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Abstract. We develop and generalize methods of estimating (Riemannian

and Finsler) filling volumes using nonexpanding maps to Banach spaces of

L∞ type. For every Finsler volume functional (such as the Busemann volume
or the Holmes–Thompson volume) we construct a natural extension from the

class of Finsler metrics to all Lipschitz metrics and define the notion of area for

Lipschitz surfaces in a Banach space. We establish a correspondence between
minimal fillings and minimal surfaces in L∞ type spaces. We introduce a

Finsler volume functional for which Riemannian and Finsler filling volumes

are equal and prove that this functional is semi-elliptic.

Introduction

0.1. Motivations. This paper is motivated by filling minimality and boundary
rigidity problems for Riemannian manifolds. Let (M, g) be a compact Riemannian
manifold with boundary, S = ∂M . Denote by dg the associated distance function,
dg : M ×M → R.

Let d : S × S → R be an arbitrary metric on S. We say that a compact
Riemannian manifold (M, g) is a filling of a metric space (S, d) if dg(x, y) ≥ d(x, y)
for all x, y ∈ S. The filling volume FillVol(S, d) of (S, d) is defined by

FillVol(S, d) = inf{vol(M, g) : (M, g) is a filling of (S, d)},

cf. [17]. (This definition makes sense only for null-cobordant manifolds S, in gen-
eral one should let M range over all pseudo-manifolds or complete non-compact
manifolds.) We say that (M, g) is a minimal filling if it realizes the above infimum,
that is, vol(M, g) = FillVol(∂M, dg|S×S).

Many classic inequalities can be formulated in terms of minimal fillings. For in-
stance, Besikovitch’ inequality [5] means that a bounded region in Rn with the Eu-
clidean metric is a minimal filling of its boundary (equipped with either Euclidean
or `∞ metric), Pu’s inequality [22] is equivalent to the fact that the standard hemi-
sphere is a minimal filling of an intrinsic metric of the circle (within the class of
fillings homeomorphic to a disc).

Definition 0.1. Let (M, g) be a Riemannian manifold (possibly with boundary).
We say that (M, g) has the geodesic minimality property if every geodesic segment
is a shortest curve among all curves with the same endpoints.

We say that (M, g) has the strong geodesic minimality property if the geodesic
minimality property is satisfied for some manifold containing M in the interior (and
equipped with an extension of the metric g).

Recent results (cf. [19, 10]) indicate that the following conjecture is plausible.
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Conjecture 0.2. If a manifold (M, g) has the geodesic minimality property then it
is a minimal filling. Moreover if (M, g) has the strong geodesic minimality property
then it is a unique (up to an isometry) minimal filling of its boundary.

Substituting the definition of a minimal filling yields the following formulation
of the conjecture. Suppose that (M, g) has the strong geodesic minimality property
and let a Riemannian manifold (M ′, g′) be such that ∂M ′ = ∂M = S and dg′ |S×S ≥
dg|S×S . Then vol(M ′, g′) ≥ vol(M, g) and in the case of equality the manifolds
(M, g) and (M ′, g′) are isometric.

It is easy to check that, if Conjecture 0.2 is true for (M, g) then g is uniquely
(up to an isometry) is determined by the boundary distance function dg|S×S . Thus
Conjecture 0.2 would imply the following well-known Michel’s boundary rigidity
conjecture [21].

Conjecture 0.3. If (M, g) has the strong geodesic minimality property and a man-
ifold (M ′, g′) is such that ∂M ′ = ∂M = S and dg′ |S×S = dg|S×S, then (M, g) and
(M ′, g′) are isometric.

0.2. Auxiliary embeddings. M. Gromov [17] introduced a technique where fill-
ing volumes are estimated using Kuratowski’s construction which allows one to
isometrically embed any metric space X into a Banach space C0(X) ⊂ `∞(X).
(This construction applied to the problems we consider is described below in §1.2.)
Variants of this construction were used in [19] and [10] to prove partial cases of
the conjectures 0.2 and 0.3. In [17] Gromov showed that the filling volume of a
Riemannian manifold S equals, up to a multiplicative constant (depending on the
dimension), to the infimum of the areas of surfaces spanning an isometric image
of S in a suitable Banach space. One of the purposes of this paper is to sharpen
this result (in particular, to get rid of the constant), namely to prove the following
theorem.

Theorem 0.4. 1. Let d be a Lipschitz metric on a manifold S (cf. Definition 2.1),
f an isometric embedding of (S, d) to a Banach space L = L∞(µ) where µ is an
arbitrary finite measure. Then, for a suitable definition of the notion of area in L,
the filling volume FillVol(S, d) equals the infimum of the areas of Lipschitz surfaces
spanning f(S) in L.

2. Let (M, g) be a Riemannian manifold with boundary, f : (M, g) → L be an
isometric embedding (where L is the same as above). Then (M, g) is a minimal fill-
ing if and only if the surface f(M) minimizes the area among all Lipschitz surfaces
in L with the same boundary.

Remark 0.5. For a manifold M having the strong geodesic minimality property,
there is a natural smooth map to L∞(∂M), namely the boundary distance repre-
sentation, cf. Example 1.9. One can show (similarly to the arguments in [10]), that
the surface defined by this map is minimal in a variational sense.

Remark 0.6. It is easy to formulate the equality case of Conjecture 0.2 in terms
of auxiliary embeddings. Manifolds (M, g) and (M ′, g′) with a common boundary
are isometric if and only if their images under boundary distance representation
coincide.

The formulation of Theorem 0.4 is preliminary, the complete formulation is given
in §5 (Theorem 5.6 and Corollary 5.7). The definition of the area of a Lipschitz
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surface f : M → L∞(µ) is a nontrivial issue which is the subject of a major part
of this paper. For such a definition to be useful, it should agree with both the
extrinsic geometry of the surface (that is, be computable in terms of derivatives of
f) and with the intrinsic geometry (i.e. with the metric on M induced by f).

One of the difficulties that one meets is the lack of Rademacher’s theorem (about
differentiability almost everywhere) for L∞-valued Lipschitz maps. Another one is
that the metrics induced on M are not sufficiently regular, essentially they are
arbitrary Lipschitz metrics. In §2 and §3 we develop a technique for handling
these difficulties. In §2 we consider the tangent Finsler structure of an arbitrary
Lipschitz metric on M . The construction goes along the same lines, with minor
modifications, that the one in [15]; the goal of §2 is to prove the technical results
for further use. In §3 we consider the notion of weak differentiability of a Lipschitz
map f : M → L∞ (this notion is obtained from the usual differentiability by
switching to a weak topology) and prove a theorem about weak differentiability
almost everywhere (Theorem 3.3). The main result of §3 is that the weak differential
of a map and the tangent Finsler structure of the induced metric on M agree almost
everywhere (Theorem 3.7).

0.3. Finsler volumes. Even for a smooth map of manifold to a Banach space,
the metric induced on the manifold is not Riemannian since the arising norms in
tangent spaces are not Euclidean. Therefore it is natural to consider filling volumes
for Finsler metrics.

Recall that a (symmetric) Finsler structure on a smooth manifold M is a con-
tinuous function Φ : TM → R+ such that for every p ∈ M the restriction Φ|TpM

is a norm. Finsler structures are also called Finsler metrics. A manifold equipped
with a Finsler structure is called a Finsler manifold.

Riemannian metrics are a partial case of Finsler ones. Namely, for a Riemannian
manifold M , one sets Φ(v) to be equal to the Riemannian length of a tangent vector
v. A Finsler metric Φ is Riemannian if and only if its restrictions on all fibers of
the tangent bundle are Euclidean norms.

Unlike in the Riemannian case, there are different (non-equivalent) definitions
of the volume for Finsler manifolds, for instance, the Busemann volume [12], the
Holmes–Thompson volume [18], Gromov’s mass and comass [17], etc. Different
applications need different definitions of volume. At the same time, many properties
do not depend on the choice of a specific definition and hold for all “natural” notions
of volume. Being “natural” includes a set of requirements given in Definition 4.1,
the most important one is the monotonicity of volume with respect to the metric.

In §4 we give the necessary definitions and construct an extension of a Finsler
volume functional from the class of Finsler metrics to all Lipschitz metrics. This
allows one to define the area of a Lipschitz surface in a Banach space. In §5 we
prove that the filling volume within the class of all Lipschitz metrics and coincides
with that within the class of smooth strictly convex Finsler metrics (Theorem 5.2).
Also there we prove an analogue of Theorem 0.4 for Finsler manifolds (Theorem
5.6). The Riemannian version (Corollary 5.7) is obtained from the Finsler one by
using a special definition of volume, namely the inscribed Riemannian volume (cf.
Example 4.4).

In §6 we give a brief survey of semi-ellipticity problems for Finsler volumes and
prove Theorem 6.2 which asserts that the inscribed Riemannian volume has the
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compression property: for every Banach space X and every n-dimensional linear
subspace V ⊂ X there exists an area non-increasing linear projection P : X → V .

0.4. Notation and conventions. Throughout the paper we use the following
notation:
ωn denotes the Lebesgue measure of a unit ball in Rn;
Rn
∞ denotes the normed vector space (Rn, ‖·‖∞) where the norm ‖·‖∞ is defined

by ‖(x1, . . . , xn)‖∞ = max1≤i≤n |xi|. The distance defined by this norm is denoted
by d∞;
N (V ) and N0(V ), where V is a finite-dimensional vector space, denote the set

of all norms and semi-norms on V , respectively. These sets are regarded with the
topology of point-wise convergence (which is the same as uniform convergence on
compact sets).

All measures on manifolds are meant to be Borel ones, the term “measurable”
always means measurable with respect to the Borel σ-algebra.

1. Metric spaces

This section contains preliminaries from metric geometry. A detailed exposi-
tion of most subjects considered here can be found in the book [11]. All matters
presented in this section are well-known, however the most general formulations of
some facts are hard to find in the literature and we supply them with proofs.

We use the terms “metric space” and “metric” in an extended sense, namely we
allow zero distances between different points.

Definition 1.1. A metric on a set X is a function d : X ×X → [0,+∞) satisfying
the following conditions:

1. d(x, x) = 0 for all x ∈ X.
2. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X.
3. Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.
A metric space is a set equipped with a metric on it.
If the metric d is clear from the context, we write |xy| or |x, y| instead of d(x, y).

