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We define (two-dimensional) polyhedron as a topological space homeomorphic to
a locally finite two-dimensional simlplicial complex. The essential 1-skeleton of a
polyhedron X, denoted by esk1 X, is the set of points of X having no neighborhood
homeomorphic to the disc. The 1-skeleton is a (locally finite) graph. Its edges
adjacent to exactly one face of X are called boundary edges. By a metric on a
polyhedron X we mean a length metric that induces the standard topology on X.
A metric is a distance function on X ×X, hence the notion of uniform convergence
in naturally defined on the set of metrics.

The purpose of this note is to weaken the assumptions of the Limit Metric
Theorem of [BB]. This theorem ([BB, theorem 0.8]) claims the following. Let κ ∈ R,
and let {dn}

∞

n=1 be a sequence of metrics of curvature ≤ κ (in Alexandrov sense) on
a polyhedron X converging uniformly to a metric d. Assume that the metrics dn

have uniformly bounded positive curvature parts and determine uniformly bounded
lengths of esk1 X and uniformly bounded turn variations of the boundary edges.
Then the metric d has curvature ≤ κ.

We will show that the assumption that the lengths of internal edges of esk1 X
are uniformly bounded is not essential since it follows from the other conditions
and the fact that the metrics converge. More precisely, we will prove

Theorem 1. Let {dn}
∞

n=1 be a sequence of metrics of curvature ≤ κ on a poly-

hedron X converging uniformly to some metric d on X. Assume that the metrics

dn have uniformly bounded positive curvature parts on X r esk1 X and determine

uniformly bounded lengths and turn variations of boundary edges of X. Then for

any compact set K ⊂ X, the lengths ℓn(K ∩ esk1 X) are uniformly bounded, where

ℓn denotes the length with respect to dn.

This immediately implies that Theorem 0.8 from [BB] can be stated as follows.

Corollary. If dn and d are the same as in Theorem 1, then d has curvature ≤ κ.

Remark. It is still unclear if the remaining assumptions on the metrics {dn} are
essential. It seems plausible that one can omit at least the one about the lengths
of boundary edges. It is easy to see that a uniform bound on their turn variations
imply a uniform bound on their lengths within any compact set containing no
(essential) vertices of the polyhedron.
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The plan of the proof is the following. First, note that the edges with no adjacent
faces can be removed from the polyhedron. It suffices to obtain a uniform bound
on the length of the 1-skeleton locally, i.e., in a neighborhood of every point. Every
point x ∈ X has a neighborhood homeomorphic to a cone over a finite graph,
namely the link of the point. The edges of X emanating from x correspond to the
vertices of the link, and the boundary edges correspond to the vertices of degree
one. Every vertex of the link can be included in a simple cycle or in a path whose
endpoints are vertices of degree one or vertices that can be included in cycles.
The cone over this cycle or path is an embedded disc D in X. Every metric dn

induces a length metric dn,D of curvature ≤ κ on D. The set D ∩ esk1 X is a
union of simple curves emanating from x. The assumption that positive parts of of
curvature are uniformly bounded imply (by Gauss-Bonnet formula, cf. [BB]) that
turn variations of these curves with respect to dn,D are uniformly bounded. We will
prove that, first, the collection of metrics dn,D is pre-compact in a certain topology,
and second, that the pre-compactness of the set of metrics and a uniform bound
on turn variations of curves imply a uniform bound on their lengths.

We have to make use of the condition that the metrics dn converge. This con-
dition does not immediately imply anything about induced length metrics dn,D

because attaching other faces of the polyhedron to D ∩ esk1 X can arbitrarily re-
duce distances between points of D. Nevertheless, the distances from a point y ∈ D
to the set ∂D ∪ (D ∩ esk1 X) in the metrics dn and dn,D are the same, since such
a distance is determined by lengths of curves contained in D. Thus if D is small
enough with respect to the limit metric d (and hence with respect to dn for large
n), the set D r esk1 X cannot contain a large ball of a metric dn,D. The proof of
Theorem 1 is based mainly on general properties of curves of bounded turn varia-
tion in a disk of curvature ≤ κ whose complements have small maximal radius of
an inscribed ball.

We will assume an upper bound for the curvature to be 1 (this can always be
achieved by scaling). The metrics on discs will be assumed Riemannian and the
curves will be assumed piecewise smooth. The results generalize to arbitrary metrics
by means of approximation.

