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Abstract. For every ε > 0, a contractible spherical 2-polyhedron is constructed
which is a geodesically complete space of curvature ≤ 1 and has diameter < ε. As
an application, a sequence of compact spaces of curvature ≤ 1 is constructed which
homotopically converges to a compact length space with no upper curvature bound.

Introduction

0.1. It is well known that a complete length space X with nonnegative curvature
in the Alexandrov sense can not contain a contractible geodesic loop. Moreover,
the injectivity radius at any point x ∈ X equals one half of the length of the
shortest nontrivial element of the fundamental group π1(X,x). This easily implies
the following convergence properties: if a sequence {Xi}

∞

i=1 of compact spaces of
curvature ≤ k, where k ≤ 0, homotopically converges to a length space X, then
the injectivity radii of the spaces Xi are bounded from below, and therefore X
is also a space of curvature ≤ k. (The homotopy convergence of metric spaces is
intermediate between the uniform convergence and the general Gromov–Hausdorff
convergence, see e.g. [4]).

One may ask similar questions about spaces of curvature ≤ k with k > 0 (due to
rescaling, it is sufficient to consider the case k = 1). Even on the two-dimensional
sphere, it is easy to construct examples of Riemannian metrics of curvature ≤ 1
with arbitrarily small injectivity radius at some points. On the other hand, it
is known [3] that for any metric of curvature ≤ 1 on the sphere S2 or the disc
D2 there exist at least one point at which the injectivity radius is no less than
π/2. As a consequence, a uniform limit of metrics of curvature ≤ 1 on any two-
dimensional manifold also has curvature ≤ 1. This property of uniform limits also
holds for two-dimensional polyhedra under certain additional assumptions about
the one-dimensional skeleton [4, 5]. Whether these assumptions are necessary is
not known.

In dimension 3, there are examples [2] of Riemannian metrics on the sphere
S3 with sectional curvature ≤ 1 and arbitrarily small diameter (and hence with
arbitrarily small injectivity radius at every point). Note that such metrics do not
yet allow one to construct a counter-example in which an upper curvature bound is
not preserved under a uniform or homotopy convergence; for this one would need
similar examples of metrics on the disc D3. (Observe that a complement of a small
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ball of a Riemannian metric in S3 is not a space of curvature ≤ 1 in the Alexandrov
sense—due to the extreme concavity of the boundary.)

0.2. In this paper we construct examples of metrics with similar properties on
contractible two-dimensional polyhedra without boundaries and, as an application,
examples of homotopy convergence of two-dimensional polyhedra where an upper
curvature bound is not preserved. By a polyhedron we mean a (two-dimensional)
finite simlicial complex equipped with a length metric. In fact, all our examples are
spherical polyhedra, that is, spaces that admit triangulations into spherical triangles
(with metrics of constant curvature 1 and geodesic sides).

The precise formulations follow.

0.3. Theorem. For every ε > 0 there exist a contractible two-dimensional spheri-

cal polyhedron which is a geodesically complete space with curvature ≤ 1 and diam-

eter < ε.

Note that the geodesic completeness above is equivalent to having no boundary,
i.e., that every point of the one-dimensional skeleton belongs to at least two two-
dimensional faces.

0.4. Corollary. There is a sequence of two-dimensional polyhedra of curvature

≤ 1 homotopically converging (in the sense of [4]) to a two-dimensional polyhedron

which is not a space of curvature bounded above.

0.5. Remark. As ε goes to zero, the topological type of a polyhedron in The-
orem 0.3 changes (and the combinatorial complexity of the construction grows
rapidly). It remains unclear whether it is possible to construct such examples of
metrics on a polyhedron of a fixed topological type. This is related to the question
whether an upper curvature bound is preserved under a uniform convergence of
metrics on polyhedra (not the homotopy convergence dealt with in Corollary 0.4).

