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1. Introduction

We begin with the following definition borrowed from [BIP]:

Definition 1.1. A group G is said to be bounded if it is bounded with respect to
any bi-invariant metric (that is, as a metric space, it has a finite diameter).

Many groups are unbounded for some obvious reasons. For instance, if a group
admits an unbounded homomorphism (or a quasi-morphism, see below) to R, the
group is unbounded. Apart from such cases, the problem of deciding whether
a certain group is bounded turned out to be a surprisingly difficult task, and the
answer is unknown for many nice groups such as the identity component of the group
of diffeomorphisms of the two-torus. The main results of [BIP] is boundedness of
certain groups of diffeomorphism.

Here we adopt some tools from [BIP] to work with non-smooth homeomorphisms.
Namely, we are concerned with the group PL of compactly supported piecewise
linear homeomorphisms of R. The group of all PL-homeomorphisms of a segment is
unbounded, for it has an obvious homomorphism to R constructed from derivatives
at endpoints (Example 2.2). To stay away from this trivial homomorphism, one can
study PL-homeomorphisms of a segment that are identical in some neighborhoods
of endpoints. Equivalently, we consider the group PL = PLcomp(R) of compactly
supported piecewise-linear homeomorphisms of R. The main result of this paper is
the following theorem:

Theorem 1.2. The group PL is bounded.

In the course of the proof we also obtain some other results about this group; in
particular, we describe certain invariants of conjugacy classes.

Note that higher-dimensional analogs of the problem is question remain widely
open. We do not know if the identity component of the group of PL-homeomorphisms
of the two-torus is bounded. We do not know this for the group of compactly sup-
ported PL-homeomorphisms of the plane either.

This paper is closely related to [BIP]. It is organized as follows. In the next
section, we borrow some definitions and discussion from [BIP]; we refer the reader
to [BIP] for further details and references. Section 3 contains certain versions of
technical tools developed in [BIP]. These versions, which may sound somewhat
different from their counter-parts used in [BIP], are more suitable for our set-
up and, perhaps, in general when we speak about subgroups of diffeomorphism
(homeomorphism) groups. Finally, Section 4 is devoted to study of PL.
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2. Preliminaries from [BIP]

An conjugation-invariant norm is a function ν : G→ [0; +∞) which satisfies the
following axioms:

(i) ν(1) = 0;
(ii) ν(f) = ν(f−1) ∀f ∈ G;

(iii) ν(fg) ≤ ν(f) + ν(g) ∀f, g ∈ G;
(iv) ν(f) = ν(gfg−1) ∀f, g ∈ G.

There is an obvious correspondence between bi-invariant (semi)-metrics and
conjugation-invariant norms: for a norm ν, one defines a left-invariant metric dν
on G by dν(a, b) = ν(a−1b); then conjugacy invariance of ν is equivalent to right-
invariance of dν .

Thus a group is bounded if and only if every conjugation-invariant norm is
bounded.

Convention: by g̃ we denote an element conjugate to g. We also fix the following
notations for conjugation: Ch(g) = gh = hgh−1.

C-generation. We say that a symmetric set K ⊂ G c-generates G in N steps
(where N is a positive integer or infinity) if every element g ∈ G can be represented

as a product g = h̃1h̃2 . . . h̃n, where n ≤ N and each h̃i is conjugate to some element
hi ∈ K: h̃i = αihiα

−1
i , αi ∈ G.

If K c-generates G, one defines a norm νK : νK(g) is the length of a shortest
word representing g and such that each letter is a conjugate to an element from K.
Hence if a group is c-generated in infinitely many steps, it is unbounded.

Obviously for any norm ν bounded on K one has ν ≤ c ·νK where c = max ν(K);
hence, in a sense, νK is a maximum norm. In particular, if K is finite (in which case
we say that G is finitely c-generated), νK is bounded if and only if G is. Note that
every simple group (such as groups of smooth diffeomorphisms) is c-generated by
any non-trivial symmetric set, for instance by {a, a−1}, where a is not the identity.