Now let us fix some notations and conventions. We call a domain a two-
dimensional smooth manifold D with a piecewise smooth boundary, homeomorphic
to the disc and equipped with a Riemannian metric of curvature ≤ 1. Such a
domain is a length metric space of curvature ≤ 1 in the Alexandrov sense. The
distance between points x and y with respect to the domain’s length metric will be
denoted by |xy|. A curve whose length equals the distance between its endpoints
is called a shortest path, a locally shortest path is called a geodesic. (This covers
more than only Riemannian geodesics. For example, concave boundary arcs are
geodesics in the above sense.) If points x and y can be joined by a unique shortest
path, this shortest path is denoted by xy. We define the injectivity radius of D,
ρinj(D), as the maximal number r such that any geodesic of length < r is a unique
shortest path between its endpoints. If all geodesics are unique shortest paths, we
define ρinj(D) = ∞. The injectivity radius is positive and the angle comparison
property of curvature ≤ 1 holds for all geodesic triangles in D of perimeter less
than 2min{π, ρinj(D)}. We will denote by τ(γ) the turn of a (piecewise smooth)
curve γ, defined as the integral of the absolute value of the geodesic curvature plus
the sum of turn angles at nonsmooth points. Finally, denote by ρ(D) the maximal
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radius of a ball contained in the interior of D, ρ(D) = supx∈D dist(x, ∂D).

Proposition 1. If ρ(D) < π/2 then ρinj(D) ≥ π.

Proof. If ρinj(D) < π, then D contains a geodesic loop of length L = 2 ρinj(D) < 2π.
Let D′ be the domain bounded by this loop. Substituting K = 1 to theorems 2
and 3 from [I], we obtain that L2 − 4πF + F 2 ≥ 0 and

(*) ρ(D′) ≥ min

{

π

2
, 2 arctg

(

F

L +
√

L2 − 4πF + F 2)

)}

,

where F is the area of D′. Since D′ is a domain with a concave boundary (in
the Riemannian sense) and curvature ≤ 1, the Gauss-Bonnet formula imply that
F ≥ 2π. It is straightforward that for L < 2π and F ≥ 2π the right-hand side of
(*) is no less than π/2. Hence ρ(D) ≥ ρ(D′) ≥ π/2. �

Proposition 1 implies that in a domain D with ρ(D) < π/2 every geodesic of
length < π is a unique shortest path between its endpoints, and angles of a geodesic
triangle of perimeter < 2π are not larger than the respective angles of a spherical
triangle with sides of the same length. We will use these properties without explicit
reference to Proposition 1.

From now on, we fix some sufficiently small positive r0. For example, one can
let r0 = π/100.

Proposition 2. For any ε > 0 there is a δ > 0 such that the following holds. Let

D be a domain with ρ(D) ≤ r0 whose boundary consists of two simple curves γ0

and γ with common endpoints p and q, let γ0 be a shortest path, ℓ(γ0) ≤ 4r0, and

τ(γ) < δ. Then

(i) the angles at p and q between the curves γ and γ0 are less than ε,
(ii) ℓ(γ) < (1 + ε)ℓ(γ0),
(iii) dist(x, γ0) < εℓ(γ0) for any point x ∈ γ.

Proof. We may assume that γ is a smooth curve (otherwise use a smooth approxi-
mation). The proof is based on several lemmas.

Lemma 1. dist(x, γ) ≤ 2r0 for all x ∈ D.

Proof. Suppose that dist(x, γ) > 2r0 for some x ∈ D. One may assume that x /∈ γ0.
Let y be a point of γ0 nearest to x. Clearly |xy| ≤ ρ(D) ≤ r0. Observe that the
angles at y between the shortest path yx and γ0 are not less than π/2. Let γ1 be
the maximal Riemannian geodesic starting at y and extending yx beyond x. Then
ℓ(γ1) > 2r0. Indeed, if ℓ(γ1) < ∞ then γ1 ends at the boundary of D. If it ends at γ,
one has ℓ(γ1) > dist(x, γ) > 2r0. On the other hand, if it ends at γ0 then γ1 and an
interval of γ0 form a geodesic biangle and hence ℓ(γ1) ≥ π. Let γ1 be parameterized
by arc length, γ1 : [0, ℓ(γ1)) → D, γ1(0) = y. Consider a point z = γ1(r0 +σ) where
0 < σ < |yx|. The curve γ1|[0,r0+σ] realize the minimum distance from z to γ0.