The standard definitions and theorems about metric spaces are easy to generalize
to the case of metrics with zero distances. Metrics satisfying the condition d(x, y) >
0 for x 6= y (i.e., metrics in the usual sense), are called positive metrics.

We often consider metrics or sequences of metrics defined on a set X with a
prescribed topology (for example, on a smooth manifold). In such a context, we
always assume that a metric agrees with the topology in the following sense.

Definition 1.2. We say that a metric d on a topological space X agrees with the
topology if the topology defined by d is (non-strictly) weaker that the topology of X.

It is easy to see that a metric d agrees with the topology of X if and only if the
function d : X ×X → R is continuous (with respect to the product topology).

1.1. Isometric maps.

Definition 1.3. Let X,Y be metric spaces. A map f : X → Y is said to be
nonexpanding if it does not increase distances, that is, |f(x)f(y)| ≤ |xy| for all
x, y ∈ X.

A map f : X → Y is said to be isometric if it preserves the distances, that is,
|f(x)f(y)| = |xy| for all x, y ∈ X.
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If (Y, d) is a metric space and X is an arbitrary set, than every map f : X → Y
defines a metric d′ on X for which f is isometric, namely d′(x, y) = d(f(x), f(y))
for all x, y ∈ X. We refer to d′ as the metric induced by f from d and denote it by
f∗d.

Note that the above notion of an isometric map differs from terms “isometric
embedding” and “isometric immersion” used in differential geometry where one
usually means preserving the lengths of curves and not of the distances.

A well-knows Kuratowski’s construction allows one to map any metric space
(X, d) isometrically to a Banach space. Namely consider the space C(X) of bounded
continuous functions on X with the standard norm ‖f‖ = supX |f | and fix a point
x0 ∈ X. An isometric map F : X → C(X) is defined by F (x)(y) = d(x, y)−d(x0, y).
In the case of a bounded X one can use a simpler formula F (x)(y) = d(x, y). We
need finite-dimensional approximations of this construction.

Proposition 1.4. Let (X, d) be a separable metric space. Then there exists a non-
decreasing sequence {dn} of metrics on X converging to d uniformly on compact
sets and such that for every n the space (X, dn) admits an isometric map to Rn

∞.

Proof. Let P = {pn}∞n=1 be a countable dense set in X. For each n, consider a
function fn : X → R given by fn(x) = d(x, pn) and define a map Fn : X → Rn

∞ by

Fn(x) = (f1(x), f2(x), . . . , fn(x)).

Define dn = F ∗nd∞. Then Fn is an isometric map of (X, dn) to Rn
∞. The construc-

tion yields that dn+1(x, y) ≥ dn(x, y), that is, {dn} is a non-decreasing sequence.
It remains to prove that dn converges to d uniformly on compact sets. The

triangle inequality implies that the function fn is nonexpanding. Therefore

dn(x, y) = sup
i≤n
|fi(x)− fi(y)| ≤ d(x, y).

Let K be a compact subset of X, and let ε > 0. Since K is compact and P is
dense, there is an integer n0 > 0 such that the set {p1, p2, . . . , pn0

} is an ε-net
for K. Let x, y ∈ K, then there exists an i ≤ n0 such that d(x, pi) ≤ ε. By the
triangle inequality, d(y, pi) ≥ d(x, y)− d(x, pi) ≥ d(x, y)− ε. Hence

fi(y)− fi(x) = d(y, pi)− d(x, pi) > d(x, y)− 2ε,

then dn(x, y) = ‖Fn(x)−Fn(y)‖ ≥ d(x, y)−2ε for all n ≥ n0. Thus d−2ε ≤ dn ≤ d
on K for all n ≥ n0. Since ε is arbitrary, this means dn converges to d uniformly
on K ×K. �

Remark 1.5. If the space (X, d) is bounded, then the above maps Fn : X → Rn
∞

converge in a natural sense to an isometric map F : X → `∞. In the general
case, one can make the maps converging by subtracting a constant d(x0, pn) from
fn where x0 ∈ X is a fixed point. Identifying `∞ with `∞(P ) and observing that
the space C(X) is isometrically mapped to `∞(P ) by the restriction operator, one
easily sees that the limit map F coincide with Kuratowski’s map.

1.2. Extending Lipschitz maps.

Proposition 1.6. Let µ be a measure on an arbitrary set S, X a separable met-
ric space, Y ⊂ X, f : Y → L∞(µ) a nonexpanding map. Then there exists a
nonexpanding map F : X → L∞(µ) such that F |Y = f .
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Proof. Choose a countable dense subset Y ′ ⊂ Y . For x ∈ X and s ∈ S define

F (x)(s) = inf{f(y)(s) + |xy| : y ∈ Y ′}.
For every x ∈ X, this formula defines a function F (x) : S → [−∞,+∞], fur-
thermore this function is µ-measurable as an infimum of a countable collection of
µ-measurable functions. Observe that

(1.7) F (x)(s) = f(x)(s) for all x ∈ Y ′ and µ-almost all s ∈ S.
Indeed, for all x, y ∈ Y ′ and µ-almost all s ∈ S one has

|f(x)(s)− f(y)(s)| ≤ |xy|
since f is nonexpanding, whence f(y)(s)+ |xy| ≥ f(x)(s). Taking the infimum over
y yields that F (x)(s) ≥ f(x)(s). On the other hand,

F (x)(s) = inf{f(y)(s) + |xy| : y ∈ Y ′} ≤ f(x)(s) + |xx| = f(x)(s)

for every x ∈ Y ′, and (1.7) follows.
Now let us prove that

(1.8) |F (x)(s)− F (x′)(s)| ≤ |xx′|
for all x, x′ ∈ X and s ∈ S (in the case F (x)(s) = F (x′)(s) = ±∞ we assume the
difference to be zero). Indeed, for every y ∈ Y ′ one has∣∣(f(y)(s) + |xy|)− (f(y)(s) + |x′y|)

∣∣ =
∣∣|xy| − |x′y|∣∣ ≤ |xx′|

by the triangle inequality. Therefore the Hausdorff distance in R between the sets
T = {f(y)(s) + |xy| : y ∈ Y ′} and T ′ = {f(y)(s) + |x′y| : y ∈ Y ′} is no greater than
|xy|. Since F (x)(s) = inf T and F (x′)(s) = inf T ′, this implies (1.8).

Substituting an arbitrary point of Y ′ for x′ in (1.8) yields that the value F (x)(s)
is finite for almost every s ∈ S. Thus F is a map from X to L∞(µ), and (1.8)
means that this map is nonexpanding. It remains to observe that f and F agree
on Y since they agree on Y ′ by (1.7) and continuous. �

Example 1.9. Let S be a closed smooth manifold, d a metric on S, (M, g) a Rie-
mannian manifold filling (S, d), that is, ∂M = S and dg|S×S ≥ d (cf. Introduction).
Consider a Kuratowski embedding f : (S, d) → L∞(S) given by f(x)(y) = d(x, y).
The inequality dg|S×S ≥ d implies that this map is nonexpanding with respect to
the metric dg. Therefore there exists a nonexpanding map F : (M, g) → L∞(S)
extending f .

Now suppose that (M, g) has the geodesic minimality property. Then such a map
F : (M, g) → L∞(S) can be defined by the formula F (x)(s) = dg(x, s), x ∈ M ,
s ∈ S. It is easy to verify that this map is isometric. Indeed, for all x, y ∈ M and
s ∈ S one has

|F (x)(s)− F (y)(s)| = |dg(x, s)− dg(y, s)| ≤ dg(x, y)

by the triangle inequality, whence ‖F (x)−F (y)‖∞ ≤ dg(x, y). On the other hand,
let s0 be a point where the geodesic passing through x and y hits the boundary of
the manifold. Then, by the geodesic minimality property, dg(x, y) = |dg(x, s0) −
dg(y, s0)|, i.e. |F (x)(s0) − F (y)(s0)| = dg(x, y), hence ‖F (x)− F (y)‖∞ = dg(x, y).
The so constructed isometric map F : (M, g)→ L∞(S) is referred to as the bound-
ary distance representation of (M, g).

Now let (M, g) and (M ′, g′) be as in Conjecture 0.2, that is, (M, g) has the
geodesic minimality property, ∂M = ∂M ′ = S and dg′ |S×S ≥ dg|S×S . Then, as



VOLUMES AND AREAS OF LIPSCHITZ METRICS 7

shown above, there exists an isometric map F : (M, g) → L∞(S) and a non-
expanding map F ′ : (M ′, g′) → L∞(S) whose restrictions on S coincide with
Kuratowski’s embedding of (S, dg|S×S). For any natural definition of the area
area(F ) of a surface F : M → L∞(S), isometric maps should preserve the area
and nonexpanding maps should not increase it, hence area(F ) = vol(M, g) and
area(F ′) ≤ vol(M ′, g′). Therefore, in order to prove Conjecture 0.2 it suffices to
verify the inequality area(F ) ≤ area(F ′). This argument proves one of the implica-
tions of Theorem 0.4, namely that the area-minimality of a surface F implies that
(M, g) is a minimal filling. The key requirement to the definition of area is the
property that nonexpanding maps do not increase area.

1.3. Lengths of curves.

Definition 1.10. A curve (or path) in a topological space X is a continuous map
γ : [a, b]→ X where a ≤ b.

Note that, if a metric d on X agrees with the topology (in the sense of Definition
1.2) then every curve in X is continuous with respect to the metric d.

Definition 1.11. Let (X, d) be a metric space, γ : [a, b] → X a curve (X, d). A
partition of γ is a finite sequence of the form γ(t0), . . . , γ(tn), where {ti}ni=0 is a
partition of the segment [a, b], that is, a = t0 ≤ t1 · · · ≤ tn = b. The length of

a partition γ(t1), . . . , γ(tn) is the sum
∑n−1
i=0 d(γ(ti), γ(ti+1)). The length Ld(γ)

of γ is the supremum of the lengths of all its partitions. We omit the index d in
the notation Ld if the metric d is clear from the context. A curve γ is said to be
rectifiable if L(γ) <∞.

Standard properties of length (see e.g. [11, §2.3]) can be trivially generalized to
the case of metrics with zero distances. We will need the following elementary facts.

