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Abstract. Let n ≥ 2, M and Mk (k = 1, 2, . . . ) be compact Riemannian n-

manifolds, possibly with boundaries, and let {Mk} converge to M with respect to the
Gromov–Hausdorff distance. We prove that Vol(M) ≤ lim infk→∞

Vol(Mk) provided
that one of the following holds:

(1) Mk are homotopy equivalent to M , and M admits either a nonzero-degree
map onto the torus T n or an odd-degree map onto RP

n;
(2) n = 2, and the Euler characteristics of Mk are uniformly bounded.

For n ≥ 3 we give examples of convergence in which M and Mk are diffeomorphic to
Sn and Vol(Mk) → 0.

Introduction

0.1. Let M , Mk (k = 1, 2, . . . ) be compact Riemannian manifolds of the same
dimension n ≥ 2. We write Mk → M if the sequence {Mk} converges to M with
respect to Gromov–Haudorff distance, cf. §1. Our question is: for what topology
types of M an Mk the convergence Mk →M implies that

(∗) Vol(M) ≤ lim inf
k→∞

Vol(Mk) ?

We make no assumptions about metrics of the manifolds Mk except that they
are Riemannian (in particular, we are not dealing with curvature bounds). By
Riemannian metric we mean a length metric (i.e., a distance function) determined
by a continuous metric tensor.

0.2. Let us indicate two facts about semi-continuity of the volume that may moti-
vate the above question:

(1) If d and dk (k = 1, 2, . . . ) are Riemannain metrics on the same manifold M
and dk uniformly converge to d (as functions on M ×M), then Vol(M,d) ≤
lim inf Vol(M,dk). This is true even if d is a Finsler metric (see [2]).

(2) The volume is lower-semicontinuous with respect to the classical Hausdorff
distance on the set of compact connected n-dimensional submanifolds of
RN with a given nonempty boundary.
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(To prove the second statement observe that a smooth submanifold S ⊂ RN admit
Lipschitz neighborhood retractions with Lipschitz constats arbitrarily close to 1.
Hence submanifolds contained in a sufficiently small neighborhood of S admit maps
to S that are identical on the boundary and are almost volume non-increasing.
These maps have nonzero degrees and therefore are surjective.)

Note that the convergence of metrics in (1) is a “topologically trivial” case of
Gromov–Hausdorff convergence (cf. 1.1 and 1.2). The convergence of submanifolds
in (2) does not imply Gromov–Hausdorff convergence of the corresponding Rie-
mannian metrics but the two kinds of convergence are similar in many respects.
The proof of (2) sketched above illustrate some ideas that we will utilize in this
paper. Similarly to (1), the results of this paper remains true for convergence of
Riemannian manifolds to Finsler ones (see 1.6), but for the sake of simplicity of the
formulations we restrict ourselves to the pure Riemannian case.

0.3. In general, the Riemannian volume is not semi-continuous with respect to
the Gromov–Hausdorff distance. There are simple examples of convergence of two-
dimensional closed manifolds for which the inequality (∗) fails. For instance, one can
compose manifoldsMk from thin tubes of almost zero area so that they approximate
suitable fine nets of curves in M (cf. 3.4 and 4.2 for details). However, the genus
of manifolds Mk constructed in such a way grows infinitely as Mk →M .

We will study the question of semi-continuity of volume under the assumption
that the topology of the manifolds Mk remains bounded or fixed. For example, does
(∗) hold when all the Mk are homeomorphic to M? (Compare with (1) above.) It
turns out that the answer to this last question depend on the topology of M : it is
negative in general but there exist topology (and even homotopy) types of manifolds
within which the volume is semi-continuous.

0.4. We say that a continuous map between closed manifolds has nonzero degree if
it induces a nontrivial homomorphism of the higher homology groups with coeffi-
cients in either Z or Z2 (we use the notation Z2 = Z/2Z). If this homomorphism is
nontrivial for Z2, we say that the map has odd degree. We will prove the following

Theorem 2.4. Let M and Mk (k = 1, 2, . . . ) be homotopy equivalent closed n-
dimensional Riemannian manifolds. Let M admit either a nonzero-degree map

onto the torus Tn = Rn/Zn or an odd-degree map onto the projective space RPn.

Then the convergence Mk →M implies that

Vol(M) ≤ lim inf
k→∞

Vol(Mk).

On the other hand, the semi-continuity of volume can be violated for Riemann-
ian manifolds homeomorphic to the three-sphere (and therefore for spheres of any
dimension n ≥ 3, products of these speres to any manifolds etc.):

Theorem 4.3. For any Riemannian metric d on S3 there exists a sequence {dk}
∞

k=1

of Riemannian metrics on S3 such that (S3, dk)→ (S3, d) and Vol(S3, dk)→ 0 as

k →∞.

Three is the minimal dimension for which such examples exist. In the two-
dimensional case, assuming that the geni of the manifolds (surfaces) Mk are uni-
formly bounded, one can give a complete description of the structure of a manifold
Mk that is sufficiently close to a given limit manifold M . This description is given
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by Theorem 3.2. Roughly speaking, it states that Mk can be obtained from M by
a combination of two procedures: a small perturbation of the metric (as in (1) in
0.2 above) and topological transformations within domains of small diameter (i.e.,
attaching a number of small handles and films, and making small holes if manifolds
with boundary are allowed). We will then derive

Corollary 3.3. Let M and Mk (k = 1, 2, . . . ) be compact two-dimensional Rie-

mannian manifolds (possibly with boundaries) such that supk |χ(Mk)| < ∞ where

χ denotes the Euler characteristic. Then the convergence Mk →M implies that

Vol(M) ≤ lim inf
k→∞

Vol(Mk).