Bounded groups and quasi-morphisms. The following notion of q-norms es-
tablishes a link with quasi-morphisms, even though the exact relationship between
(the existence of) q-norms and quasi-morphisms still remains rather obscure.

Definition 2.1. Let G be a group. We say that a function q : G → R+ is a
quasi-norm (abbreviated to q-norm) if it is quasi-subadditive and quasi-conjugacy-
invariant, that is, there is a constant c such that:

1. q(ab) ≤ q(a) + q(b) + c;
2. |q(b−1ab)− q(b)| ≤ c

for all a, b ∈ G.

An important example of a q-norm is the absolute value of a quasi-morphism.
There is a substantial difference between q-norms and quasi-morphisms. For in-
stance, any unbounded quasi-morphism is unbounded on powers of some element,
which is not true for q-norms. Furthermore, a quasi-morphism is bounded on the
set of all commutators. Nonetheless, all example of unbounded groups without un-
bounded quasi-morphisms we are aware of are of the same nature: the elements are
represented by transformations of an unbounded space, and the q-norm measures
something like “the size of support” of the transformations.

One can see that in fact the existence of an unbounded q-norm implies the exis-
tence of an unbounded bi-invariant metric, even though the q-norm is often defined
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in a more natural way. Hence a group is unbounded if it admits an unbounded
q-norm; in other words, the existence of unbounded norms and q-norms are equiv-
alent. Thus without loss of generality in most cases we can restrict ourselves to
norms only.

Invariants at fixed points. Finally, the following example explains why we deal
with the group of compactly supported PL-homeomorphisms of R rather than PL-
homeomorphisms of a closed segment.

Example 2.2. The group of diffeomorphisms of a segment [a, b] is unbounded.
Indeed, for a diffeomorphism φ one defines f(φ) = log φ′(a) + log φ′(b). Then f is
an unbounded homomorphism to R.

More generally, this example explains why whenever one wants to study dif-
feomorphisms of a manifold with a boundary, it is wise to restrict themselves to
diffeomorphisms that are identical in some neighborhood of the boundary.

3. Technical Tools

We need certain analogs of techniques developed in [BIP] that would be appli-
cable to non-smooth maps. Furthermore, the key notions of portable manifolds and
core in [BIP] are applied to a manifold (or, in other words, to the whole group of
diffeomorphisms), whereas we may want to work with its subgroups, as well as with
certain subgroups of homeomorphism groups. Thus the versions of techniques from
[BIP] that we present here seem to be more general.

Let X be a topological space and f : X → X a homeomorphism. By the support
of f we mean the set supp(f) = closure{x : f(x) 6= x}. Obviously f ≡ id outside
supp(f), f(supp(f)) = supp(f), and supp(fg) ⊂ supp(f) ∪ supp(g).

We say that f is supported in a region Ω ⊂ X if supp(f) ⊂ Ω, and f is compactly
supported if supp(f) is compact. The set of all compactly supported homeomor-
phisms is a subgroup; we denote this subgroup by Homeocomp(X).

It is clear that maps supported in a region Ω form a subgroup, and functions
with disjoint supports commute. Note also that supp(Cf (g)) = f(supp(g)).

Definition 3.1. We say that a subgroup G of homeomorphisms of X displaces
supports if there is a map F ∈ G and a region Ω ⊂ X such that

1. The sets Ωi = F i(Ω), i ∈ Z, are disjoint, and
2. For every finite collection of hi ∈ G there exists k ∈ G such that k(

⋃
i supp(hi)) ⊂

Ω.

It is easy to check that the first condition follows from a more manageable
assumption: there is a region Ω′ disjoint with Ω and such that F (Ω ∪ Ω′) ⊂ Ω′.

Example 3.2. We say that a subgroup G of Homeocomp(Rn) is transitive on re-
gions if for any compact K ⊂ Rn and any open U ⊂ Rn there exists a g ∈ G such
that g(K) ⊂ U . If G is transitive on regions, then G displaces supports. In partic-
ular, the groups of all compactly supported homeomorphisms and diffeomorphisms
of Rn displace supports.

Example 3.3. The groups of compactly supported homeomorphisms and diffeo-
morphisms of an open annulus displace supports (although it is not transitive on
regions).