Proposition 1.12. For every curve γ : [a, b]→ X the following holds.
1. Additivity: L(γ) = L(γ|[a,c]) + L(γ[c,b]) for all c ∈ [a, b].
2. Triangle inequality: L(γ) ≥ |γ(a)γ(b)|.
3. The length of a partition of γ converges to L(γ) as the mesh goes to zero. By

the mesh of a partition {ti} of a segment [a, b] we mean the number maxi |ti− ti+1|.
Proposition 1.13. Let γ be a curve in a metric space (X, d) and let {dn} be
a non-decreasing sequence of metrics on X converging to d point-wise (that is,
dn(x, y)→ d(x, y) as n→∞ for all x, y ∈ X). Then Ldn(γ)→ Ld(γ) as n→∞.

Proof. The inequality dn ≤ d implies that γ is continuous with respect to dn
and Ldn(γ) ≤ Ld(γ). It suffices to prove that limLdn(γ) ≥ Ld(γ). Let [a, b]
be the domain of γ, {ti}Ni=0 a partition of [a, b]. Summing up the inequalities
Ldn(γ|[ti,ti+1]) ≥ dn(γ(ti), γ(ti+1)) yields the inequality

Ldn(γ) ≥
N−1∑
i=0

dn(γ(ti), γ(ti+1)).

Passing to the limit as n→∞ yields that

limLdn(γ) ≥
N−1∑
i=0

d(γ(ti), γ(ti+1)).

Taking the supremum over all partitions {ti} in the right-hand part yields that
limLdn(γ) ≥ Ld(γ), and the proposition follows. �
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Definition 1.14. A curve γ : [a, b]→ X in a metric space is said to be absolutely
continuous if for every ε > 0 there exists a δ > 0 such that for every finite collection
{(ai, bi)}i of disjoint intervals contained in [a, b] and satisfying

∑
i |ai− bi| ≤ δ, one

has
∑
i |γ(ai)γ(bi)| < ε.

It is easy to check that every absolutely continuous curve is rectifiable. Lipschitz
curves are obviously absolutely continuous.

Definition 1.15. Let γ : [a, b] → X be a curve in a metric space and t ∈ [a, b].
Define the upper metric speed sγ(t) of γ at t by

sγ(t) = lim
t′→t

|γ(t)γ(t′)|
|t− t′|

.

The similar lower limit is called the lower metric speed and denoted by sγ(t).
If the upper speed and the lower speed coincide, that is, if there exists a limit

limt′→t
|γ(t)γ(t′)|
|t−t′| , then this limit is referred to as the metric speed of γ at t and

denoted by sγ(t).

Proposition 1.16. If a curve γ : [a, b] → X in a metric space X is absolutely
continuous, then the metric speed sγ(t) is defined and finite for almost all t ∈ [a, b]
and furthermore

L(γ) =

∫ b

a

sγ(t) dt.

Proof. Define a (non-decreasing) function λ : [a, b]→ R by λ(t) = L(γ|[a,t]). Let ε,
δ, {(ai, bi)} be as in Definition 1.14. Subdividing the intervals (ai, bi) arbitrarily and
substituting the resulting collections of segments into the same definition, one gets
the inequality

∑
i L(γ|[ai,bi]) ≤ ε. Since L(γ|[ai,bi]) = λ(bi) − λ(ai), it follows that

the function λ is absolutely continuous. Hence it is differentiable almost everywhere
on [a, b] and

L(γ) = λ(b)− λ(a) =

∫ b

a

λ′(t) dt.

Hence it suffices to prove that sγ = sγ = λ′ almost everywhere on [a, b]. The
inequality L(γ|[t,t′]) ≥ |γ(t)γ(t′)| implies that λ′ ≥ sγ wherever λ′ is defined. Thus
it suffices to prove that sγ ≥ λ′ almost everywhere on [a, b].

Suppose the contrary. Then there is an ε > 0 and a Borel set T ⊂ [a, b] of
positive measure such that sγ(t) < λ′(t)− ε for all t ∈ T . By the regularity of the
Lebesgue measure, T contains a closed subset of positive measure, hence we may
assume that T itself is closed. Choose a δ > 0 such that for every partition of [a, b]
of mesh no greater than δ, the length of the corresponding partition of γ differs
from L(γ) by less than 1

3ε ·m(T ), where m denotes the Lebesgue measure on [a, b].
For every t ∈ T choose a t1 = t1(t) ∈ [a, b], such that |t1 − t| < δ and

|γ(t)γ(t1)|
|t− t1|

<
|λ(t)− λ(t1)|
|t− t1|

− ε

(such a t1 exists since sγ(t) ≤ λ′(t) − ε). Then slightly extend the segment [t, t1]
(or [t1, t]), namely include it in an open interval (a(t), b(t)) where a(t) and b(t) are
so close to t and t1 that the above inequality hold true for a(t) and b(t), that is,
|a(t)− b(t)| < δ and

(1.17)
|γ(a(t)), γ(b(t))|
|a(t)− b(t)|

<
|λ(a(t))− λ(b(t))|
|a(t)− b(t)|

− ε.
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The interval of the form (a(t), b(t)) form an open covering of T ; choose a minimal
finite sub-covering {(ai, bi)}Ni=1 of this covering. Then change the numeration of
the intervals (ai, bi) so that a1 ≤ a2 ≤ · · · ≤ aN . The minimality of the covering
implies that (ai, bi) ∩ (aj , bj) = ∅ whenever |i − j| > 1, in particular, the intervals
indexed by even numbers are disjoint. We may assume that they cover at least half
of the measure of T (otherwise use odd indices instead). By (1.17) we have

|γ(a2i), γ(b2i)|
|a2i − b2i|

<
|λ(a2i)− λ(b2i)|
|a2i − b2i|

− ε =
L(γ|[a2i,b2i])
|a2i − b2i|

− ε,

whence∑
i

(
L(γ|[a2i,b2i])− |γ(a2i), γ(b2i)|

)
> ε ·

∑
i

|a2i − b2i| ≥
1

2
ε ·m(T ).

Include the collection of segments {[a2i, b2i]} to a partition {tj} of [a, b] of mesh
less than δ. Then

L(γ)−
∑
j

|γ(tj), γ(tj+1)| =
∑
j

(
L(γ|[tj ,tj+1])− |γ(tj), γ(tj+1)|

)
≥
∑
i

(
L(γ|[a2i,b2i])− |γ(a2i), γ(b2i)|

)
>

1

2
ε ·m(T ).

(The first inequality here is obtained by removing the summands for which the
segment [tj , tj+1] is not one of the segments [a2i, b2i].) But by the choice of δ
the left-hand part is no greater than 1

3ε ·m(T ). This contradiction completes the
proof. �

2. Lipschitz metrics

2.1. Weak Finsler structures. In this section we construct an analogue of a
tangent cone for an arbitrary Lipschitz metric on a manifold. The construction is
similar to that in [15] but differ in some details.

In the sequel, M denotes a smooth manifold (possibly with boundary) and driem

an arbitrarily chosen auxiliary Riemannian metric on M .

Definition 2.1. We say that a curve γ : [a, b] → M is Lipschitz if it is Lipschitz
with respect to driem, that is, there is a C > 0 such that

driem(γ(t), γ(t′)) ≤ C · |t− t′|

for all t, t′ ∈ [a, b].
We say that a metric d on M is Lipschitz if it is locally Lipschitz with respect to

driem, that is, for any point x ∈M there exists a neighborhood U 3 x and a C > 0
such that

d(y, z) ≤ C · driem(y, z)

for all y, z ∈ U .

Clearly this definition do not depend on the choice of the auxiliary Riemannian
metric driem. If d is a Lipschitz metric and γ is a Lipschitz curve then γ is Lipschitz
(and therefore absolutely continuous) with respect to d. By Rademacher’s theorem,
every Lipschitz curve is differentiable almost everywhere in its domain.
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Definition 2.2. A weak Finsler structure on a smooth manifold M is a Borel
function ϕ : TM → R satisfying the following conditions.

1. Non-negativity: ϕ(v) ≥ 0 for all v ∈ TM .
2. Symmetry and positive homogeneity: ϕ(λv) = |λ|ϕ(v) for all v ∈ TM , λ ∈ R.
3. Local boundedness: sup(ϕ|K) <∞ for any compact set K ⊂ TM .

Definition 2.3. Let ϕ be a weak Finsler structure on M , γ : [a, b]→M a Lipschitz
curve. The length Lϕ(γ) of γ with respect to ϕ is defined by

Lϕ(γ) =

∫ b

a

ϕ(γ′(t)) dt.

Definition 2.4. Let d be a Lipschitz metric on M . For every v ∈ TM define a
real number ϕd(v) by

ϕd(v) = sγ(0)

where γ is an arbitrary curve of the form γ : (−ε, ε) → M such that it is differen-
tiable at zero and γ′(0) = v. Here s denotes the upper metric speed with respect
to d (cf. Definition 1.15).

We refer to the so defined function ϕd : TM → R as the tangent Finsler structure
of the metric d.

The correctness of the definition is ensured by the following lemma.

Lemma 2.5. Let d be a Lipschitz metric on M , and let γ1 and γ2 be curves
differentiable at zero and such that γ′1(0) = γ′2(0). Then sγ1(0) = sγ2(0) and
sγ1(0) = sγ2(0), where s and s denote the upper and lower metric speed with respect
to d.

Proof. The definition of a metric speed and the triangle inequality imply that

|sγ1(0)− sγ2(0)| ≤ lim
t→0

d(γ1(t), γ2(t))

|t|
.

Since the metric d is Lipschitz and γ′1(0) = γ′2(0), for some constant C we have

d(γ1(t), γ2(t)) ≤ C · driem(γ1(t), γ2(t)) = o(|t|), t→ 0.

Hence the right-hand part of the previous inequality equals zero. The proof for the
lower speed is similar. �

Remark 2.6. Unlike in the similar definition from [15], the function ϕd from
Definition 2.4 is symmetric everywhere on TM since the notion of metric speed that
we use (Definition 1.15) is symmetric with respect to the change of a parameter
given by t 7→ −t.
Proposition 2.7. Let d be a Lipschitz metric on M and ϕ = ϕd its tangent Finsler
structure. Then

1. ϕ is a weak Finsler structure in the sense of Definition 2.2.
2. For every x ∈M , the restriction ϕ|TxM is Lipschitz.
3. For every Lipschitz curve γ one has Ld(γ) = Lϕ(γ) where Ld denotes the

length with respect to the metric d (cf. Definition 1.11), Lϕ the length with respect
to ϕ (cf. Definition 2.3).