In other words, the two-dimensional Riemannian volume (i.e., the area) is lower
semi-continuous on any class of two-dimensional manifolds representing a finite
number of topology types.

Remarks. 1. In Theorem 2.4 it is essential that the manifolds Mk are homotopy
equivalent to M . This condition cannot be replaced, e.g., by a requirement that
the Mk are mutually homotopy equivalent and admit nonzero-degree maps onto
the torus or RPn. Counterexamples can be easily constructed in a way similar to
the proof of Theorem 4.3.

2. On the other hand, the assumptions about the topology of M in Corollary 3.3
can be weakened. The arguments of §3 that are essential for this corollary can be
easily adopted to the case when M is an arbitrary cell complex. (In fact, such
a complex is necessarily two-dimensional, see 3.4.2.) The requirement that the
metric of M is Riemannian can also be weakened, see 1.6. It seems reasonable
to conjecture that Corollary 3.3 remains true without any topological or metric
assumptions about the limit space M (for some suitable generalization of the area
to non-Riemannian spaces).

The proofs of Theorem 2.4 and Corollary 3.3 are based upon the following fact
(Theorem 1.5): for the inequality (∗) to hold it is sufficient that some “almost
isometric” maps ϕk : Mk → M have nonzero degrees (cf. §1 for definitions). This
fact also allows to prove semi-continuity of the volume under certain metric restric-
tions, cf. 1.3. In the other parts of the proofs (§§2, 3) we only study topological
properties of almost isometric maps (which may be of interest on its own, see e.g.
remark 3.4.3). In doing this we no longer rely on the fact that the metrics of M and
Mk are Riemannian, but it is important that they are length metrics, i.e., that the
distance between every two points equals the length of the shortest curve joining
them.

0.5. Notations. “By default” the distance function of a metric space will be
denoted by d. By Uε(A) we denote the ε-neighborhood of a set A in a metric space,
and by dist(A,B) the infimum of distances between points of two sets A and B.

A graph is a finite one-dimensional cell complex, its zero-dimensional cells are
called vertices and one-dimensional cells are called edges. We denote the set of
vertices of a graph Γ by V (Γ).

§1. Almost isometries and volumes

The Gromov–Hausdorff distance between two metric spaces X and Y , that we
denote by dH(X,Y ), is defined as follows (cf. [7]): dH(X,Y ) < ε if and only if there
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exists a metric space Z and two sets X ′, Y ′ ⊂ Z such that X ′ is isometric to X, Y ′

is isometric to Y , and the Hausdorff distance between X ′ and Y ′ in Z is less than
ε. The last condition means that X ′ ⊂ Uε(Y

′) and Y ′ ⊂ Uε(X
′).

The distance dH is a metric on the “space” of isometry classes of compact metric
spaces. Let {Xk}

∞

k=1 be a sequence of metric spaces. By definition, Xk → X if
dH(Xk,X) → 0. Below we reformulate this condition in terms of maps between
spaces.

1.1. Definition. Let X and Y be metric spaces, ϕ : X → Y be a (possibly
discontinuous) map, and ε > 0. We say that ϕ is an ε-isometry if the following two
conditions hold:

(1) f(X) is an ε-net in Y ;
(2) |d(f(x), f(x′))− d(x, x′)| < ε for all x, x′ ∈ X.

The infimum of those ε for which ϕ is an ε-isometry will be called the error of ϕ
and denoted by E(ϕ).

Note that for any maps ϕ1, ϕ2 : X → Y one has |E(ϕ1)−E(ϕ2)| < 2dsup(ϕ1, ϕ2)
where dsup(ϕ1, ϕ2) := supx∈X d(ϕ1(x), ϕ2(x)). It is easy to see (cf. [7]) that

(1) if dH(X,Y ) < ε then there exists a (2ε)-isometry ϕ : X → Y ;
(2) if there is an ε-isometry ϕ : X → Y then dH(X,Y ) < 2ε.

Hence a convergence Xk → X takes place if and only if there exists a sequence of
maps ϕk : Xk → X with E(ϕk) → 0. We call such a sequence of maps a sequence

of almost isometries.
If the topology of the limit space is good enough then almost isometries can be

made continuous:

1.2. Proposition. Let Xk → X and let X be a compatc metric space homeomor-

phic to a neighborhood retract of a Euclidean space. Then there exists a sequence

of almost isometries ϕk : Xk → X in which all maps ϕk are continuous.

Proof. Let i : X → Rn be an inclusion map, U ⊂ Rn be a neighborhood of the
set i(X), p : U → i(X) be a retraction. Pick any sequence of almost isometries
fk : Xk → X and define εk = E(fk). For every k construct a finite εk-net Sk ⊂ Xk

and define a map ik : Xk → Rn by

ik(x) =

∑

y∈Sk
wk(d(x, y)) · i(fk(y))

∑

y∈Sk
wk(d(x, y))

where wk : [0,∞) → R is an arbitrary continuous function which is positive on
[0, 2εk) and equals zero on [2εk,∞). Clearly ik is well defined and continuous. Let
x be an arbitrary point of Xk. For all y ∈ Sk such that wk(d(x, y)) > 0 one has
d(fk(x), fk(y)) < 3εk. Thus

|ik(x)− i(fk(x))| ≤ sup{|i(y′)− i(fk(x))| : y
′ ∈ U3εk

(fk(x)) ⊂ X}.

Since i is an equicontinuous map this implies that

sup
x∈Xk

|ik(x)− i(fk(x))| −−−→
k→∞

0.