Indeed, otherwise this curve, the shortest path zy′ that realize the distance from z
to γ0, and the interval of γ0 between y and y′ form a geodesic triangle with sides
< π/2 and two angles ≥ π/2 which contradicts the angle comparison property.
Thus dist(z, γ0) = r0 + σ > r0. On the other hand, dist(z, γ) ≥ dist(x, γ) − |xz| >
2r0− (r0 +σ−|xy|) > r0. Hence ρ(D) ≥ dist(x, ∂D) > r0 with a contradiction. �
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Fix some small enough ε. Let p0p1p2 be a triangle in the unit sphere such that
|p0p1| = |p0p2| = 2r0 and ∡p0p1p2 = ∡p0p2p1 = π

2 −ε. Define θ = ∡p1p0p2. Clearly
θ → 0 as ε → 0, so we may assume that θ < π/3.

Suppose that one of the angles between γ and γ0 is at least ε. We will then
derive that τ(γ1) ≥ ε for an interval γ1 of γ which is constructed below.

For two points p1, q1 ∈ γ we denote by [p1, q1] the interval of γ between them.
Consider the intervals [p1, q1] ⊂ γ such that |p1q1| ≤ 4r0 and the shortest path p1q1

form an angle ≥ ε with [p1, q1] at p1 or q1. The entire γ is one of such intervals, and
the lengths of such intervals have a positive lower bound (otherwise γ would not
be smooth). Therefore this set of intervals contains one minimal by inclusion. Let
[p1, q1] be such a minimal interval. Denote it by γ1 and the shortest path p1q1 by
γ2. Let the angle between γ1 and γ2 at q1 be at least ε. Clearly γ2 has only points
p1 and q1 in common with γ1, otherwise [p1, q1] would not be minimal. Thus γ1

and γ2 bound a domain D′. Note that the distances in the induced length metric
of D′ are the same as in D because D′ is separated from D by a shortest path. The
domain D′ satisfy the assumptions of Proposition 2, so Lemma 1 remains true if
one replaces D and γ by D′ and γ1.

Lemma 2. If x ∈ D′, y, z ∈ γ1 and |xy| = |xz| = dist(x, γ1) then ∡x(xy, xz) ≤ θ.

Proof. By Lemma 1, dist(x, γ1) ≤ 2r0 and hence |yz| ≤ 4r0. If ∡(xy, xz) > θ
than ∡y(yx, yz) < π

2 − ε by triangle comparison. Hence the angle at y between
the shortest path yz and the interval [x, y] of γ1 is at least ε. This contradicts the
choice of [p1q1]. �

Lemma 3. dist(x, γ2) ≤ 4r0 for every point x ∈ D′.

Proof. We may assume that x is an interior point of D′. Consider the set S =
{y ∈ D′ : |xy| ≤ 2 dist(y, γ1)}. Note that S is compact, S ∩ γ1 = ∅ and S 6= ∅

(because x ∈ S). Let y be a point of S furthest from γ1. We will prove that
y ∈ γ2. Supposing the contrary, let y be an internal point of D′. Then define
C = {z ∈ γ1 : |yz| = dist(y, γ1)} and let W ⊂ TyD be the set of directions of
shortest paths joining y to points of C. By Lemma 2, W is contained within an angle
less or equal to θ. Hence there is a unit vector v ∈ TyD such that ∡(v, w) ≥ π−θ/2
for all w ∈ W . Pick a smooth curve s : [0,∞) → D parameterized by arc length
with s(0) = y and s′(0) = v. The first variation formula implies that

lim inf
t→0

dist(s(t), γ1) − dist(y, γ1)

t
= inf{− cos ∡(v, w) : w ∈ W}

≥ cos(θ/2) > 1/2.