4. Let X be a normed vector space, f : (M,d) → X an isometric map which is
differentiable at a point p ∈M . Then ϕ|TpM coincides with the semi-norm induced
from ‖ · ‖X by the map dpf , that is,

ϕ(v) = ‖dpf(v)‖X



VOLUMES AND AREAS OF LIPSCHITZ METRICS 11

for all v ∈ TpM .

Proof. Assertions 1 and 2 follow trivially from the definitions and the fact that the
metric is Lipschitz. Assertion 3 is a re-formulation of Proposition 1.16.

Let us prove the 4th assertion. Let γ : (−ε, ε)→M be a curve differentiable at
zero, γ(0) = p, γ′(0) = v. Then

ϕ(v) = lim
t→0

d(γ(t), p)

t
= lim
t→∞

‖f(γ(t))− f(p)‖X
t

= ‖(f ◦ γ)′(0)‖X = ‖dpf(v)‖X .

Here the first identity follows from the definition of ϕ, the second one from the fact
that f is isometric, and the last one from the fact that f is differentiable at p. �

Definition 2.8. We say that two functions ϕ1, ϕ2 : TM → R coincide almost
everywhere on Lipschitz curves if for every Lipschitz curve γ : [a, b] → M , the
identity ϕ1(γ′(t)) = ϕ2(γ′(t)) is satisfied for almost all t ∈ [a, b].

If two functions coincide almost everywhere on Lipschitz curves, then they ob-
viously coincide almost everywhere on TM .

Proposition 2.9. Let d be a Lipschitz metric on M , {dn} a non-decreasing se-
quence of metrics on M converging to d point-wise. Then

ϕd = lim
n→∞

ϕdn

almost everywhere on Lipschitz curves.

Proof. Obviously the tangent Finsler structure depend monotonously on the metric,
hence {ϕdn} is a non-decreasing sequence bounded above by the function ϕd. Let
γ : [a, b]→M be a Lipschitz curve. Proposition 1.13 implies that Ldn(γ)→ Ld(γ)
as n→∞. Then Proposition 2.7(3) implies that∫ b

a

ϕd(γ
′(t)) dt = lim

n→∞

∫ b

a

ϕdn(γ′(t)) dt =

∫ b

a

lim
n→∞

ϕdn(γ′(t)) dt

(the second identity follows from Levy’s theorem since the sequence {ϕdn} is mono-
tone). Since limn→∞ ϕdn ≤ ϕd, it follows that the expressions under the integrals
are equal for almost all t. �

The next proposition justifies the use of the term “Finsler structure” for a func-
tion ϕd.

Proposition 2.10. Let d be a Lipschitz metric on M , ϕ = ϕd its tangent Finsler
structure. Then for almost all x ∈M the restriction ϕ|TxM is a semi-norm.

Proof. First we prove the statement in the case when the metric d admits an iso-
metric map to a finite-dimensional Banach space X. Let f : (M,d) → X be an
isometric map, then it is Lipschitz with respect to an auxiliary Riemannian metric
on M , therefore (by Rademacher’s theorem) f is differentiable almost everywhere
on M . For every point p ∈ M where f is differentiable, Proposition 2.7(4) implies
that ϕ(v) = ‖dxf(v)‖X for all v ∈ TpM . Hence ϕ|TpM is a semi-norm.

In the general case, by Proposition 1.4 there exists a non-decreasing sequence
{dn} of metrics admitting isometric maps to finite-dimensional Banach spaces and
converging to d. Applying the above proof to the metrics dn, we obtain that the
associated functions ϕn = ϕdn are semi-norms on almost all fibers TxM , x ∈ M .
By Proposition 2.9, ϕ = limn→∞ ϕn almost everywhere on TM . Thus for almost
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all x ∈M the restriction ϕ|TxM coincide almost everywhere (on TxM) with a limit
of a sequence of semi-norms. By continuity (cf. Proposition 2.7(2)) this means that
ϕ|TxM itself is a semi-norm. �

Remark 2.11. In general, it is not true that ϕ|TxM is a semi-norm for all x ∈
M . For example, it is easy to construct a Lipschitz metric d on R2 such that
d((0, 0), (0, x)) = d((0, 0), (x, 0)) = |x| and d((0, 0), (x, x)) = 10|x| for all x ∈ R.
Then, for the standard generators e1 and e2 of T0R

2 we have ϕd(e1) = ϕd(e2) = 1,
ϕd(e1 + e2) ≥ 10, hence the restriction of ϕd on T0R

2 does not satisfy the triangle
inequality.

The next proposition shows that the tangent Finsler structure is essentially pre-
served when a metric is replaced by an associated intrinsic one.

Proposition 2.12. Let d be a Lipschitz metric on M . Define a metric d∗ on M
by

d∗(x, y) = inf{Ld(γ) : γ is a Lipschitz curve connecting x and y}.
Then the tangent Finsler structures of d and d∗ coincide almost everywhere on
Lipschitz curves.

Proof. Denote ϕ = ϕd, ϕ
∗ = ϕd∗ . Obviously d∗ ≥ d, whence ϕ∗ ≥ ϕ. Let

γ : [a, b] → M be a Lipschitz curve. Then Ld∗(γ) = Ld(γ). Indeed, the inequality
d∗ ≥ d implies that Ld∗(γ) ≥ Ld(γ). To prove the opposite inequality, it suffices to
check that for every partition {ti} of [a, b] one has∑

d∗(γ(ti), γ(ti+1)) ≤ L(γ).

Observe that

d∗(γ(ti), γ(ti+1)) ≤ Ld(γ|[ti,ti+1]),

since γ|[ti,ti+1] belongs to the set of curves over which the infimum is taken in the
definition of the d∗ distance in the left-hand side. Summing up such inequalities
over all i, we obtain the desired one.

Thus Ld∗(γ) = Ld(γ), hence Lϕ∗(γ) = Lϕ(γ) by Proposition 2.7(3). Since
ϕ∗ ≥ ϕ, this implies that ϕ∗(γ′(t)) = ϕ(γ(t)) for almost all t ∈ [a, b]. �

Remark 2.13. The metric d∗ from Proposition 2.12 is a length metric since it is
defined by a length structure (cf. [11]). Another way to construct a length metric
is the following: for x, y ∈ M let d′(x, y) equal the the infimum of all continuous
(not only Lipschitz) curves connecting x and y. The tangent Finsler structure of
such a metric d′ also coincides with ϕd almost everywhere on Lipschitz curves; this
follows from the obvious inequalities d ≤ d′ ≤ d∗.

If the metric d is bi-Lipschitz equivalent to a Riemannian one then the metrics
d∗ and d′ coincide since every rectifiable curve admits a Lipschitz parameterization.

2.2. Smoothening Lipschitz metrics. Let (M,ϕ) be a Finsler manifold. The
Finsler structure ϕ defines a metric dϕ on M by dϕ(x, y) = inf{Lϕ(γ)} where the
infimum is taken over all Lipschitz (or piecewise smooth) curves γ connecting the
points x and y in M . A Finsler structure ϕ (and the associated metric dϕ) is said
to be smooth if the function ϕ : TM → R is smooth (that is, C∞) outside the zero
section. A smooth Finsler structure ϕ (and the metric dϕ) is said to be strictly
convex if for every point x ∈ M the second differential of the function ϕ2|TxM is
positive definite everywhere on TxM \ {0}.
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Proposition 2.14. Let M be a compact smooth manifold, d a Lipschitz metric on
M , ϕ = ϕd its tangent Finsler structure. Then there exists a sequence {ϕi}∞i=1 of
smooth strictly convex Finsler structures on M such that

1. ϕi|TxM → ϕ|TxM for almost all x ∈M .
2. di(x, y) ≥ d(x, y)− εi for all x, y ∈ M , where di = dϕi

, {εi} is a sequence of
real numbers converging to zero.

3. di ≤ C · driem for all i, where driem is an auxiliary Riemannian metric and
C > 1 is a constant such that d ≤ (C − 1)driem.

Proof. Propositions 1.4 and 2.9 reduce the statement to the case when the metric
d admits an isometric map to RN

∞. Such a map f : M → RN
∞ is Lipschitz with

a Lipschitz constant C − 1 with respect to driem. Smoothening f with a suitable
convolution yields a sequence of smooth maps fi : M → RN

∞ such that fi ⇒ f ,
dfi → df almost everywhere on TM , and ‖dfi‖ ≤ C − 1

2 where the norm ‖dfi‖ is
regarded with respect to the metric driem. We may assume that N > 2 dimM ,
then the maps fi can be replaced by smooth embeddings with the same properties.
We approximate the norm ‖ · ‖∞ on RN by smooth strictly convex norms ‖ · ‖pi ,
pi →∞ (and all pi are large enough) where

‖(x1, . . . , xN )‖p = (xp1 + · · ·+ xpN )1/p.

Let ϕi be a Finsler structure on M induced by the map fi from the norm ‖ · ‖pi .
Then {ϕi} is a desired sequence. Indeed the 1st requirement follows from the
convergence dfi → df a.e. and the convergence ‖ · ‖p → ‖ · ‖∞ as p→∞. The 2nd
requirement follows from the relations

di(x, y) ≥ ‖fi(x)− fi(y)‖pi ≥ ‖fi(x)− fi(y)‖∞ ⇒ ‖f(x)− f(y)‖∞ = d(x, y).

The 3rd requirement follows from the condition ‖dfi‖ ≤ C − 1
2 and the fact that

the norms ‖ · ‖pi and ‖ · ‖∞ are close to each other. �

Remark 2.15. If the tangent Finsler structure ϕ = ϕd in Proposition 2.14 is
smooth and strictly convex in a neighborhood of a closed set K ⊂ M , then one
can choose approximating Finsler structures ϕi so that they coincide with ϕ on K.
To achieve this, it suffices to combine ϕ and the structures ϕi constructed in the
proposition using a smooth partition of unity.

3. Weak differentiability

3.1. Rademacher’s Theorem. A classical Rademacher’s theorem (cf. [16, Theo-
rem 3.1.6]) asserts that every Lipschitz map f : Rm → Rn is differentiable almost
everywhere. This theorem is also true for functions with values in reflexive Banach
spaces and, more generally, in Banach spaces having the Radon–Nikodym property
(cf. [4, ch. 5]).