Hence for all sufficiently large k there is a (continuous) map ϕk = i−1 ◦p◦ ik : Xk →
X and the distance between ϕk and fk = i−1 ◦ p ◦ (i ◦ fk) goes to zero as k →∞.
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Therefore E(ϕk)→ 0. For the remaining values k (there are finitely many of them)
one may let ϕk be arbitrary continuous maps from Xk to X. �

1.3. Remark. In general, there is no similar sequence of continuous maps ϕ′

k : X →
Xk with E(ϕ′

k)→ 0. For example, let X be the standard two-dimensional sphere,
Xk be homeomorphic to the torus and obtained from X by “attaching” a handle of
diameter less than 1/k. Then Xk → X, but any continuous map ϕ : X → Xk has
error at least π because it maps some pair of opposite points of the sphere to one
point in the torus.

The existence of “inverse” continuous almost isometries can be assured by im-
posing some metric restrictions. Let X and the Xk have bounded dimensions and
be uniformly locally contractible, i.e., for every ε > 0 there is a δ > 0 such that any
ball of radius δ in any of these spaces can be contracted within a ball of radius ε.
Then, as shown in [9], Xk are homotopy equivalent to X for all large enough k. In
fact, the homotopy equivalences can be realized by pairs of maps ϕk : X → Xk and
ϕ′

k : Xk → X whose errors tend to zero.
This fact and Theorem 1.5 imply that the volume is lower semi-continuous on any

class of closed Riemannian manifolds of the same dimension satisfying the above
uniform local contractibility condition.

1.4. We will restrict ourselves to the case when the converging and the limit spaces
are compact Riemannian manifolds (possibly with boundaries). All manifolds are
assumed connected and having the same dimension n ≥ 2.

Let M and M ′ be two such manifolds, ϕ : M ′ → M a continuous map, U ⊂ M
an open set such that U ∩ ∂M = ∅. We say that ϕ has nonzero degree over U if
ϕ(∂M ′) ∩ U = ∅ and for every point x ∈ U the induced homomorphism

ϕ∗ : Hn(M
′, ∂M ′)→ Hn(M,M r {x})

of homology groups is nontrivial for some coefficient group. (It makes sense to take
Z as a coefficient group for orientable manifolds and Z2 for non-orientable ones.)

A map ϕ : M ′ →M has nonzero degree if and only if it has nonzero degree over
M r ∂M is the above sense. The notion of degree applies well to manifolds with
singular boundaries, in particular, to any compact domains in manifolds (we will
utilize such ones in the proof of Theorem 1.5).

1.5. Theorem. Let M and Mk (k = 1, 2, . . . ) be compact n-dimensional Rie-

mannian manifolds (possibly with bondaries) such that Mk → M , and let U ⊂ M
be an open set such that U ∩ ∂M = ∅. Assume that there is a sequence of continu-

ous almost isometries ϕk : Mk →M which have nonzero degree over U for all large

enough k. Then

Vol(U) ≤ lim inf
k→∞

Vol(ϕ−1
k (U)) ≤ lim inf

k→∞

Vol(Mk).

Proof. Let U denote the closure of U . Fix an ε > 0 and assume that U is al-
most isometric to a small cube (δI)n = [0, δ]n ⊂ Rn in the sense that there is a
diffeomorphism f : U → (δI)n such that

(1 + ε)−1d(x, y) ≤ |f(x)− f(y)| ≤ d(x, y)

for all x, y ∈ U . Then Vol(U) ≤ δn(1 + ε)n. To estimate the volumes of the
sets ϕ−1

k (U) from below we will use the Besikovitch inequality [1] in the following
generalized form (cf. [6]):
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Besikovitch Inequality. Let V be a compact Riemannian n-manifold with (pos-
sibly singular) boundary and let f : V → In be a map having nonzero degree. Then

Vol(V ) ≥

n
∏

i=1

dist(f−1(Fi), f
−1(F ′

i )),

where Fi and F ′

i denote the i-th pair of opposite faces of In.

For each k let Uk = ϕ−1
k (U) and consider the map fk = f ◦ ϕk from Uk to

(δI)n. It has nonzero degree and increases the distances by at most E(ϕk). In
particular, for every pair of opposite faces of (δI)n the distances between their fk-
preimages in Uk is no less than δ−E(ϕk). The Besikovitch inequality implies that
Vol(Uk) ≥ (δ − E(ϕk))

n whenever E(ϕk) < δ, and therefore

lim inf
k→∞

Vol(Uk) ≥ δ
n ≥ (1 + ε)−n Vol(U).

Now let U ⊂ M be any open set. One can cover U , up to an arbitrarily small
volume, by a number of disjoint sets that are almosts isometric to cubes in the
sense specified in the beginning of the proof. Adding up the above inequalities for
those sets we obtain that

Vol(U) ≤ (1 + ε)n lim inf
k→∞

Vol(ϕ−1
k (U)).

Since ε is arbitrary, Theorem 1.5 follows. �

1.6. Finsler limits. Theorem 1.5, along with Theorem 2.4 and Corollary 3.3,
remain true in the case when the limit space M is a Finsler manifold (for any
definition of Finsler volume assuring that the volume is monotonous with respect
to metric). Moreover if the limit metric is not Riemannian then the inequality of
Theorem 1.5 is strict. This has been proved in [2] for uniform convergence of metrics
on the same manifold. The proof in [2] is based upon an estimate of volume in terms
of distances similar to Besikovich inequality. With little changes, that proof works
for general case as well.

It is an intriguing question whether Theorem 1.5 holds for convergence of Finsler
manifolds (or at least for uniform convergence of Finsler metrics). The answer may
depend on the definition of volume. There are several natural generalizations of the
Riemannian volume to Finsler manifolds, among which are the Hausdorff measure
and the projection of the simplectic volume from the unit tangent bundle. For the
later definition of volume, a proof or a counterexample to the analog of Theorem 1.5
might be helpful for understanding the Finsler tori without conjugate points, cf.
[3], [2].

