences and the volume (i.e., the Hausdorff measure) is lower
semi-continuous?

With regard to the second question, we remark that it is true in any dimen-
sion that the Hausdorff measure is lower semi-continuous with respect to uniform
convergence if all metrics in question (including the limit metric) are Riemannian.
Furthermore, the same is true if the limit metric is Finsler, however the proof is
more involved (see [7]). In two dimensions, the lower semi-continuity of symplectic
Finsler surface area (a.k.a. the Holmes-Thompson area, [8]) is known for Finsler
metrics ([3]). However, it is interesting to note that at this point, the same state-
ment has no answer even in two dimensions if we keep the assumptions of Finsler
elements in the sequence and a smooth, Finsler limit metric but consider instead
the Hausdorff measure.
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