However for L∞ type spaces (which are used as target spaces for Kuratowski’s
embeddings) a similar assertion is incorrect. For example, consider a map f :
[0, 1]→ L∞[0, 1] defined by f(x)(y) = |x−y|. It is easy to check that f is Lipschitz
with a Lipschitz constant 1 but nowhere differentiable.

To work around this difficulty, we introduce the notion of weak differentiability
for maps valued in Banach spaces dual to separable ones. We are going to show
that Lipschitz maps are weakly differentiable almost everywhere and their weak
differentials are naturally related with tangent Finsler structures of induced metrics.
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In the sequel, M denotes a smooth manifold equipped with an auxiliary Rie-
mannian metric driem, X a Banach space, X∗ the dual space (of continuous linear
functions X → R). In the applications we usually set X = L1(µ) and X∗ = L∞(µ)
where µ is a finite measure.

Definition 3.1. Let f : M → X∗ be an arbitrary map. For every u ∈ X consider
the function fu : M → R, given by

fu(x) = 〈f(x), u〉,

where 〈, 〉 denotes the standard coupling of X∗ and X. We say that f is weakly
differentiable at a point p ∈ M if there exists a linear map L : TpM → X∗ such
that for every u ∈ X the function fu is differentiable at p and its differential is
given by the identity

dpfu(v) = 〈L(v), u〉 for all v ∈ TpM.

The map L is referred to as the weak differential of f at p and denoted by dwp f .

Proposition 3.2. Let f : M → X∗ be a Lipschitz map (with respect to the metric
driem) and p ∈ M . Then the weak differentiability of f at p is equivalent to the
property that for every u ∈ X the function fu from Definition 3.1 is differentiable
at p.

Proof. Let C be a Lipschitz constant for f . Then for every x, y ∈ M one has
‖f(x)− f(y)‖X∗ ≤ C · driem(x, y). Then for every u ∈ X,

|fu(x)− fu(y)| = |〈f(x)− f(y), u〉| ≤ C · ‖u‖X · driem(x, y),

that is, the function fu is Lipschitz with a Lipschitz constant C‖u‖X .
Suppose that fu is differentiable at p for all u ∈ X. Fix a vector v ∈ TpM .

The Lipschitz continuity of fu implies the following derivative estimate: dpfu(v) ≤
C‖u‖X |v|. Observe that the function u 7→ dpfu(v) is linear and continuous due to
the above estimate. Therefore it represents an element L(v) of X∗ such that

dpfu(v) = 〈L(v), u〉 for all u ∈ X.

Thus we have constructed a map L : TpM → X∗. It is obviously linear and hence
is a weak differential of f at p. �

Theorem 3.3. Let X be a separable Banach space and let f : M → X∗ be a
Lipschitz map. Then f is weakly differentiable almost everywhere in M .

Proof. Since the assertion is local we may assume that M is a region in Rn and driem

is the standard Euclidean metric. Let U be a countable dense subset of X. For every
u ∈ U the function fu from Definition 3.1 is Lipschitz and hence is differentiable
almost everywhere. Therefore for almost every point p ∈ M it is true that for all
u ∈ U the function fu is differentiable at p. We are going to show that for every
such a point p the map f is weakly differentiable at p. Let C be a Lipschitz constant
for f . Then for every u ∈ X the function fu from Definition 3.1 is Lipschitz with a
constant C‖u‖X . Fix a u ∈ X and a sequence {ui} ⊂ U , converging to u. By our
assumption every function fui

is differentiable at p, denote its differential dpfui
by

Li (Li : TpM → R). For all i and j the function fui
− fuj

= fui−uj
is Lipschitz

with a constant C‖ui − uj‖X , whence ‖Li − Lj‖ ≤ C‖ui − uj‖ → 0 as i, j → ∞.
Therefore the sequence {Li} converges to a linear function L : TpM →M .
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Choose an ε > 0 and fix an i such that ‖u − ui‖X < ε, then ‖L − Li‖ ≤ Cε.
Since Li = dpfui

, there is a δ > 0 such that

(3.4) |fui
(q)− fui

(p)− Li(q − p)| < ε|q − p|

for all q ∈ M ⊂ Rn such that |q − p| < δ. By Lipschitz continuity of f we have
‖f(q)− f(p)‖X∗ ≤ C · |q − p|, whence

|(fu(q)− fu(p))− (fui
(q)− fui

(q))|
= |〈f(q)− f(p), u− ui〉| ≤ C · |q − p| · ‖u− ui‖X ≤ Cε|q − p|.

(3.5)

The inequality ‖L− Li‖ ≤ Cε implies that

(3.6) |L(q − p)− Li(q − p)| ≤ C|q − p|.

Adding together (3.4), (3.5) and (3.6), we obtain that

|fu(q)− fu(p)− L(q − p)| < (2C + 1)ε|q − p|

whenever |q − p| < δ. Since ε is arbitrary, this means that the function fu is
differentiable at p and dpfu = L. Since u is an arbitrary element of X, Proposition
3.2 implies that f is weakly differentiable at p, hence the result. �

3.2. Weak differential and metric. As in the previous section, consider a Lip-
schitz map f : M → X∗ where M is a smooth manifold and X is a separable
Banach space. This map induces a metric d on M such that the map is isometric
with respect to it (that is, d(x, y) = ‖f(x)− f(y)‖X∗).

If f is differentiable at p in the usual sense, then its differential induces a semi-
norm ‖ · ‖p on TpM by ‖v‖p = ‖dpf(v)‖X∗ . By Proposition 2.7 this semi-norm
coincides with the tangent Finsler structure of d at p.

In general, a similar identity for a weak differential is incorrect. For example,
consider M = [−1, 1] and X = L1[0, 1] and a map f : [−1, 1] → X∗ = L∞[0, 1]
given by the equalities

f(x)(t) =

{
x ·max{1− t/|x|, 0}, x 6= 0,

0, x = 0.

It is easy to check that the map f is isometric and weakly differentiable at zero,
however dw0 f = 0.

Nevertheless, the following theorem shows that the tangent Finsler structure and
the semi-norm induced by the weak differential agree almost everywhere on M .

Theorem 3.7. Let d be a Lipschitz metric on M , ϕ = ϕd its tangent Finsler
structure, X a separable Banach space, f : M → X∗ an isometric map of the space
(M,d). Then for almost every point p ∈M , the identity

ϕd(v) = ‖dwp f(v)‖

holds for all v ∈ TpM .

Proof. Choose a countable set U = {ui}∞i=1 dense is the unit sphere of X. For every
ξ ∈ X∗ one has

‖ξ‖X∗ = sup{|〈ξ, u〉| : u ∈ X, ‖u‖X = 1} = sup
i
|〈ξ, ui〉|

where the first identity follows from the definition of the norm ‖·‖X∗ and the second
one from the fact that {ui} is dense in the unit sphere of X.
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For every positive integer n consider the map Pn : X∗ → Rn
∞ given by Pn(ξ) =

(〈ξ, u1〉, 〈ξ, u2〉, . . . , 〈ξ, un〉), and define a semi-norm ‖·‖n onX∗ by ‖ξ‖n = ‖Pn(ξ)‖∞.
For every fixed ξ ∈ X∗ one has

‖ξ‖n = max
1≤i≤n

|〈ξ, ui〉|,

therefore the sequence {‖ξ‖n}∞n=1 is non-decreasing and converges to ‖ξ‖X∗ .
For every positive integer n define a Lipschitz metric dn on M by dn(x, y) =

‖f(x)− f(y)‖n. Then {dn} is a non-decreasing sequence of metrics converging to d
point-wise. Let ϕn denote the tangent Finsler structure of dn, then by Proposition
2.9, ϕn|TpM converges to ϕ|TpM for almost all p ∈M .

Let p ∈ M be a point such that ϕn|TpM converges to ϕ|TpM and f is weakly
differentiable at p. Then for every n the map Pn ◦ f : M → Rn

∞ is differentiable at
p and dp(Pn ◦ f) = Pn ◦ dwp f , since the coordinate functions of the map Pn ◦ f are
functions fui

from the definition of weak differentiability, 1 ≤ i ≤ n. Observe that
Pn ◦ f is an isometric map from (M,dn) to Rn

∞. Therefore by Proposition 2.7(4),
ϕn|TpM equals the semi-norm induced from the norm ‖ · ‖∞ by the map dp(Pn ◦ f),
or, equivalently, the semi-norm induced from the semi-norm ‖ · ‖n on X∗ by the
map dwp f . Hence for every v ∈ TpM ,

ϕ(v) = lim
n→∞

ϕn(v) = lim
n→∞

‖dwp f(v)‖n = ‖dwp f(v)‖X∗ ,

and the theorem follows. �

4. Finsler volumes

4.1. Examples. Unlike in the Riemannian case, there are different (non-equivalent)
“natural” definitions of volume used for Finsler manifolds. By a “natural” defini-
tion we mean one for which the volume depends monotonously on the metric and
agrees with the Riemannian volume on the class of Riemannian manifolds. Recall
that a Finsler manifold is a smooth manifold with a continuous Finsler structure
Φ : TM → R (unlike weak Finsler structures from §2 that are assumed measurable
only).

Definition 4.1. Let n be a fixed positive integer. We say that an n-dimensional
Finsler volume functional is defined if, for every n-dimensional Finsler manifold
(M,Φ) a Borel measure volΦ on M is associated to it so that the following conditions
are satisfied.

1. The measure volΦ depends monotonously on Φ, that is, volΦ′ ≤ volΦ if Φ′ ≤ Φ.
2. The measure is preserved by isometries, that is, if (M,Φ) and (M ′,Φ′) are

n-dimensional Finsler manifolds and f : M →M ′ is an injective smooth map such
that Φ = Φ′◦df , then volΦ′ |f(M) = f∗ volΦ, where the star denotes the push-forward
of the measure by f .

3. If M = Rn and Φ is the standard Euclidean metric, then volΦ is the standard
Euclidean volume (i.e., the n-dimensional Lebesgue measure).

Example 4.2 (Busemann volume). The n-dimensional Hausdorff measure obvi-
ously satisfies the above requirements. In Finslerian context, it is referred to as the
Busemann volume. Busemann [12] proved that this is the only volume functional
satisfying the following: the volume of a unit ball in an n-dimensional normed
vector space equals ωn (that is, does not depend on the norm). Despite being ge-
ometrically natural, this volume turn out to be inconvenient in many respects and
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does not have some properties expected from volume in differential and integral
geometry (cf., for example, [2, 24]).