§2. Lifting curves

2.1. Let n ≥ 2, M and Mk (k = 1, 2, . . . ) be compact n-manifolds equipped with
length metrics. Every two points in such a manifold can be joined with a curve
whose lenght equals the distance between the endpoints. Suppose that Mk → M
and let a sequence of almost isometries ϕk : Mk →M be fixed. Throughout §2 and
§3 we will ingnore the dependencies on ϕk in notations and statements.
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We say that a point p̃ ∈ Mk is an ε-lift of a point p ∈ M (where ε is a positive

number) if d(ϕk(p̃), p) < ε. We say that a map f̃ : X → Mk is an ε-lift of a map

f : X →M if f̃(x) is an ε-lift of f(x) for every x ∈ X. (Here X is an arbitrary set.)
By ε-lift of a set X ⊂ M we mean an ε-lift of the inclusion map iX : X → M . If
E(ϕk) < ε then every point of M clearly admit an ε-lift to Mk. Observe also that
for any ε-lift with values in Mk, an ε-lift with values in Mk r ∂Mk can be obtained
by a small variation.

The following lemma allows us to construct lifts of one-dimensional subsets of M .
This lemma does not rely on the fact that M is a manifold.

2.2. Lemma. 1. Let γ : [a, b]→M be a curve, ε > E(ϕk), p̃ and q̃ be ε-lifts to Mk

of the points γ(a) and γ(b). Then there is a rectifiable curve γ̃ : [a, b]→Mk joining

p̃ to q̃ and being a (7ε)-lift of γ.
2. Let Γ ⊂M be an embedded graph. Then for every ε > 0 there is a δ > 0 such

that if E(ϕk) < δ then any δ-lift of V (Γ) to Mk can be extended to an ε-lift of Γ to

Mk which is a topological embedding.

Proof. 1. Divide [a, b] by points a = t0 < t1 < · · · < tn = b so that the diameters of
the intervals γ([ti, ti+1]) of γ are less than ε. Let γ̃(t0) = p̃ and γ̃(tn) = q̃. For every
i = 1, . . . , n − 1 let γ̃(ti) be any ε-lift of γ(ti). On every interval [ti, ti+1] define γ̃
to be a shortest path between γ̃(ti) and γ̃(ti+1). The length of this shortest path is
d(γ̃(ti), γ̃(ti+1)) < 4ε. Hence for every t ∈ [ti, ti+1] we have d(γ̃(t), γ̃(ti)) < 4ε, so

d(ϕk(γ̃(t)), γ(t)) ≤ d(ϕk(γ̃(t)), ϕk(γ̃(ti))) + d(ϕk(γ̃(ti)), γ(t))

< d(γ̃(t), γ̃(ti)) + 2ε+ d(γ(ti), γ(t)) < 4ε+ 2ε+ ε = 7ε .

2. One may assume that all edges of Γ are not loops and that any two vertices
of Γ are joined by at most one edge. Denote by ε0 the minimal possible distance
between two disjoing sub-graphs of Γ. For a δ > 0 let θ(δ) denote the maximal
possible diameter of a simple curve contained in Γ, having the distance between
endpoints no greater than δ, and containing at most one vertice of Γ. Clearly
θ(δ)→ 0 as δ → 0.

Let δ > 0 be small enough, E(ϕk) < δ, and let ψ : V (Γ) → Mk be a δ-lift of
V (Γ). Let us first construct a self-disjoint lift of a single edge of Γ. Parameterize
the edge as a curve γ : [0, 1]→M . By the first part of the lemma, γ has a (7ε)-lift
γ̃ : [0, 1] → Mk with γ̃(0) = ψ(γ(0)) and γ̃(1) = ψ(γ(1)). Consider the class of
curves s : [0, 1]→ Mk such that for every t ∈ [0, 1] either s(t) = γ̃(t) or there is an
interval [a, b] ∋ t on which s is constant and s(t) = γ̃(a) = γ̃(b). This class of curves
is closed in C0 and hence contains a curve of minimal length. This minimal curve
obviously joins γ̃(0) to γ̃(1), is self-disjoint, and is an ε1-lift of γ for ε1 = 7δ+θ(14δ).
Any constant intervals that this lift may have can be got rid of by a slight variation
of the parameterization.

Applying the above construction to all edges gives an ε1-lift of Γ which is in-
jective on every edge. Let p ∈ V (Γ), p̃ = ψ(p), let γ1, . . . , γm be the edges of Γ
emanating from p, and γ̃1, . . . , γ̃m be their ε1-lifts that we have constructed. Then
all intersections of the curves γ̃i are contained within a neighborhood U = Uε2(p̃)
where ε2 = θ(2ε1) + 2δ. One may assume that ε1 + ε2 < ε0/10. Then lifts of other
edges and vertices of the graph have no points in U . For i = 1, . . . ,m, denote by
p̃i the point through which the curve γ̃i leaves U for the last time. Replace initial
intervals of the curves γ̃i between p̃ and p̃i by simple curves lying in U∪{p̃1, . . . , p̃m}
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and having no common interior points. This is possible because Mk is a manifold of
dimension n ≥ 2 and U is open and connected (recall that U is a length metric ball).
The modification deals with curve intervals having distance ε2 between endpoints,
so the resulting curves are ε3-lifts of the curves γi for ε3 = θ(ε2 + 2ε1) + ε2 + 2δ.
Having applied this construction to all vertices of the graph we obtain its ε3-lift
which is an embedding. Observing that ε3 → 0 as δ → 0 completes the proof. �

2.3. Corollary. If the maps ϕk are continuous then for all large enough k they

induce surjective homomorphisms of the fundamental groups.