The main result of this section is the following
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Theorem 3.4. If G displaces supports, then every q-norm q on G is bounded on
[G,G].

Proof. For an element F ∈ G, we say that g ∈ G is an F -commutator if g = [F̃ , h]

for some h ∈ G and some F̃ conjugate to F . Note that all elements of the form
[F, h], [h, F ], [F−1, h], [h, F−1] and their conjugates are F -commutators. We begin
with the following elementary observation:

Lemma 3.5. Let q be a q-norm on G and F ∈ G. Then q is bounded on the set of
all F -commutators.

Proof. [F̃ , h] is the product of F̃ and hF̃−1h−1; the latter is conjugate to F−1.
Hence q([F, h]) ≤ q(F ) + q(F−1) + 3c where c is a constant from Definition 2.1. �

Fix F and Ω as in Definition 3.1. We will show that the every element from the
commutator subgroup [G,G] can be represented as a product of 3 F -commutators.
This will imply the Theorem by Lemma 3.5.

We will often consider maps supported in a finite union
⋃m

0 Ωi and such that
they can be represented as products of commuting terms each of which is supported
in one of the regions Ωi. Equivalently, we consider products

∏
CF i(gi), where

supp(gi) ⊂ Ω. Since maps supported in disjoint regions commute, the product of
such maps

∏
CF i(fi) and

∏
CF i(gi) can be computed component-wise:

(3.1)
∏

CF i(fi) ·
∏

CF i(gi) =
∏

CF i(figi)

Lemma 3.6. Let g0, g1, . . . , gm ∈ G be such that supp(gi) ⊂ Ω for all i, and∏m
0 gi = id. Then the product g =

∏m
0 CF i(gi) is an F -commutator.

Proof. Let φi = g0g1 . . . gi for i = 0, 1, . . . ,m (note that φm = id). Define φ =∏m−1
0 CF i(φi). We will show that g = [F, φ−1].
Note that [F, φ−1] = CF (φ−1)φ and

CF (φ−1) =

m−1∏
0

CF i+1(φ−1i ) =

m∏
1

CF i(φ−1i−1).

Hence by (3.1)

[F, φ−1] = CF (φ−1)φ = φ0 ·
m∏
1

CF i(φ−1i−1φi) =

m∏
0

CF i(gi) = g

since φm = id, φ0 = g0 and φ−1i−1φi = gi for i = 1, . . . ,m. �

Remark: the same statement can be proved under the assumption
∏0
m gi = id.

In this case, g can be represented as [φ, F ] for a suitable φ.

Lemma 3.7. Let g1, g2, . . . , gm be a collection of elements of G supported in Ω.
Then g =

∏1
m gi equals an F -commutator times the product

∏m
1 CF i(gi).

Proof. Introduce g′0 = g and g′i = g−1i . Note that
∏m

0 g′i = id. Then apply the
previous lemma. �

Lemma 3.8. Any commutator is a product of two F -commutators.
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Proof. Consider a commutator [f, g]. Using the second assumption from Definition
3.1, there are conjugates Chf and Chg whose supports lie in Ω. Therefore without
loss of generality we can assume that the supports of f and g lie in Ω. Then by
Lemma 3.6, the elements

(fg)CF (g−1)CF 2(f−1)

and

(f−1g−1)CF (g)CF 2(f)

are F -commutators. By (3.1), their product equals [f, g]. �

Lemma 3.9. Any product of several commutators can be represented as a product
of three F -commutators.

Proof. Consider g =
∏1
m[fi, gi]. By means of a conjugation, we may assume that

all maps fi and gi are supported in Ω, By Lemma 3.7, g equals an F -commutator
times a product

∏m
1 CF i([fi, gi]), The latter in its turn is equal to the commutator

of two products
∏m

1 CF i(fi) and
∏m

1 CF i(gi) by (3.1). By the previous lemma,
this commutator equals a product of two F -commutators. Hence g is a product of
three F -commutators. �

Now the Theorem follows from Lemma 3.5. �

4. PLcomp(R): invariants of conjugacy classes and boundedness

Now we proceed with a proof of Theorem 1.2. We derive the theorem from
Theorem 3.4. Namely, we show that PL coincides with its commutator subgroup:
[PL,PL] = PL (Lemma 4.6 below). Since PL is obviously transitive on regions,
this implies that it is bounded.