Example 4.3 (Holmes–Thompson volume). Let (M,Φ) be an n-dimensional Finsler
manifold. Consider the co-tangent bundle T ∗M . In every fiber T ∗xM there is a norm
Φ∗x dual to Φx. The union of these norms is a continuous function Φ∗ : T ∗M → R.
Consider the set

B∗(M,Φ) = {w ∈ T ∗M : Φ∗(w) ≤ 1}
(i.e. the union of the unit balls of the norms Φ∗x over all x ∈M).

A canonical 2n-dimensional (symplectic) volume is defined on the co-tangent
bundle, we denote it by Vsymp. Now define a Finsler volume volsΦ by the formula

volsΦ(M) =
1

ωn
Vsymp(B∗(M,Φ)).

More precisely, define a measure volsΦ as the push-forward of the measure 1
ωn
Vsymp

by the projection map B∗(M,Φ)→M .
This volume functional is referred to as the Holmes–Thompson volume or the

symplectic Finsler volume. It satisfies the requirements of Definition 4.1 since the
construction is invariant and Φ∗ depends on Φ anti-monotonously.

This volume was introduced by Holmes and Thompson [18] in 1979, but problems
related to it were studied even before that. One of the reasons why it is convenient
in differential geometry is the fact that the symplectic volume on the set B∗(M,Φ)
corresponds to the Liouville measure on the unit tangent bundle and the latter is
invariant under the geodesic flow.

Example 4.4 (inscribed Riemannian volume). Let (M,Φ) be a Finsler manifold.
For every measurable U ⊂M define

(4.5) voleΦ(U) = inf{volg(U) : g is a Riemannian metric on M , g ≥ Φ2},

where volg denoted the Riemannian volume with respect to g. In the inequality
g ≥ Φ2, the Riemannian metric g is regarded as a function on TM that yields the
square of the length of a tangent vector. We refer to the resulting measure voleΦ as
the inscribed Riemannian volume of the Finsler metric Φ. Obviously this volume
satisfies the requirements from Definition 4.1. Moreover it is the maximal functional
satisfying these requirements. This follows from the fact that the volume functional
is uniquely defined within the class of Riemannian metrics (cf. Proposition 4.6).

There exists a unique Riemannian metric g at which the infimum in (4.5) is
attained. In every fiber TxM , the unit ball of this metric g is the maximal-volume
ellipsoid contained in the unit ball of the norm Φx (the John ellipsoid [20]).

This volume is not convenient for the purposes of Finslerian geometry but it
proves useful for Riemannian volume estimates requiring auxiliary Finslerian con-
structions. It particular, it is this definition of volume that yields the equality of
filling volumes within Riemannian metrics and within Finsler metrics, proved below
in Theorem 5.2.

It is easy to verify that the above three volume functionals are different. For
example, consider the set [−1, 1]2 in the normed vector space R2

∞. Its Busemann
volume equals π (since it is the unit ball of the norm), the Holmes–Thompson
volume equals 8

π and the inscribed Riemannian volume equals 4.
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Proposition 4.6. 1. The n-dimensional Finsler volume functional is uniquely
determined by its values on n-dimensional Banach spaces.

2. Any Finsler volume functional coincides with the Riemannian volume on the
class of Riemannian manifolds.

Proof. The second requirement of Definition 4.1 allows us to limit ourselves by
Finsler structures in Rn. Let Φ be a Finsler structure in Rn. Identifying all the
tangent spaces TxR

n with Rn, we may regard Φ as a family of norms {Φx}x∈Rn in
Rn where Φx = Φ|TxRn . Fix an x0 ∈ Rn and denote ‖ · ‖ = Φx0 . Let ε > 0. Then,
by continuity of Φ, there is a neighborhood U of x0 such that

(1− ε)‖ · ‖ ≤ Φx ≤ (1 + ε)‖ · ‖
for all x ∈ U . For every λ > 0 the space (Rn, λ‖ · ‖) is isometric to (Rn, ‖ · ‖) via
a λ-homothety. This and the second requirement of Definition 4.1 implies that

volλ‖·‖(A) = vol‖·‖(λA)

for every measurable A ⊂ Rn. The measure vol‖·‖ is proportional to the Lebesgue
measure since it is locally finite and translation-invariant, hence vol‖·‖(λA) =
λn vol‖·‖(A). Thus volλ‖·‖ = λn vol‖·‖. Substituting λ = 1 ± ε and using the
monotonicity of measure with respect to the metric, we obtain that

(1− ε)n vol‖·‖ ≤ volΦ ≤ (1 + ε)n vol‖·‖

within U . Sending ε to zero yields that the density of volΦ with respect to the
Lebesgue measure at x0 equals the density of vol‖·‖. Thus the measure volΦ has a
density whose value at every point x ∈ Rn is determined by the volume functional
on the Banach space (Rn,Φx). The first assertion of the proposition follows.

If the Finsler structure Φ is actually Riemannian, then all the norms Φx, x ∈ Rn,
are Euclidean ones. Since all n-dimensional Euclidean spaces are isometric, the
second and third requirements from Definition 4.1 uniquely determine the density
of volΦ and it equals the density of the standard Riemannian volume. The second
assertion of the proposition follows. �

4.2. Finsler volume densities. Proposition 4.6 shows that, in order to define an
n-dimensional Finsler volume functional it suffices to define it on n-dimensional
Banach spaces. In this section we give the respective definitions following the
approach from [3] and define a Finsler volume for arbitrary Lipschitz metrics.

Assume that we have fixed an n-dimensional Finsler volume functional Φ 7→ volΦ.
In particular, for every n-dimensional normed vector space (V, ‖ · ‖) there is an
associated translation-invariant locally finite Borel measure vol‖·‖ on V . All such
measures on V are proportional to one another. They are in a natural 1-to-1
correspondence with norms on the nth exterior power ΛnV , namely the norm of an
n-vector v1 ∧ v2 ∧ · · · ∧ vn equals the measure of the parallelotope spanned by the
vectors v1, v2, . . . , vn. We define the so defined norm of an n-vector σ by vol‖·‖(σ).

Definition 4.1 implies that this map has the following properties.

(4.7) If (V, ‖ · ‖) and (V ′, ‖ · ‖′) are n-dimensional normed vector spaces and
f : V → V ′ is a nonexpanding linear map, then vol‖·‖(σ) ≤ vol‖·‖′(f∗(σ))
for all σ ∈ ΛnV where the star denotes the natural action of an isomorphism
on n-forms.

In particular, if ‖ · ‖ and ‖ · ‖′ are norms on V and ‖ · ‖ ≤ ‖ · ‖′, then
vol‖·‖ ≤ vol‖·‖′ .



VOLUMES AND AREAS OF LIPSCHITZ METRICS 19

(4.8) If | · | is a Euclidean norm then vol|·| is the corresponding Euclidean volume.

Definition 4.9. We say that an n-dimensional Banach volume functional is defined
if, for every n-dimensional normed vector space (V, ‖ · ‖) there is a norm vol‖·‖ on
ΛnV associated to it, so that the properties (4.7) and (4.8) are satisfied.

The property (4.7) implies that the volume is preserved by isometries. Therefore
it suffices to define an n-dimensional Banach volume vol‖·‖ only for the norms ‖ · ‖
on Rn. For a fixed vector space V the volume functional ‖·‖ 7→ vol‖·‖ defines a map
from N (V ) to N (Λn(V )). (Recall that N (V ) denotes the set of all norms on V .
The space N (Λn(V )) is one-dimensional and can be identified with R+, however
such identification is not invariant.) This map can be naturally extended to the
set of all semi-norms N0(V ), namely we define vol‖·‖ = 0 if the semi-norm ‖ · ‖ is
degenerate (i.e., not a norm).

Lemma 4.10. Let ‖ · ‖ 7→ vol‖·‖ be an n-dimensional Banach volume functional
and V an n-dimensional vector space. Then

1. vol‖·‖ is a homogeneous of degree n function of ‖·‖, that is, volλ‖·‖ = λn vol‖·‖
for every norm ‖ · ‖ on V and every λ > 0.

2. The map ‖ · ‖ 7→ vol‖·‖ : N0(V )→ N0(ΛnV ) is continuous.

Proof. 1. Follows from the fact that the spaces (V, λ‖ ·‖) and (V, ‖ ·‖) are isometric
via a λ-homothety (cf. the proof of Proposition 4.6).

2. First let us prove the continuity on the set of norms N (V ). Consider a

sequence {‖ · ‖i}∞i=1 of norms converging to a norm ‖ · ‖. The ratio ‖·‖i‖·‖ uniformly

converges to 1, that is,

(1− εi)‖ · ‖ ≤ ‖ · ‖i ≤ (1 + εi)‖ · ‖

for some sequence εi → 0. Hence by homogeneity,

(1− εi)n vol‖·‖ ≤ vol‖·‖i ≤ (1 + εi)
n vol‖·‖,

therefore vol‖·‖i → vol‖·‖ and the continuity on N (V ) follows.
Now let ‖ · ‖ be a degenerate semi-norm, {‖ · ‖i}∞i=1 a sequence of semi-norms

converging to ‖ ·‖. Let V0 be a null subspace of ‖ ·‖, i.e. V0 = {v ∈ V : ‖v‖ = 0}, V1

a subspace complementary to V0. We may assume that V0 = Rk and V1 = Rn−k

where 1 ≤ k ≤ n, V = Rk ×Rn−k = Rn. For every ε > 0 consider a norm ‖ · ‖(ε)
on Rn, given by

‖(x, y)‖(ε) = ε|x|+ 2‖y‖, x ∈ Rk, y ∈ Rn−k,

where | · | is the standard Euclidean norm. Since the restriction of ‖ · ‖ on V1 is a

norm, the ration ‖·‖i‖·‖ uniformly converges to 1 on V1 \ {0}, hence ‖ · ‖i ≤ 2‖ · ‖ on

V1 for all sufficiently large i. We may assume that this inequality is satisfied for
all i. Define

εi = max{‖v‖i : v ∈ V0, |v| = 1}.
Then εi → 0 since the restrictions of the semi-norms ‖ · ‖i on V0 converge to zero.
The inequalities ‖·‖i ≤ 2‖·‖ on V1 and ‖·‖i ≤ εi| · | on V0 imply that ‖·‖i ≤ ‖·‖(εi)
everywhere on V .