Proof. Since M is compact and locally simply connected there is an ε > 0 such
that any two ε-close curves in M with the same edpoints are homotopic. Let k be
so large that E(ϕk) < ε/7. Pick a p̃ ∈ Mk and let p = ϕk(p̃). By Lemma 2.2, any
loop in M with endpoints at p admits an ε-lift to Mk with endpoints at p̃. The
image of that lift is homotopic to the initial loop. �

Corollary 2.3 allows to derive the semi-continuity of the volume in cases when
epimorphisms of fundamental groups can only be induced by maps having nonzero
degree. The following theorem is an example of statement obtained this way.

2.4. Theorem. Let M and Mk (k = 1, 2, . . . ) be homotopy equivalent closed

Riemannian n-manifolds. Let M admit a nonzero-degree map onto the torus Tn =
Rn/Zn or an odd-degree map onto the projective space RPn. Then the convergence

Mk →M implies that

Vol(M) ≤ lim inf
k→∞

Vol(Mk).

Proof. In view of Theorem 1.5, Proposition 1.2 and Corollary 2.3, it is sufficient
to prove the following statement: if a manifold M ′ is homotopy equivalent to a
manifold M satisfying the conditions of the theorem, and a map ϕ : M ′ → M
induces an epimorphism of the fundamental groups, then ϕ has nonzero degree.

1. Suppose there is a map f : M ′ → Tn having nonzero degree (the existence of
such a map is a homotopy invariant). Consider the diagram

H1(M
′;Z)

h′

←−−−− π1(M
′)

f#
−−−−→ π1(T

n)




y

ϕ∗





y

ϕ#

H1(M ;Z)
h

←−−−− π1(M)

(where h and h′ are Hurewich homomorphisms). The maps h and ϕ# are epimor-
phisms, so is ϕ∗. Observe that H1(M

′,Z) and H1(M ;Z) are two isomorphic finitely
generated abelian groups, so any epimorphism between them is an isomorphism.
Thus

kerϕ# ⊂ ker(ϕ∗ ◦ h
′) = kerh′ = [π1(M

′), π1(M
′)].

On the other hand, ker f# ⊃ [π1(M
′), π1(M

′)] because π1(T
n) is an abelian group.

So there exists a homomorphism g : π1(M) → π1(T
n) such that g ◦ ϕ# = f#.

Since Tn is an aspherical space, g is induced by some continuous map f̄ : M → Tn

with f̄ ◦ ϕ ∼ f . Therefore ϕ induces a nontrivial homomorphism of n-dimensional
homologies whenever f does.

2. Suppose there is a map f1 : M ′ → RPn having odd degree. Define f = i ◦ f1
where i is the standard inclusion of RPn into RP∞. Then f induces a nontrivial
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homomorphism f∗ : Hn(M
′;Z2)→ Hn(RP∞;Z2) ≃ Z2. The rest of the proof goes

as in the first part, with RP∞ in place of Tn. �

2.5. Remark. One can see from the above proof that the statement of Theo-
rem 2.4 holds for any manifold M that admits a continuous map f : M → X
to some aspherical space X with abelian group π1(X) such that the induced map
f∗ : Hn(M) → Hn(X) is nontrivial for some coefficient group. N. Yu. Netsvetaev
observed that the statement of the theorem can also be proved for a manifold
M for which there exist n = dimM cohomology classes in H1(M) with nonzero
∪-product.

2.6. A queston. Does the statement of Theorem 2.4 hold for any aspherical
manifold M? If so, does it hold for any essential M (cf. [6])?

§3. Convergence of two-dimensional manifolds

Throughout this section all manifolds are assumed two-dimensional and possibly
having boundaries. We denote by g(M) the genus of a manifold M , by |∂M | the
number of its boundary components, and by χ(M) its Euler characteristic.

3.1. Definition. Let M and M ′ be two-dimensional manifolds. We say that a
continuous map ϕ : M ′ → M is an almost homeomorphism if there is a finite set
P ⊂M r ∂M such that

(1) ϕ maps ϕ−1(M r P ) onto M r P as a homeomorphism;
(2) for every p ∈ P the inverse image ϕ−1(p) is either a boundary component of

M ′ or a two-dimensional submanifold bounded (in M ′) by a simple closed
curve.

Note that any almost homeomorphism between closed manifolds has degree ±1.

3.2. Theorem. Let M and Mk (k = 1, 2, . . . ) be compact two-dimensional mani-

folds with length metrics such that Mk →M and supk g(Mk) <∞. Then there is a

sequence of almost isometries ϕk : Mk → M that are almost homeomorphisms for

all large enough k.

The proof of this theorem is contained in sections 3.5 and 3.7–3.10. In fact,
we will show that any sequence of almost isometries can be approximated by a
sequence of almost homemorphisms. In section 3.6 we outline a plan of the proof
and its main ideas.

3.3. Corollary. Let M and Mk (k = 1, 2, . . . ) be compact two-dimensional Rie-

mannian manifolds (possibly with boundaries) such that supk |χ(Mk)| < ∞. Then

the convergence Mk →M implies that

Vol(M) ≤ lim inf
k→∞

Vol(Mk).

Proof. Suppose the contrary. Then one may assume that there exists a limit
limk→∞ Vol(Mk) < Vol(M). The condition supk |χ(Mk)| <∞ is equivalent to that
both g(Mk) and |∂Mk| are uniformly bounded. Let ϕk : Mk →M (k = 1, 2, . . . ) be
almost isometries given by Theorem 3.2. For each k define

Qk = {p ∈M r ∂M : ϕ−1
k (p) contains a boundary component of Mk}.
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Every set Qk consists of at most N = supk |∂Mk| points. Passing to a subsequence
one can achieve that the set Q =

⋃

kQk contains at most N accumulation points

and hence its closure Q is countable. Every almost homeomorphism ϕk has nonzero
degree over M r (∂M ∪Q), thus by Theorem 1.5 we have

lim
k→∞

VolMk ≥ Vol(M r (∂M ∪Q)) = VolM.