Hence for sufficiently small t one has dist(s(t), γ1) ≥ dist(y, γ1) + t/2 and

|xs(t)| ≤ |xy| + t ≤ 2 dist(y, γ1) + t ≤ 2 dist(s(t), γ1)

which contradicts the choice of y. Thus y ∈ γ2, hence dist(x, γ2) ≤ |xy| ≤
2 dist(y, γ1) (the second inequality holds because y ∈ S). The lemma follows, since
dist(y, γ1) ≤ 2r0 by Lemma 1. �

Lemma 3 implies that |p1x| ≤ dist(x, γ2) + ℓ(γ2) ≤ 8r0 < π/2 for all x ∈ D′. In
particular, for every point x ∈ D′ there is a unique shortest path joining it to p1.
Let γ1 be parameterized by arc length, γ1 : [0, ℓ] → D, γ1(0) = p1, γ1(ℓ) = q1. For

every t, 0 < t ≤ ℓ, denote by α(t) the angle at γ1(t) between γ1(t)p1 and γ1|[0,t].
Clearly the function t 7→ α(t) is continuous and α(t) → 0 as t → 0.
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Lemma 4. For every interval J = [t1, t2] ⊂ (0, ℓ],

α(t2) − α(t1) ≤ τ(γ1|J ).

Proof. The statement is additive with respect to J . Thus it can be reduced, by
means of approximation by broken geodesics, to the following: if γ1|J is a shortest
path then the function t 7→ α(t) is non-decreasing. This is equivalent to that for
all t, t′ ∈ J the sum of two angles of the triangle p1γ1(t)γ1(t

′) at γ1(t) and γ1(t
′)

is less or equal to π. This in turn follows from triangle comparison, since the sides
|p1γ1(t)| and |p1γ1(t

′)| are shorter than π/2, and for any spherical triangle with
lateral sides < π/2 the sum of its angles at the base side is less or equal to π
(because the area in not larger than the angle at the third vertex). �

Applying Lemma 4 to intervals J = [t, ℓ] as t → 0 we obtain that ∡q1
(γ2, γ1) ≤

τ(γ1). Hence τ(γ) ≥ τ(γ1) ≥ ∡q1
(γ2, γ1) ≥ ε which proves the statement (i) of

Proposition 2 for δ = ε.
Now let us prove the statement (ii). Let γ be parameterized by arc length,

γ : [0, ℓ] → D, γ(0) = p, γ(ℓ) = q. Denote by Σ the set of parameters t ∈ [0, ℓ] such
that |pγ(t)| ≤ 4r0. For every t ∈ Σ one has

d

dt+
|γ(t)q| ≤ − cos α(t),

where d/dt+ denotes the right derivative and α(t) is the angle at γ(t) between

γ(t)q and γ|[t,ℓ]. Applying (i) to the domain bounded by the curves γ|[t,ℓ] and γ(t)q
in place of D, we obtain that α(t) ≤ ε. (If these curves have common internal
points, they bound several domains, in which case the one containing γ(t) should
be chosen.) It follows that

d

dt+
|γ(t)q| ≤ − cos ε < −(1 + ε)−1

for all t ∈ Σ. Then the left-hand side is negative and therefore Σ contains a right-
side neighborhood of every its point. In addition, we have 0 ∈ Σ, hence Σ = [0, ℓ].
Now by integrating the above inequality we obtain that |pq| ≥ ℓ(1 + ε)−1 which
proves the statement (ii) of Proposition 2.

The statement (ii) implies that for all x ∈ γ we have |px|+ |qx| ≤ (1 + ε)|pq|, in
particular, |px| and |qx| are less than π/4. By triangle comparison it easily follows
that the altitude of the triangle pqx is small compared to the length of the base
pq = γ0. The statement (iii) follows (for another but still arbitrarily small value of
ε). This completes the proof of Proposition 2. �

For the rest of the paper we fix a δ0 > 0 that is suitable for ε = 1/2 in Proposi-
tion 2.

Proposition 3. Let γ be a curve in a domain D with endpoints p and q such that

|pq| < 4r0 and τ(γ) < δ0. Let γ0 be a shortest path joining p to q. Assume that

any domain bounded by an interval of γ and an interval of γ0 has the radius less

or equal to r0. Then ℓ(γ) ≤ 2|pq|.

Proof. By a slight variation of γ we may achieve that it intersects γ0 only finitely
many times. Every domain bounded by an interval of γ between two consecutive
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(on γ) intersection points and the corresponding interval of γ0 satisfy the assump-
tions of Proposition 2. Therefore every such domain form acute angles at these
intersection points. This implies that the intersection points have the same order
on γ0 and γ. By the last statement of Proposition 2, the length of an interval of
γ between consecutive intersection points is at most twice the length of the corre-
sponding interval of γ0. Adding up these inequalities over all intervals, we obtain
that ℓ(γ) ≤ 2|pq|. �

Proposition 4. For every T > 0 here is an ε > 0 such that the following holds.