Observe that all norms of the form ‖ · ‖(ε) are isometric; an isometry between

‖·‖(1) and ‖·‖(ε) is given by the map (x, y) 7→ (εx, y), x ∈ Rk, y ∈ Rn−k. Therefore

vol‖·‖(ε) = εk vol(1) where vol(1) = vol‖·‖(1) . This and the monotonicity of volume
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with respect to the norm imply that vol‖·‖i ≤ εki vol(1). Therefore vol‖·‖i → 0 =
vol‖·‖. �

Definition 4.11. By a density on an n-dimensional smooth manifold M we mean
a nonnegative measurable function ν : ΛnTM → R whose restriction to each fiber
is a semi-norm, i.e. is symmetric and positive definite. (ΛnTM is a one-dimensional
vector bundle over M whose fiber over a point x ∈ M is the nth exterior power
ΛnTxM .)

One can integrate such a structure over a manifold the same way as a differential
form, furthermore (unlike in the case of a differential form) the integral does not
depend on manifold’s orientation. Thus the function ν defines a measure µ on M .
We indicate this relation between µ and ν by the formula µ =

∫
ν.

Definition 4.12. Let an n-dimensional Banach volume functional ‖ · ‖ 7→ vol‖·‖
be fixed. Let d be a Lipschitz metric on an n-dimensional smooth manifold M
and ϕ = ϕd its tangent Finsler structure. Consider a density ν = νd on M whose
value at an n-vector σ ∈ ΛnTxM equals volϕ|TxM

(σ) if ϕ|TxM is a semi-norm, and

0 otherwise. We refer to the measure vold =
∫
νd as the Finsler volume of d.

Proposition 4.13. The measure vold from Definition 4.12 is correctly defined and
has the following properties.

1. Homogeneity: volλd = λn vold for every Lipschitz metric d and every λ > 0.
2. If (M,d) and (M ′, d′) are manifolds with Lipschitz metrics and f : (M,d)→

(M ′, d′) is a nonexpanding map, then vold′(f(A)) ≤ vold(A) for every measurable
A ⊂M .

In particular, if M ′ = M and d′ ≤ d then vold′ ≤ vold.
3. If {di} is a non-decreasing sequence of metrics on M point-wise converging

to a Lipschitz metric d, then voldi(A)→ vol(A) for every measurable A ⊂M .

Proof. In order to verify that the definition is correct, one has to prove that the
density νd in Definition 4.12 is measurable. This follows from the facts that the
function ϕd : TM → R is measurable and the volume continuously depends on the
semi-norm (cf. Lemma 4.10(2)).

The homogeneity follows from the respective property of a Banach volume (cf.
Lemma 4.10(1)).

To prove the second assertion, it suffices to verify that, at every point x ∈ M
where the map f is differentiable, its Jacobian is no greater than 1. Here by
Jacobian we mean the ratio of densities

(dxf)∗νd(x)

νd′(f(x))
.

This follows from the property (4.7) of a Banach volume.
The third assertion follows from the facts that the tangent Finsler structures

converge almost everywhere (cf. Proposition 2.9) and and the volume continuously
depends on the semi-norm (cf. Lemma 4.10(2)). �

Corollary 4.14. Definition 4.12 restricted to the class of Finsler manifolds defines
a Finsler volume functional in the sense of Definition 4.1. Conversely, every Finsler
volume functional can be obtained this way.

Proof. The first statement follows from Proposition 4.13(2). The converse one
follows from Proposition 4.6. �
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Examples. Let Φ be a Finsler metric in a region U ⊂ Rn. Identifying TxU ' Rn

for all x ∈ U we may regard Φ as a family of norms {Φx}x∈U on Rn. Denote by Bx
the unit ball of Φx. Every Finsler volume has a continuous density ρ with respect
to the Lebesgue measure mn, it is related to the above coordinate-free density by

ρ(x) = νΦx
(e1 ∧ e2 ∧ · · · ∧ en),

where (e1, e2, . . . , en) is the standard basis of Rn.
In the case of Busemann volume the density equals

ρ(x) =
ωn

mn(Bx)
,

since the volume of the norm’s unit ball equals ωn.
For the Holmes–Thompson volume the density equals

ρ(x) =
mn(B◦x)

ωn
,

where B◦x is the polar set of Bx. This follows from the definition of the Holmes–
Thompson volume and the fact that B◦x is the unit ball of the dual norm ‖ · ‖∗x
(modulo the standard identification (Rn)∗ ' Rn).

For the inscribed Riemannian volume the density equals

ρ(x) =
ωn

mn(Ex)
,

where Ex is the John ellipsoid of the norm Φx.

5. Filling volumes

Let an n-dimensional Finsler volume functional be fixed. Then, by Definition
4.12, for every n-dimensional manifold M with a Lipschitz metric d there is an
associated measure vold on M .

Definition 5.1. Let M be a class of compact n-dimensional manifolds with Lips-
chitz metrics. Let S be an (n− 1)-dimensional manifold and d0 a Lipschitz metric
on S. By the filling volume of d0 within the class M (with respect to the given
volume functional) we mean the quantity

inf{vold(M) : (M,d) ∈M, ∂M = S, d|S×S ≥ d0}.

We say that a manifold (M,d) ∈M is a minimal filling within M if vold(M) equals
the filling volume of the metric d|∂M×∂M within M.

The definition of the filling volume given in the introduction corresponds to the
filling volume within the class of Riemannian manifolds.

Theorem 5.2. Let M be an n-dimensional manifold, S = ∂M , and let d0 be a
Lipschitz metric on S. Then

1. the filling volume of d0 within the class of all Lipschitz metrics on M equals
its filling volume within the class of smooth strictly convex Finsler metrics;

2. if the volume functional is the inscribed Riemannian volume, then the filling
volume of d0 within the class of all Lipschitz metrics on M equals its filling volume
within the class of Riemannian metrics.
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Proof. 1. Let d be a Lipschitz metric on M such that d|S×S ≥ d0. It suffices to

prove that, for every ε > 0 there is a smooth strictly convex Finsler metric d̃ on M
such that d̃|S×S ≥ d|S×S and vold̃(M) ≤ vold(M) + ε. We may assume that d is a
length metric since replacing a metric by an induced length one does not decrease
the distances and preserves the volume (by Proposition 2.12).

Attach to M a “collar” M+ = S × [0, 1] by identifying the sets S ⊂ M and
S × {0} ⊂ S × [0, 1]. Construct a smooth Riemannian metric d+ on M+ such that

(1) vold+(M+) < ε;
(2) d+((x, t)(x′, t′)) > d(x, x′) for all x, x′ ∈ S, t, t′ ∈ [0, 1] such that (x, t) 6=

(x′, t′).
For instance, one can define d+ as the product metric of (S, d+

0 ) × [0, θ], where
d+

0 is a Riemannian metric on S, d+
0 ≥ 2d|S×S , 0 < θ < ε/ vol(S, d+

0 ).
The enlarged manifold M ′ = M ∪M+ is equipped by a metric d′ obtained by

gluing the metrics d on M and d+ on M+. The gluing procedure is described in [11,
§3.1]; here we use only the fact that the result is a length metric which is isometric
to the metrics being glued in the interiors of the two manifolds. Observe that

(5.3) d′((x, t), (x′, t′)) ≥ d(x, y)

for all x, x′ ∈ S, t, t′ ∈ [0, 1], since this inequality holds for both metrics before
gluing.

Let δ > 0 be such that d+((x, 1), (x′, 1
2 )) ≥ d(x, x′) + δ for all x, x′ ∈ S. For the

metric d′, construct a sequence {ϕi} of smooth Finsler structures as in Proposition
2.14, in addition, choose ϕi so that they agree with the Riemannian structure
of d+ on the set S × [ 1

2 , 1]. (cf. Remark 2.15). Let di = dϕi
. By properties

1 and 3 from Proposition 2.14, the densities of Finsler volumes determined by
the metrics di are uniformly bounded and point-wise converge to the density of
vold′ . Therefore voldi(M

′) → vold′(M
′), hence for all sufficiently large i one has

voldi(M
′) < vold(M) + ε.

For all sufficiently large i one has di ≥ d′ − δ everywhere on M ′ (cf. prop-
erty 2 from Proposition 2.14). It follows that di((x, 1), (y, 1)) ≥ d(x, y) for all
x, y ∈ S. Indeed, let γ be a shortest curve of the metric di connecting (x, 1) and
(y, 1). If this curve lies entirely in the set S × [ 1

2 , 1], then its length is no less

than d+((x, 1), (y, 1)) ≥ d(x, y). Otherwise let (x′, 1
2 ) and (y′, 1

2 ) be the points of

intersection of γ with the set S × { 1
2}, nearest to x and y respectively. Then

di((x, 1), (y, 1)) = d+((x, 1), (x′, 1
2 )) + di((x

′, 1
2 ), (y′, 1

2 )) + d+((y, 1), (y′, 1
2 ))

≥ (d(x, x′) + δ) + (d′((x′, 1
2 ), (y′, 1

2 ))− δ) + (d(y, y′) + δ)

≥ (d(x, x′) + δ) + (d(x′, y′)− δ) + (d(y, y′) + δ) > d(x, y).

Here the second identity follows from (5.3) and the last one from the triangle
inequality for d.

Let f : M → M ′ be a diffeomorphism mapping S ⊂ M to S × {1} ⊂ M ′ in

the natural way. Let d̃i = f∗di be the metric on M corresponding to di under
this diffeomorphism. Then for a sufficiently large i the metric d̃ = d̃i satisfies the
conditions d̃|S×S ≥ d|S×S and vold̃(M) < vold(M) + ε, hence the result.