This is a contradiction. �

3.4. Remarks. 1. In Corollary 3.3, the requirement that the geni and the numbers
of boundary components are uniformly bounded is essential (moreover it is the
weakest topological condition possible). Indeed, any Riemannian manifold M can
be aproximated by embedded graphs (cf. 4.2). One can embed these graphs to R3

and let Mk be smoothed boundaries of their tubular neighborhoods, thus obtaining
an example of convergence with Vol(Mk)→ 0. If |∂Mk| is allowed to grow infinitely,
one can let Mk be neighborhoods of those graphs in M .

2. In the same manner, a sequence of manifolds Mk with g(Mk) → ∞ can be
equipped with Riemannian metrics so as to converge to any prescribed compact
length metric space. On the other hand, if sup g(Mk) < ∞ then the topological
dimension of the limit cannot be greater than 2. Indeed, the limit space cannot
contain complete graphs with very large number of vertices, otherwise Lemma 2.2
would imply that such graphs are embeddable to Mk.

3. Let the topology types of manifolds M and Mk be given. How to determine
whether {Mk} can converge to M? If sup g(Mk) < ∞ then by Theorem 3.2 the
existence of almost homeomorphisms from Mk to M for all large enough k is neces-
sary. This condition is obviously sufficient as well. It is equivalent to the following:
|∂Mk| ≥ |∂M | and either g(Mk) ≥ g(M) while M and Mk are of the same ori-
entability, or M is orientable, Mk is not, and g(Mk) ≥ 2g(M) + 1. In particular,
orientable manifolds cannot converge to a non-orientable one, and closed manifolds
cannot converge to a manifold with a nonempty boundary.

3.5. Let M and Mk (k = 1, 2, . . . ) satisfy the assumptions of Theorem 3.2. Define
g = supk g(Mk) + 1. To prove the theorem it is sufficient to show that for any
ε > 0, for all large enouh k there are ε-isometries ϕ′

k : Mk → M that are almost
homeomorphisms. We start by fixing some sequence of continuous almost isometries
ϕk : Mk →M .

All curves that we consider throughout the proof are assumed self-disjoint. We
freely identify such curves with corresponding subsets of M and Mk. By properly

ebedded curve we mean a closed curve that has a connected (possibly empty) in-
tersection with the manifold’s boundary. We call a curve dividing if it is properly
embedded and have disconnected complement.

3.6. The proof of Theorem 3.2 contains many technical details, so we first present a
simplified argument upon which the proof is based. It also shows how we utilize the
conditions that the manifolds Mk have bounded geni and their metrics are length
ones.

Fix sufficiently many (at least g) disjoint discs in M . Then, for a large enough
k, construct in Mk “lifts” (in the sence of 2.1 and 2.2) of the boundaries of these
discs. These lifts are closed simple curves in Mk. Since the number of these curves
is greater than the genus of Mk, some (sub)collection of them divides Mk into two
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components. Since the metric in Mk is a length one, points of different components
that are distant from the dividing curves are also distant from one another. The
ϕk-images of the components must also possess such a property because ϕk is an
almost isometry. This easily implies that the image of one of the components is
contained in a small neighborhood of one of the discs in M and the image of the
other is contained in a small neighborhood of the complement of the same disc.
In particular, the dividing collection consists of only one curve (cf. Lemma 3.7 for
details). It follows that ϕk has a nonzero degree over some domain inside the disc,
and for closed manifolds this implies that ϕk has nonzero degree over M . (Note
that this is sufficient to prove the semi-continuity of the volume.)

In addition to the above considerations, a simple combinatorical argument can
be used to construct an almost homeomorphism which is close to ϕk. This con-
struction is given in section 3.10. For M having boundary, we also need the fact
(Lemma 3.9) that every boundary component ofM admits a “lift” which is a bound-
ary component of Mk. Note that this fact is not trivial: it implies in particular
that closed manifolds (two-dimensional, of bounded geni, and with length metrics)
cannot converge to a manifold with boundary.

3.7. Lemma. Let γ1, . . . , γm be disjoint dividing curves in M . For every ε > 0
there is a δ > 0 such that: if E(ϕk) < δ and if properly embedded curves γ̃1, . . . , γ̃m
in Mk are δ-lifts of γ1, . . . , γm, respectively, then

(1) if the union of the curves γ̃i divides Mk, at least one of these curves is a

dividing one;

(2) if m ≥ g, then at least one of the curves γ̃i is a dividing one;

(3) if γi divides M into sets V and W and γ̃i divides Mk into sets Ṽ and W̃ ,

then either ϕk(Ṽ ) ⊂ Uε(V ) and ϕk(W̃ ) ⊂ Uε(W ) or ϕk(Ṽ ) ⊂ Uε(W ) and

ϕk(W̃ ) ⊂ Uε(V ).