For f ∈ PL and x ∈ R, denote by f ′+(x) and f ′−(x) the right and left derivative

of f at x, respectively, and define a cocycle χf (x) =
f ′+(x)

f ′−(x)
. A direct computation

shows that

(f ◦ g)′±(x) = f ′±(g(x)) · g′±(x), (f−1)′±(f(x)) =
1

f ′±(x)
,

and

χf◦g(x) = χf (g(x)) · χg(x), χf−1(f(x)) =
1

χf (x)
.

An x ∈ R is said to be a break point of f if χf (x) 6= 1. Every f ∈ PL has only
finitely many break points, and every f 6= id has at least 3 break points (at least
two boundary points of supp(f) at at least one non-fixed break point). An f ∈ PL
is said to be primitive if it has exactly 3 breaks. Obviously the inverse of a primitive
map is also primitive.

Lemma 4.1. For every a, b, c ∈ R, a < b < c, and every positive λ 6= 1, there
exists a primitive f ∈ PL with break points at a, b and c and such that χf (b) = λ.

Proof. For every t ∈ (a, c), let ft ∈ PL be the map with break points at a, b, c such
that f(b) = t. The function t 7→ χft(b) is monotone increasing and goes to 0 and
∞ as t goes to a and c, respectively. Hence there is a t such that χft(b) = λ. �

Lemma 4.2. The primitive maps generate PL.
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Proof. We will show that a map f ∈ PL with n break points can be represented
as a product of at most n primitive maps. Let x0 be a non-fixed break point of f .
Then there exist fixed break points a ∈ (−∞, x0) and b ∈ (x0,+∞). Observe that
a < f(x0) < b. Using the previous lemma, construct a primitive map g with break
points at a, f(x0) and b such that χg(f(x0)) = (χf (x0))−1. Consider f1 = g ◦ f .
It has the same set of break points as f , except for x0 and possibly a and b. (The
break of g at f(x0) cancels the break of f at x0.) An induction in the number of
break points completes the proof. �

Our next goal is to find some conjugacy invariants in PL. The first trivial
observation is that right and left derivatives at fixed points are invariant under
conjugations. More precisely, if x is a fixed point of f , then g(x) is a fixed point of
Cg(f) and (Cg(f))′±(g(x)) = f ′±(x).

Now consider the orbits of f . There are two kinds of orbits: fixed points
and monotone (increasing or decreasing) sequences of the form {xi}i∈Z such that
f(xi) = xi+1 for all i.

Let ω be an infinite orbit of f . Define χf (ω) =
∏
x∈ω χf (x). The product is

well-defined since all but finitely many terms in the product equal 1 (recall that
there are only finitely many break points). We call χf (ω) the characteristic of
ω. The following lemma is a standard assertion for cocycles. It states that the
characteristic of an orbit in invariant under conjugations.

Lemma 4.3. Let f, g ∈ PL, ω an orbit of f , ω = {xi}i∈Z where f(xi) = xi+1 for

all i. Let f̃ = Cg(f). Then

1. g(ω) := {g(xi)}i∈Z is an orbit of f̃ .
2. χf̃ (g(xi)) = χf (xi) · χg(xi+1) · (χg(xi))−1.

3. χf̃ (g(ω)) = χf (ω).

Proof. Recall that f̃ = Cg(f) = g ◦ f ◦ g−1.

1. f̃(g(xi)) = g(f(xi)) = g(xi+1),
2. χf̃ (g(xi)) = χg(f(xi)) · χf (xi) · χg−1(g(xi)). The first term equals χg(xi+1),

the third term equals (χg(xi))
−1.

3. From the second statement,

χf̃ (g(ω)) = χf (ω) ·
∏
i

χg(xi+1) ·
∏
i

(χg(xi))
−1.

In this formula, the two products over the orbit cancel each other. �

We say that an infinite orbit ω of f is essential if χf (ω) 6= 1. Obviously there
are only finitely many essential orbits.