0.6. Organization of the paper. In §1 we describe a construction of a space
PN,F (depending on ε > 0 and combinatorial parameters N and F ), which is a
contractible spherical polyhedron of diameter < 5ε. In §3 we prove Lemma 2.3,
which provides a sufficient condition for PN,F to have curvature ≤ 1. Finally, in
§3 we describe how to choose parameters N and F so that PN,F satisfies all the
conditions from Theorem 0.3, and also prove Corollary 0.4.

§1. Constructing the polyhedron PN,F

1.1. The block K. The desired polyhedron will be obtained by gluing together
many identical blocks. We begin with a description of a single block.

Fix an ε > 0 and construct an embedded graph Γ in the standard sphere S2

with the following properties:
(1) it is a tree;
(2) every edge is a geodesic of length ε;
(3) its ε-neighborhood contains the whole sphere.

(For instance, one may let Γ be the union of several meridian segments of length
kε starting at the north pole and divided into intervals of length ε, where k is the
maximal integer such that kε < π.)

Let n denote the number of edges of Γ; then the number of its vertices is n + 1.
Then find a geodesic segment [pq] of length ε/2 in the sphere such that p is one

of the leaf nodes of Γ and [pq] have no common points with Γ except p. (In order
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to satisfy the last requirement one may, for instance, choose the segment [pq] to be
sufficiently close to an edge of Γ.)

Let X be the space obtained by completion of the intrinsic metric of the set
S2 \ [pq]. Clearly X is a spherical polyhedron homeomorphic to the disc, and its
boundary is the doubling of the segment [pq]. Now identify all nodes of Γ in the
space X. The resulting quotient space (with the length metric induced from X)
will be referred to as the block and denoted by K.

The block K comes with the following cell decomposition. The null-dimensional
skeleton consists of one point obtained by gluing together the nodes of Γ. We call
this point the origin of the block. One-dimensional cells are the n loops obtained
from the edges of Γ, and one loop obtained from the doubling of [pq]. We call
them internal edges and the boundary of the block, respectively. For later use, fix
some orientation on all edges of this one-dimensional skeleton and enumerate the
internal edges by numbers from 1 to n. Finally, the cell decomposition contains one
two-dimensional cell obtained from the set S2 \ (Γ ∪ [pq]).

As a metric space, K is a spherical polyhedron, and all its edges are closed
geodesics of length ε. By the property (3) of Γ, the distance from any point of K
to the one-dimensional skeleton is no greater than ε, therefore the distance from
any point to the origin is no greater than 2ε.

1.2. Polyhedra PN,F . The polyhedron in Theorem 0.3 will be obtained from a
large number of copies of K by gluing every internal edge of every block to the
boundary of some other block. Formally, a gluing scheme is a pair consisting of a
natural number N and a map

F : {1, . . . , N} × {1, . . . , n} → {1, . . . , N}.

Given a gluing scheme (N,F ), one constructs a polyhedron PN,F as follows: pick N
copies of the block K, numbered from 1 to N , glue all their vertices into one point
(for which we continue using the notation p), and then for all i ≤ N and j ≤ n glue
the jth internal edges of the ith block to the boundary of the block number F (i, j),
by a unique orientation-preserving isometry which maps the point p to itself.

Later we will show that, for a suitable choice of N and F , the polyhedron PN,F

satisfies the conditions given in Theorem 0.3 with ε substituted by 5ε. First observe
that PN,F is a spherical polyhedron and its diameter is no greater than 4ε (since
the distance from any point to p is no greater than 2ε).

1.3. Lemma. The polyhedron PN,F is contractible for any N and F .

Proof. Let X be as in section 1.1 (that is, the space from which the block K is
obtained). The polyhedron PN,F can be thought of as the result of attaching N
copies of X to a bouquet of N circles by certain maps from copies of Γ∪ ∂X to the
bouquet. Each copy of the boundary ∂X is mapped homeomorphically to one of
the circles in the bouquet, and to each circle exactly one copy of the boundary is
attached. Since Γ is contractible, the cell pair (X,Γ ∪ ∂X) is homotopy equivalent
to (X, ∂X). Therefore PN,F is homotopy equivalent to the result of attaching N
copies of the disc X to the bouquet of circles by homeomorphisms from copies of ∂X
to the corresponding circles in the bouquet, i.e., to a bouquet of two-dimensional
discs. �
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§2. Gluing graph and boundedness of curvature

2.1. Now we turn our attention to the conditions under which the polyhedron PN,F

has curvature ≤ 1. A well-known criterion of an upper curvature bound (see e.g.
[6] or [1]) in the case of spherical polyhedra simplifies to the following: a spherical
polyhedron has curvature ≤ 1 if and only if all simple cycles in the link at any point
have length ≥ 2π.