2. For each point x ∈M consider the norm on TxM defined as the restriction of
the Finsler structure of the metric d̃ constructed above. Let Ex be the John ellipsoid
of this norm (cf. 4.4). Let dr be a Riemannian metric on M generated by the family

of ellipsoids {Ex}x∈M . Then dr ≥ d̃, whence dr|S×S ≥ d|S×S . Furthermore, since
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the chosen Finsler volume definition is the inscribed Riemannian volume, one has
voldr (M) = vold̃(M) < vold(M) + ε. Due to uniqueness of the John ellipsoid,
the Riemannian structure of dr is continuous; it can be smoothened so that the
inequalities dr|S×S ≥ d|S×S and voldr (M) < vold(M) + ε persist. Thus the filling
volume is realized by smooth Riemannian metrics, hence the result. �

Definition 5.4. Let M be a smooth manifold, X a Banach space, f : M → X a
Lipschitz map. Let a Finsler volume functional be fixed. By the area of a map (or
surface) f we mean the quantity area(f) = vold(M) where d is a metric on M given
by d(x, y) = ‖f(x)−f(y)‖, vold is the measure defined by this Lipschitz metric and
the chosen Finsler volume functional (cf. Definition 4.12).

If the Banach space X is dual to a separable one (for example, has the form
L∞(µ) where µ is a finite measure), then the area of a map can be expressed in
terms of its weak differential in the standard way. Namely the following holds.

Proposition 5.5. Let X be a Banach space which is dual to a separable one, M a
smooth manifold, f : M → X a Lipschitz map. Then area(f) =

∫
M
νf where νf is

a density on M whose value at an n-vector σ ∈ TxM equals

νf (σ) = vol(dwx f)∗‖·‖X

if f is weakly differentiable at x. Here the star denotes the pull-back of a semi-
norm by a linear map, that is, (dwx f)∗‖ · ‖X is a semi-norm ‖ · ‖ on TxM , given by
‖v‖ = ‖dwx f(v)‖X .

Proof. Follows from the definition of area and Theorem 3.7. �

Theorem 5.6. For every Finsler volume functional the following holds. Let X =
L∞(µ) where µ is a finite measure on an arbitrary set, M a smooth manifold,
S = ∂M .

1. Let d0 be a Lipschitz metric on S and f : (S, d0) → X an isometric map.
Then the filling volume of (S, d0) within the class of Lipschitz (or, equivalently,
smooth strictly convex Finsler) metrics on M equals

inf{area(F ) : F : M → X is Lipshitz, F |S = f}.

2. Let d be a Lipschitz metric on M . Then for every isometric map F : (M,d)→
X the following holds: (M,d) is a minimal filling within the class of all manifolds
with Lipschitz metrics if and only if F realizes a minimum of the area among all
Lipschitz surfaces in X having the same boundary.

Proof. 1. Let F : M → X be a Lipschitz map, F |S = f . Consider a Lipschitz
metric d on M induced by F (i.e. given by d(x, y) = ‖F (x) − F (y)‖). By the
definition of area, area(F ) = vol(M,d). Since the map f = F |S is isometric with
respect to d0, one has d|S×S = d0. Therefore the filling volume of (S, d0) is no
greater than area(F ). Since F is arbitrary, the filling volume is no greater than the
infimum of such areas.

Conversely, if d is a Lipschitz metric onM such that d|S×S ≥ d0, then by Proposi-
tion 1.6 there exists a nonexpanding map F : (M,d)→ X. Since F is nonexpanding,
the metric on M induced by it is no greater than d, therefore area(F ) ≤ vol(M,d).
Taking the infimum over (M,d) yields the desired result.

2. Trivially follows from the first assertion of the theorem. �
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With the inscribed Riemannian volume used as the definition of volume, Theo-
rem 5.6 and the second assertion of Theorem 5.2 yield

Corollary 5.7. Let X = L∞(µ) where µ is a finite measure on an arbitrary set,
M a smooth manifold, S = ∂M . Define the area of a surface in X as the area
defined by the inscribed Riemannian volume functional.

1. Let d0 be a Lipschitz metric on S, f : (S, d0) → X an isometric map. Then
the filling volume of (S, d0) within the class of Riemannian metrics on M equals

inf{area(F ) : F : M → X is Lipschitz, F |S = f}.
2. Let d be a Riemannian metric on M . Then for every isometric map F :

(M,d) → X the following holds: (M,d) is a minimal filling within the class of all
Riemannian manifolds if and only if F realizes the infimum of the area among all
Lipschitz surfaces in X having the same boundary.

6. Semi-ellipticity

Definition 6.1. We say that an n-dimensional Finsler volume functional is semi-
elliptic over Z if the associated n-dimensional area functional in every finite-dimensional
Banach space V satisfies the following: the image L(Dn) of the standard disc
Dn ⊂ Rn under any injective linear map L : Rn → V , minimizes the area among
all oriented Lipschitz surfaces in V having the same boundary.

We say that an n-dimensional Finsler volume functional is topologically semi-
elliptic if a similar minimality holds in the class of all Lipschitz surfaces parameter-
ized by the disc Dn, and semi-elliptic over R if it holds in the class of all Lipschitz
chains with real coefficients.

In other words, a volume functional is semi-elliptic if the area integrand defined
by it is semi-elliptic in any finite-dimensional Banach space. It is plausible that
in this case the area integrand is elliptic in spaces with strictly convex norms.
Ellipticity of area integrands plays an important role in the theory of minimal
surfaces (cf. [1; 16, Chapter 5]). In [8] relations between semi-ellipticity and filling
volumes, as well as asymptotic volumes of periodic metrics, are shown.

Obviously semi-ellipticity over R implies semi-ellipticity over Z. The converse
is not true, a counter-example is constructed in [9]. Semi-ellipticity over Z obvi-
ously implies topological semi-ellipticity and for all n ≥ 3 these two properties are
equivalent [17, App. 2, Proposition A′].

Semi-ellipticity of the Busemann and Holmes–Thompson volumes is a widely
open question. In co-dimension 1 both volumes are semi-elliptic (this is equivalent
to convexity of section bodies and projection bodies, respectively, cf. [13, 23]). The
two-dimensional Holmes–Thompson volume is topologically semi-elliptic but is not
semi-elliptic over R [8]. The question whether the Busemann volume is semi-elliptic
in co-dimensions greater than 1, is completely open by now.

The purpose of this section is to prove the following theorem.

Theorem 6.2. Let X be a normed vector space and Y ⊂ X an n-dimensional
linear subspace. Then there exists a linear map P : X → Y such that

1. P is a projector onto Y , that is, P |Y = idY .
2. For every Lipshitz map f : M → X where M is a smooth n-dimensional

manifold, one has area(P ◦ f) ≤ area(f) where area is the area defined by the
inscribed Riemannian volume functional.
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Consequently, the inscribed Riemannian volume functional is semi-elliptic over R.

Proof. The proof is based on ideas from [7]. First assume that the space X is dual
to a separable one. Then by Proposition 5.5 it suffices to construct a projector
which does not increase the n-dimensional area on n-dimensional linear subspaces
of X. We need the following lemma.

Lemma 6.3 (cf. [7, Lemma 1.3]). Let (V, ‖ · ‖) be an n-dimensional normed vector
space. Then there exists a finite collection {Li}Ni=1 of nonexpanding linear functions
Li : (V, ‖ · ‖)→ R and a collection {λi}Ni=1 of positive numbers such that

∑
λi = n

and
∑
λiL

2
i (v) ≥ ‖v‖ for all v ∈ V .

Applying this lemma to a subspace Y regarded with the restriction of the norm
‖ · ‖X we get a collection of nonexpanding linear maps Li : Y → R and coefficients
λi ≥ 0, i = 1, . . . , N , such that

∑
λi = n and

∑
λiL

2
i ≥ ‖·‖2X everywhere on Y . By

the Hahn–Banach theorem the functions Li have nonexpanding linear extensions
L̃i : X → R. Consider a quadratic form Q on X given by Q(x) =

∑
λiL̃

2
i . Denote

by areaQ the n-dimensional area with respect to the Euclidean semi-norm
√
Q.

Let us prove that areaQ ≤ area on every n-dimensional linear subspace W ⊂ X.
Recall that here by the area we mean the inscribed Riemannian volume of the
induced metric. Let | · |W be the Euclidean norm on W whose unit ball is the John
ellipsoid of the restriction of the norm ‖·‖X to W . Then on W one has |·|W ≥ ‖·‖X
and vol|·|W = vol‖·‖X by definition. The inequality | · |W ≥ ‖ · ‖X implies that the

restrictions L̃i|W are nonexpanding with respect to | · |W , therefore

trace|·|W (L2
i |W ) ≤ 1,

whence

trace|·|W (Q|W ) ≤
∑

λi = n.

By the Cauchy inequality this implies that

det|·|W (Q|W ) ≤
(

1
n trace|·|W (Q|W )

)n ≤ 1.

(Here trace|·|W and det|·|W denote respectively the trace and the determinant of a
quadratic form in the Euclidean space (W, | · |W ).) Therefore the volume form on
W defined by the quadratic form Q|W is no greater that the volume form defined
by the norm | · |W . Thus areaQ ≤ area on W .

The inequality Q(x) ≥ ‖x‖2X for all x ∈ Y implies that, on the subspace Y , one
has areaQ ≥ area, whence areaQ = area on Y .

Let P : X → Y be the orthogonal projection of X onto Y with respect to
the quadratic form Q. Since an orthogonal projection does not increase lengths of
vectors, it does not increase the area with respect to Q, hence

area(P (A)) = areaQ(P (A)) ≤ areaQ(A) ≤ area(A)

for every measurable A contained in an n-dimensional linear subspace W ⊂ X.
Therefore the map P is a desired one. Thus we have proved the theorem in the
case when the space X is dual to a separable one.

Now consider the general case. Let S = {si}∞i=1 be a countable dense subset
of the unit sphere of Y . For each i, by the Hahn–Banach theorem there exists a
nonexpanding linear map fi : X → R such that fi(si) = 1. Define a linear map
f : X → `∞ by

f(x) = (f1(x), f2(x), . . . ).
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This map is nonexpanding since so are all the maps fi. Futhermore the restriction
f |Y is isometric. Indeed, for every x ∈ Y such that ‖x‖X = 1 one has

‖f(x)‖∞ = sup
i
fi(x) ≥ sup

i
(fi(si)− ‖x− si‖X) = sup

i
(1− ‖x− si‖X) = 1

since f is nonexpanding and S is dense in the unit sphere of Y . The space `∞ is
dual to a separable one, hence by the already proven case there exists a projector
P0 : `∞ → f(Y ) which does not increase n-dimensional areas. Then the map
P = (f |Y )−1 ◦ P0 ◦ f is a desired one. �
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