Lemma 4.4. If a map f ∈ PL has exactly N essential orbits, then f is conjugate
to a map with exactly N non-fixed break points.

Proof. We say that an orbit is complicated if it contains more than one break point.
We are going to apply a series of conjugations by primitive maps which eliminates
the complicated orbits. Let ω = {xi}i∈Z be a complicated orbit, x0 and xn be
the first and last break points in this orbit. Let a and b be fixed points of f
such that a < xn < b. Construct a primitive function g with break points at
a, xn and b with χg(xn) = χf (xn). Consider f̃ = Cg(f) and the orbit g(ω) of

f̃ . By the previous lemma, χf̃ (g(xn)) = χf (xn)χg(xn)−1 = 1, and χf̃ (g(x)) =
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χf (x) for x /∈ {xn−1, xn}. It follows that all break points in g(ω) are in the set
{g(x0), g(x1), . . . , g(xn−1)}, so the last break point of the orbit gets closer to the

first one. Furthermore, every orbit of f̃ except g(ω) contains the same number of
break points as the corresponding orbit of f , so this conjugation does not introduce
new complicated orbits. Applying a similar procedure at most n times, one obtains
a map conjugate to f whose orbit corresponding to ω is no longer complicated, and
hence the total number of complicated orbits is smaller than that of f .

It follows by induction that there is a map f1 which is conjugate to f and has
no complicated orbits. Every orbit containing one break point is essential, hence
f1 has exactly N non-fixed break points. �

We will apply the lemma only to maps having only one essential orbit. In this
case, the lemma implies that the map is conjugate to a primitive one. The next
lemma provides a classification of such maps up to a conjugacy.

Lemma 4.5. The conjugacy class of a map f with one essential orbit is uniquely
determined by the right derivative at the leftmost point of supp(f) and the left
derivative at the rightmost point of supp(f).

Proof. By the previous lemma, f is conjugate to a primitive map. Since the right
and left derivatives at fixed points are invariant under conjugations, we may assume
that f itself is primitive. Let supp(f) = [a, b]. Construct a map g ∈ PL such that

g([a, b]) = [0, 1] and g has no break points in [a, b]. Then f̃ = Cg(f) is again a

primitive map, and supp(f) = [0, 1]. Such a map f̃ is uniquely determined by its
right derivative at 0 and left derivative at 1. The lemma follows. �

Lemma 4.6. Every primitive element of PL is a commutator. Therefore [PL, PL] =
PL.

Proof. Consider a primitive f ∈ PL. Let supp(f) = [a, b], f ′+(a) = α, f ′−(b) = β.
We may assume that α > 1 and β < 1 (otherwise consider f−1). Let x0 be the
non-fixed break point of f .

By continuity, there exist y0 ∈ (a, x0) and y1 ∈ (x0, b) such that f(y0) = y1 and
f(y1)−f(y0)

y1−y0 = 1. (Indeed, the function t 7→ f(f(t))−f(t)
f(t)−t takes the value α near a and

the value β near b. A point where it takes value 1 is the desired y0.)
Let f1 ∈ PL be the map which coincides with f outside (y0, y1) and is linear on

[y0, y1]. Note that f ′1 = 1 in (y0, y1). Observe that supp(f1) = [a, b], f1
′
+(a) = α,

f1
′
−(b) = β, and both non-fixed break points of f1 (namely y0 and y1) belong to one

orbit, Hence by the previous lemma f1 is conjugate to f , so f1 = g◦f ◦g−1 for some
g ∈ PL. Now consider f2 = f−11 ◦ f . It is a primitive map with supp(f2) = [y0, y1],
f2
′
+(y0) = α and f2

′
−(y1) = β, hence f2 is conjugate to f . By construction, f2

is a commutator (f2 = [g, f−1]). Since f is conjugate to a commutator, it is a
commutator itself. The first statement of the lemma follows.

Then the second statement follows from the fact that primitive elements generate
PL (Lemma 4.2). �

The above lemma and Theorem 3.4 imply Theorem 1.2.
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