(Recall that the link of a two-dimensional polyhedron P at a point x is a space of
directions of curves starting at x. The link is a metric graph whose nodes correspond
to edges of P starting at x and whose edges correspond to faces of P containing x.)

It is clear that the above condition on the link is automatically satisfied for all
points of P except the origin p. We denote by L and LN,F the links of p in the
block K and the polyhedron PN,F respectively.

The graph L is a disjoint union of a segment of length 2π (which corresponds
to the boundary point) and n circles of length 2π (corresponding to internal nodes
of Γ). Every edge of the cell decomposition described in section 1.1 produces two
nodes of L. If the edge is an internal one, then these two nodes belong to different
connected components of the link, and the nodes corresponding to the boundary of
the block are the endpoints of the segment of length 2π. (Note that this segment
contains one more node, namely the point corresponding to the edge of Γ starting
at p ∈ S2.)

The link LN,F is obtained from the disjoint union of N copies of L by gluing
together some nodes. Namely every single gluing of an edge of one block to an edge
of another block makes the corresponding two nodes in links glued together.

Let us introduce the notion of gluing graph associated to a polyhedron PN,F .
Nodes of this graph correspond to blocks from which the polyhedron is glued, and
each gluing of an internal edge of one block to the boundary of another block
corresponds to an edge of the gluing graph. Formally we give the following

2.2. Definition. Let (N,F ) be a gluing scheme (cf. 1.2). We refer to as the gluing

graph of this scheme and denote by ΓN,F the multi-graph (that is a generalized graph
in which loops and double edges are allowed) with a set of nodes {vi : 1 ≤ i ≤ N}
and a set of edges {eij : 1 ≤ i ≤ N, 1 ≤ j ≤ n} where every edge eij connects
vertices vi and vF (i,j).

2.3. Lemma. Suppose that the combinatorial length of any simple cycle in the

gluing graph ΓN,F is greater than 4π/δ, where δ is the minimal distance between

distinct nodes in L. Then the polyhedron PN,F has curvature ≤ 1.

Proof. First observe that 4π/δ ≥ 2; hence the assumption on ΓN,F implies that
this graph contains no loops and double edges (i.e., it is a graph is the usual sense).
Thus F (i, j) 6= i for all i, j, and F (i, j) 6= F (i, j′) for j 6= j′.

Consider N copies L1, . . . , LN of the link L. Introduce the following notation
for the nodes of Li: let V i

j− and V i
j+, where 1 ≤ j ≤ n, denote the directions of the

outgoing and incoming ends of the internal edge number j, and V i
0− and V i

0+ be
the directions of the outgoing and incoming ends of the boundary edge. We refer
to V i

0− and V i
0+ as boundary nodes, and to other nodes as internal ones.

The link LN,F is obtained from the disjoint union
⊔

Li by means of the following
identifications: for every i and j, 1 ≤ i ≤ N , 1 ≤ j ≤ n, the node V i

j− is glued

to V
F (i,j)
0− , and V i

j+ to V
F (i,j)
0+ . Denote by ∼ the equivalence relation generated by
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these gluing rules. It is easy to see that V i
0+ 6∼ V j

0+ and V i
0− 6∼ V j

0− for i 6= j. The

equivalence class of a node V i
0+ consists of this node itself and the nodes V i′

j+ for
which F (i′, j) = i. The fact that ΓN,F has no loops and double edges implies that
different points in one equivalence class belong to different copies of L.