Proof. One may assume that the distances between the curves γi are greater than
3ε. Then the curves γ̃i are disjoint provided δ < ε. For each i, draw two curves γ′i
and γ′′i in the ε-neighborhood of γi so that they lie toward different sides of γi and
separate γi from M r Uε(γi). (If γ ∩ ∂M 6= ∅ then one of the curves γ′i and γ′′i
is not closed but joins two boundary points.) We will show that (1)–(3) hold for
δ < mini dist(γi, γ

′

i ∪ γ
′′

i ))/5.
Note that (2) follows from (1) because g(Mk) < g. In a proof of (1) we may

assume that {γ̃1, . . . , γ̃m} is a minimal collection of curves that divides Mk. Then

these curves divideMk into two sets Ṽ and W̃ , and ∂Ṽ = ∂W̃ = γ̃1∪· · ·∪γ̃m. Define
V ′ = Uδ(ϕk(Ṽ )) and W ′ = Uδ(ϕk(W̃ )). We have V ′ ∪W ′ = M and γi ⊂ V ′ ∩W ′

for i = 1, . . . ,m.
The curves γ′1 and γ′′1 split M into three sets X, Y and Z, such that ∂X = γ′1,

∂Y = γ′′1 , and U5δ(γ1) ⊂ Z ⊂ Uε(γ1). We claim that either V ′ ⊂ X ∪ Z and
W ′ ⊂ Y ∪ Z or V ′ ⊂ Y ∪ Z and W ′ ⊂ X ∪ Z. Suppose the contrary, for example,
assume that V ′ ∩X 6= ∅ and W ′ ∩X 6= ∅. Then V ′ ∩ γ′1 6= ∅ and W ′ ∩ γ′1 6= ∅

since V ′ and W ′ are connected. Hence V ′ ∩W ′ ∩ γ′1 6= ∅. This means that there

are points p ∈ Ṽ and q ∈ W̃ such that d(ϕk(p), x) < δ and d(ϕk(q), x) < δ for some
point x on γ′1. For these points we have d(p, q) < 3δ. On the other hand, the facts

that the metric of Mk is a length one and ϕk(∂Ṽ ) ⊂ Uδ(
⋃

γi) imply that

d(p, q) ≥ dist(p, ∂Ṽ ) + dist(q, ∂W̃ ) > 2 dist(γ′1, γ1 ∪ · · · ∪ γm)− 6δ ≥ 4δ
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with a contradiction. Therefore we have V ′ ⊂ X ∪ Z and W ′ ⊂ Y ∪ Z up to a
change of notation. For m = 1 this gives the statement (3) of the lemma. If m > 1,
similar inclusions must also hold for the partition of M by γ′2 and γ′′2 , but this is
impossible. This proves the statement (1). �

3.8. Corollary. Let ε > 0 and γ be a dividing curve in M . Then for every large

enough k there is a dividing ε-lift of γ in Mk r ∂Mk.

Proof. Construct g disjoint dividing curves that are (ε/2)-close to γ. By the state-
ment (2) of Lemma 2.2, for a large enogh k these curves admit properly embedded
(ε/2)-lifts in Mk r ∂Mk. By the statement (2) of Lemma 3.7, one of these lifts is a
dividing curve. �

3.9. Lemma. Let ε > 0. Then for every large enough k there exists an ε-lift
of ∂M in Mk which maps ∂M homeomorphly onto a union of several boundary

components of Mk.

Proof. Let γ be a component of ∂M . Fix some retraction π : V0 → γ where V0 is a
neighborhood of γ in M . Let U ⊂ V0 be a smaller neighborhood of γ. We will first
prove that for any large enough k there is a boundary component γ̃ ⊂ ∂Mk such that
ϕk(γ̃) ⊂ U and the map π ◦ ϕk|γ̃ : γ̃ → γ has nonzero degree. Construct a dividing
curve γ0 ⊂ U such that the map π|γ0 : γ0 → γ has degree ±1. Let γ̃0 ⊂Mk r ∂Mk

be a dividing σ-lift of γ0 (cf. 3.8) for σ so small that the loop ϕk ◦ γ̃0 is homotopic

to γ0 and the statement (3) of Lemma 3.7 assures that ϕk(Ũ) ⊂ U where Ũ is the

closure of one of the components of Mkrγ̃0. Consider the map π◦ϕk : Ũ → γ ≃ S1.
The degree of its restriction on γ̃0 is ±1, hence this degree is nonzero for at least
one of the components of the set ∂Mk ∩ Ũ = ∂Ũ r γ̃0. This component is the
desired γ̃.

Now fix an orientation on γ and pick a cyclically ordered collection of points
x1, . . . , xN ∈ γ so that N > 100g and the points {xi} split γ into intervals of
diameter less than ε/10g. Let δ be so small that all nonzero distances between those
intervals are greater than 10δ. Construct a dividing curve γ1 ⊂ M r ∂M which is
δ-close to γ. Pick a σ > 0 such that Uσ(γ) ⊂ V0 and d(π(x), x) < dist(γ, γ1)/10 for
all x ∈ Uσ(γ). Let k be large enough, γ̃1 ⊂ Mk r ∂Mk be a dividing σ-lift of γ1

(cf. 3.8), γ̃ be a component of ∂Mk for which ϕk(γ̃) ⊂ Uσ(γ) and the composition

ϕ := π ◦ ϕk|γ̃ : γ̃ → γ has nonzero degree (see above). Let Ṽ be the component of
Mk r γ̃1 containing γ̃.

Choose an orientation on γ̃ so that the degree of ϕ is positive. Then one can
find a cyclically ordered collection of points y1, . . . , yN ∈ γ̃ such that ϕ(yi) = xi for
all i. For points p and q on γ we denote by [p, q] the interval of γ that goes from p
to q in accordance with the orientation. We will prove that every point of [yi, yi+1]
is an ε-lift of any point of [xi, xi+1] (the indices here are taken modulo N). To do
that, it suffices to show that ϕ([yi, yi+1]) contains less than 10g of points {xj}.

Suppose the contrary, e.g., let ϕ([yN−1, yN ]) contain points x1, . . . , xm where
m = 4g. For each i = 1, . . . ,m find a point y′i ∈ [yN−1, yN ] such that ϕ(y′i) = xi.
One may assume that E(ϕk) < σ. Then

d(yi, y
′

i) < σ < dist(γ̃, γ̃1) ≤ dist({yi} ∪ {y
′

i}, γ̃1) < δ + 2σ < 2δ.