Let D be a domain with ρ(D) ≥ r0, γ0 ⊂ ∂D be a shortest path, ℓ(γ0) ≤ r0. Let

Γ ⊂ D be a set containing ∂D and representable as a union of γ0 and an at most

countable collection of disjoint simple curves with endpoints at γ0. Assume that the

sum of turns of the curves that form Γ is less or equal to T . Then there exists a

point x ∈ D such that dist(x,Γ) > ε.

Proof. Since it suffices to prove the statement for a set Γ composed of finitely many
curves, we may assume that the curves are separated from one another. Consider
all subdomains D′ ⊂ D with ρ(D′) ≥ r0 bounded by an interval of one of the
curves that form Γ and a shortest path of length ≤ r0 joining the endpoints of this
interval. Among these, there is a domain minimal by inclusion. A minimal domain
D′ and the set Γ′ = Γ ∩ D′ satisfy the assumptions of the proposition, so we may
assume that D itself is minimal. This implies that propositions 2 and 3 apply to
all curves contained in Γ and having the distance between endpoints no larger than
r0, except the curve ∂D r γ0. Since ρ(D) ≥ r0, there is a point p ∈ D such that
the Riemannian exponential map expp is defined and injective in a ball of radius
r0 (cf. [B]). Let the ball of radius r0 in TpD be equipped with a metric of constant
curvature 1. Then the exponential map does not increase lengths of curves and
hence it is distance non-increasing in the ball of radius r0/2. The curves composing
Γ r ∂D fall into two classes, those whose turns are less or equal to δ0, and those
whose turns are larger than δ0. By Proposition 2, the curves of the former class
are contained within the (r0/2)-neighborhood of γ and therefore do not intersect
the ball B(p, r0/2). The latter class contains at most T/δ0 curves. Split each of
them into T/δ0 intervals whose turns are not greater than δ0. Thus we obtain a
collection of curves s1, . . . , sN , N ≤ (T/δ0)

2 such that τ(si) < δ0 and

B(p, r0/2) ∩ Γ ⊂
N
⋃

i=1

si.

Since diamB(p, r0/2) ≤ r0, Proposition 3 implies that for every i = 1, . . . , N the
set si ∩ B(p, r0/2) is contained within an interval s′i of si with ℓ(s′i) ≤ r0. For a
sufficiently small ε pick a maximal set of points {y1, . . . , yM} in B(p, r0/3) separated
by distances at least 3ε from one another. Comparing B(p, r0/3) with a ball in S2

by means of the exponential map, we obtain an estimate M ≥ c(r0/ε)2 for some
(universal) constant c > 0. Every curve s′i intersects at most r0/ε balls B(yi, ε)
because ℓ(s′i) ≤ r0. For ε < cr0/N we have Nr0/ε < c(r0/ε)2 < M and hence at
least one of the M balls B(yi, ε) does not intersect Γ. �

Proposition 5. For any T > 0 and N ∈ N there is an ε > 0 such that the

following holds. Let D be a domain, Γ ⊂ D be an embedded tree with at most N
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edges whose turns are less or equal to T . Assume dist(x,Γ∪∂D) < ε for all x ∈ D.

Then

(i) For any simple curve γ contained in one of the edges of Γ, joining points p
and q with |pq| ≤ r0, and such that τ(γ) < δ0, one has ℓ(γ) ≤ 2|pq|.

(ii) Any ball of radius r < r0 lying in the interior of D contains a ball of radius

εr not intersecting Γ.

Proof. Approximate Γ by a simple closed curve Γ0 which is a boundary of a small
neighborhood of Γ. This curve can be chosen so that its turn is estimated from
above in terms of N and the turns of the edges, and lengths of edges are close to
lengths of some intervals of Γ0. It suffices to prove the proposition for Γ0 instead
of Γ.