To prove the lemma, it is sufficient to show that every simple cycle in LN,F has
length ≥ 2π. Suppose the contrary, and let γ be a simple cycle of length < 2π.
Represent γ as a product of paths γ1 . . . γm where every path γk is contained in
Lik for some ik, 1 ≤ ik ≤ N , and the ending point of γk is ∼-equivalent to starting
point of γk+1 but not coincide with it in the disjoint union

⊔

Li. (Here and later
on all indices at γ are taken modulo m.) Clearly m > 1 because L does not contain
simple cycles of length less than 2π. Also observe that ik 6= ik+1 for all k, because
different points in Lik are never ∼-equivalent.

Then construct a closed path s = s1 . . . sm in the graph ΓN,F , in which every
subpath sk connects vik

to vik+1
, consists of no more than 2 edges and is constructed

as follows. Consider two points, the ending point of γk and the starting point of
γk+1. Since they are ∼-equivalent, there are two cases:

(1) One of these points is a boundary node. Then the nodes vik
and vik+1

are
connected by an edge in ΓN,F . In this case, sk is this edge.

(2) Both points are internal nodes. Then their equivalence means that they
are attached to one boundary node of some component Li. Hence in ΓN,F the
corresponding node vi is connected by edges to both vik

and vik+1
. In this case, let

sk be the path consisting of these two edges. We will refer to vi as an intermediate

node.

Let us show that the resulting cycle s = s1 . . . sm is not contractible. To do
this, it is sufficient to prove that any two adjacent edges in this cycle are different.
Suppose the contrary: let some edge e is passed two times one after the other, and
let vi be the node visited between these two passes. This node vi is not intermediate
because (in the notation from case (2) above) ik 6= ik+1. Hence e is the first edge
of the path sk and the last edge of the path sk−1 for some k (in particular, i = ik).
Hence the beginning and the end of γk are involved in one gluing operation, namely
the one corresponding to the edge e. Two different points in one component Li are
involved in one gluing operation only if these points have the form V i

j− and V i
j+

for some j. Thus the original path γ contains an interval connecting points V i
j−

and V i
j+ in Li for some i and j. But this is impossible: if j 6= 0, these points are

in different connected components of Li, and if j = 0, the distance between them
equals 2π (recall that the length of γ is less than 2π by our assumption).

Thus the cycle s is not contractible, therefore it contains a simple cycle. Since
the combinatorial length of s is no greater than 2m, and the length of the simple
cycle is no less than 4π/δ, it follows that m ≥ 2π/δ. It remains to recall that the
original cycle γ consists of m intervals each of length ≥ δ, hence the length of γ is
no less than 2π. This contradiction proves Lemma 2.3. �

§3. Proof of Theorem 0.3 and Corollary 0.4

The next lemma (independent of the previous arguments) guarantees the exis-
tence of graphs to which Lemma 2.3 applies.

3.1. Lemma. For any natural numbers m and n there exists a finite graph G,



6 S. V. IVANOV

possessing the following properties:

(1) the combinatorial length of any simple cycle in G is no less than m;
(2) the edges of G can be oriented so that the incoming and outgoing degree of

every node equal n (i.e., every node is a beginning of exactly n edges and

an ending of exactly n edges).

Proof. We construct the desired graph (actually, multi-graph) by induction in m.
For m = 1 one may let G be a bouquet of n circles (note that any orientation of
this bouquet satisfies the second requirement of the lemma).

Now suppose that a graph G satisfies the requirements of the lemma, and let us
construct a graph G′ satisfying the same requirements with m replaced by m + 1.
Let N be the number of edges of G and M = 2N . Enumerate the edges of G from
0 to N −1 and fix an orientation on each of them. The number assigned to an edge
e will be denoted by ν(e), its beginning and end with respect to that orientation
by v−(e) and v+(e) respectively. Let V and E denote the set of nodes and the set
of edges of G. The set of nodes of G′ is defined as the product V ×ZM , where ZM

is the residue set modulo M . The edges of G′ are indexed by the set E ×ZM , and
the edge corresponding to a pair (e, j) ∈ E ×ZM connects the nodes (v−(e), j) and
(v+(e), j + 2ν(e)).