(i) Let ε be the same as in Proposition 4. If ℓ(γ) > |pq| then Proposition 3 fails
for γ. This means that some interval of the shortest path joining p and q, and some
interval of γ, bound a domain D′ with ρ(D′) ≥ r0. By Proposition 4 applied to D′

and the set |pq| ∪ (Γ0 ∩ D′), there is a point x such that dist(x,Γ0 ∪ ∂D) ≥ ε.

(ii) Let B(p, r) be a ball contained in the interior of D. First assume that the
Riemannian exponential map is injective within the radius r. Then (i) implies that
the set B(p, r/2) ∩ Γ0 can be covered by a bounded number of intervals of Γ0 each
having length ≤ r and turn ≤ δ0. Applying the selection procedure from the proof
of Proposition 4 (for r in place of r0), we obtain a desired ball of radius εr.

On the other hand, if expp is not injective within a radius r, then ρinj(D) ≤ r < π,
and hence ρ(D) ≥ π/2 > r0 by Proposition 1. It follows that there is a point q ∈ D
for which expq is defined and injective within the ball of radius r0 (cf. [B]). Applying
the selection procedure to this ball, we can obtain a ball of radius ε not intersecting
Γ0. This contradicts the assumption that supx∈D dist(x,Γ0 ∪ ∂D) < ε. �

Proof of Theorem 1. Let {dn} be a sequence of metrics on a polyhedron X satisfying
the assumptions of the theorem, and let x ∈ X be an arbitrary point. Fix a
homeomorphism identifying a neighborhood of x with a cone over a graph and
construct there two small embedded discs, D and D′ which are homothetic with
respect to the cone structure. Let these discs be cones over a cycle or a path in
the link of x, moreover in the latter case the endpoints of the path correspond to
boundary edges or can be included in cycles. Then D′ ∩ esk1 X is a union of curves
emanating from x whose turns with respect to the metrics dn,D are uniformly
bounded by some T . To prove the theorem it suffices to show the the lengths
ℓn(D′ ∩ esk1 X) are uniformly bounded.

We may assume that the diameter of D with respect to the limit metric d, and
hence with respect to dn for large n, is less than ε, where ε is chosen by Proposition 5
for T and the number of edges of D ∩ esk1 X. Then every point y ∈ D lies within
a distance less than ε from (D ∩ esk1 X) ∪ ∂D with respect to dn.

Recall that a family of metric spaces is (Gromov–Hausdorff) pre-compact if for
any δ > 0 the minimal cardinality of a δ-net is uniformly bounded over all spaces
of the family. We will prove that the restrictions of the metrics dn,D to D′ form a
pre-compact family. Let 0 < δ < infn distdn

(D′, ∂D r ∂X) (the infimum is positive
because the metrics dn converge). First consider the case when x is an internal
point of the disc (i.e., the disc is spanned by a cycle in the link of x). In every space
(D′, dn,D|D′) pick a maximal collection of points separated from one another by
distance at least δ/2. These points obviously form a δ-net. The balls of radius δ/5
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(with respect to dn,D) centered at these points are disjoint. By proposition 5, each
of these balls contains a ball of radius εδ/5 not intersecting esk1 X. The number
of such balls is uniformly bounded over n because they are also balls of the same
radius with respect to metrics dn, and metrics dn form a pre-compact family.

The case when x is a boundary point is similar except that those (δ/5)-balls that
intersect the disc’s boundary should be excluded. But the number of these balls is
uniformly bounded because they intersect ∂D only in edges of X that correspond
the the endpoints of the path that spans the disc, and the lengths of these edges
are uniformly bounded. For boundary edges this is included in the assumptions of
the theorem and for those included in link’s cycles this follows (see below) from the
cycle case that has already been considered.

Now we will derive that the lengths of D′∩ esk1 X in metrics dn,D are uniformly
bounded. Suppose the contrary. Then, since the turns of the edges are uniformly
bounded, it follows that for any L > 0 there is a curve γ contained in a graph’s
edge such that, in one of the spaces (D′, dn,D|D′), one has ℓ(γ) = L and τ(γ) < δ0.
Pick points x1, . . . , xN , N ≥ L/2r0, on this curve such that the length of the
curve’s interval between any two of them is at least 2r0. By the statement (i) of
Proposition 5, applied to D and D ∩ esk1 X, all distances between these points in
the dn,D metric are not less than r0. Since N is arbitrarily large, this contradicts
the above pre-compactness of the family of metrics dn,D|D′ . �
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