There is a natural map p : G′ → G, projecting the products V ×ZM and E×ZM

to their first components. It is easy to see that p is a covering map. It follows
that G′ satisfies the requirement (2) of the lemma: in order to obtain a desired
orientation on G′, lift such an orientation from G.

Consider a simple cycle s in G′ and its projection p◦s in G. Since p is a covering
map, the cycle p◦s is not contractible. Then observe that p◦s is not a simple cycle.
Indeed, if s is a lift of a simple cycle, then the second coordinates of its endpoints
differ by a quantity of the form

±2ν1 ± 2ν2 ± · · · ± 2νr (mod M),

where ν1, . . . , νr are numbers assigned to those edges of G that are contained in the
cycle. This quantity cannot be zero modulo M because

∣

∣ ± 2ν1 ± · · · ± 2νr

∣

∣ ≤

∣

∣

∣

∣

N−1
∑

j=0

2j

∣

∣

∣

∣

= 2N − 1 < M,

and a sum of distinct powers of two with alternating signs can not be zero in Z.
Since the cycle p ◦ s is not simple, it contains a strictly shorter simple cycle. By
inductive assumption, the length of any simple cycle in G is no less than m, therefore
the cycle p ◦ s (and hence s) has length ≥ m + 1. Thus the graph G′ possesses the
properties stated in the lemma with m replaced by m + 1. �

3.2. Proof of Theorem 0.3. Fix an ε > 0 and construct a block K as in sec-
tion 1.1. Let n, as before, denotes the number of internal edges of K, and let δ
be the same as in Lemma 2.3. By Lemma 3.1, there exists a graph G in which all
simple cycles have combinatorial length > 4π/δ, and an orientation of this graph
such that all incoming and outgoing degrees of nodes are equal to n. Let N be the
number of nodes of G. Enumerate the vertices of G by numbers from 1 to N and
choose a gluing scheme (N,F ) so that for every i, 1 ≤ i ≤ N , the values F (i, j),
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1 ≤ j ≤ n, range over the numbers assigned to end-nodes of oriented edges starting
at the node number i in G. Then the gluing graph ΓN,F is obviously isomorphic
to G, hence by Lemma 2.3 the polyhedron PN,F has curvature ≤ 1. As noted above
(see 1.2 and 1.3), this polyhedron is contractible and has diameter ≤ 4ε. Finally,
observe that PN,F has no boundary because for every boundary edge in the disjoint
union of N blocks there is at least one internal edge glued to it. This follows from
the fact that the incoming degree of every node in G is at least 1. Thus the resulting
polyhedron PN,F possesses all properties given in Theorem 0.3, with 5ε in place
of ε. �

3.3. Proof of Corollary 0.4. By Theorem 0.3 there exists a sequence {Xn}
of contractible geodesically complete spherical polyhedra of curvature ≤ 1 with
diam Xn → 0. One may assume that diam Xn < π for all n. Then every polyhedron
Xn contains a closed geodesic of length ≤ 2 diam Xn. Let γn be a shortest closed
geodesic in Xn, and εn its length.

Consider a two-dimensional Euclidean cone with total angle at the vertex smaller
than 2π. Denote the cone’s vertex by p, and let Y be a sufficiently large closed ball of
cone’s intrinsic metric centered at p. Clearly the complement of any neighborhood
of p in Y has curvature ≤ 1, but the whole Y is not a space of curvature bounded
above. For every n, construct a space Yn as follows: remove from Y a metric ball
Bn centered at p, the length of whose boundary is equal to εn, and then attach
to this boundary the polyhedron Xn by the curve γn. This space Yn is a result of
gluing two spaces of curvature ≤ 1 by an isometry between convex subsets, hence
Xn has curvature ≤ 1.

Since every polyhedron Xn is contractible, the space Yn is homotopy equivalent
to Y , moreover, the maps and homotopies realizing this homotopy equivalence can
be chosen to be identity outside an arbitrary neighborhood of Bn. Since diam Bn →
0 and diamXn → 0, it follows that the spaces Yn homotopically converge to Y . �
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