Therefore one can construct curves ri, si, s
′

i ⊂ U2δ({yi}∪{y
′

i}) and points zi, z
′

i ∈ γ̃1

(zi 6= z′i) so that ri joins yi to y′i, si joins yi to zi, s
′

i joins y′i to z′i, and ri, si and s′i
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have no common internal points with one another, with γ̃1 and with ∂Mk. Since
these curves are close to the points yi and y′i, they do not cross similar curves
constructed for other values of i.

Let Γ denote the graph formed by the curves γ̃, γ̃1, ri, si and s′i (1 ≤ i ≤ m).

This graph is embedded into Ṽ and its cycles γ̃ and γ̃1 are contained in ∂Ṽ . Let
us show that the existence of such a graph contradicts to that g(Ṽ ) < g. We may

assume that ∂Ṽ consists of only two components, γ̃ and γ̃1. The graph Γ has 4m
vertices (namely, the points yi, y

′

i ∈ γ̃ and zi, z
′

i ∈ γ̃1, 1 ≤ i ≤ m) and 7m edges of

which 4m ones are contained in ∂Ṽ . And it contains at most two cycles of length 2
or 3 (any such cycle must contain y1 or ym). Thus the number of components into

which Ṽ is divided by Γ does not exceed (2 · 7m− 4m+ 4)/4 = 5
2m+ 1. Hence

χ(Ṽ ) ≤ 4m− 7m+ 5
2m+ 1 = 1−m/2 = 1− 2g.

Contrary to this, χ(Ṽ ) ≥ 2− 2g when g(Ṽ ) < g and |∂Ṽ | = 2.
We have proved that a suitable parameterization of γ̃ is an ε-lift of γ. To finish

the proof construct such lifts for all components of ∂M . �

3.10. Proof of Theorem 3.2. Having fixed an ε0 > 0 pick a sufficiently fine triangu-
lation of M (the exact requirements to the fineness will be clear from the sequel).
The boundary of every triangle must be a properly embedded curve (see 3.5 for
definition). We denote by Γ the one-dimensional skeleton of the triangulation. We
call a polyhedron any domain in M that is homeomorphic to disc and bounded by
a properly embedded curve composed from edges of Γ. Find a positive ε < ε0
such that U10ε(M r T ) 6= M for any triangle T . Pick a δ = δ(ε) > 0 for which
the statement of Lemma 3.7 holds for any collection {γi} of curves composed from
edges of Γ. For k large enough the lemmas 3.9 and 2.2 allow us to construct a δ-lift
ψk : Γ → Mk such that ψk(∂M) ⊂ ∂Mk, ψk(Γ r ∂M) ⊂ Mk r ∂Mk, and ψk is an
embedding.

We call a triangle T suitable if ψk(∂T ) divides Mk. For such T Lemma 3.7,
part (3), implies that one of the components of Mk rψk(∂T ) is mapped by ϕk into

Uε(T ). We call that component the lift of T and denote it by T̃ . Find a maximal
collection of disjoint non-suitable triangles. By Lemma 3.7, part (2), this collection
contains at most g − 1 triangles. If the triangulation is fine enough then these
triangles, wherever they are, can be included in the interior of a union of disjoint
polygons P1, . . . , Pm (m < g) whose diameters do not exceed ε0. Note that all
the triangles in M r

⋃

Pi are suitable and also have diameters no greater than ε0.
Now we exclude the triangles contained in

⋃

Pi from the list of suitable triangles.
Instead, if ψk(∂Pi) is a dividing curve then we call a polygon Pi suitable and define

its lift P̃i in the same way as for triangles.
Let M ′ denote the closure of the union of all suitable trangles and polygons, M ′

k

denote the closure of the union of their lifts. By the choice of ε, the lifts of different
suitable triangles and polygons cannot contain one another. Thus these lifts are
disjoint and form the same combinatorical structure as the respective triangles and
polygons do. In particular, ∂M ′

k r ∂Mk = ψk(∂M
′
r ∂M). This implies that

M ′ = M and M ′

k = Mk. Indeed, otherwise we have ∂M ′

kr∂Mk 6= ∅ and hence the
ψk-images of the boundaries of non-suitable polygons divide Mk, which contradicts
to Lemma 3.7, part (1).

Now construct an almost homeomorphism ϕ′

k : Mk → M which is close to ϕ.

Define ϕ′

k|ψk(Γ) = ψ−1
k . On the lift of every triangle T ⊂M r

⋃

Pi define ϕ′

k to be
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an almost homeomorhphism from T̃ to T that extend ψ−1
k |∂ eT

(for example, contract

everything but a narrow strip along ∂T̃ into one point). The same is to be done
for the polygons Pi. The resulting map ϕ′

k is an almost homeomorphism and its
distance from ϕk is at most ε0 + ε. Since ε0 is arbitrary, the theorem follows. �

§4. Examples

In this section we give examples of convergence of three-dimensional spheres in
which the semi-continuity of volume fails. The construction can be easily extended
to spheres Sn of any dimension n ≥ 3, furthermore, examples for n > 3 can be
obtained from ones for n = 3 by taking a suspension and smoothing. The main
idea of our construction is in Lemma 4.1.

By a disc with holes we mean a three-dimensional disc D3 from which there are
removed interiors of several smaller discs that are separated away from one another
and from ∂D3.

4.1. Lemma. Let M be a disc with holes and d be a Riemannian metric on

M . Then there exists a sequence of Riemannian metrics {dk}
∞

k=1 on S3 such that

(S3, dk)→ (M,d) and Vol(S3, dk) < 2Vol(M,d) for all k.

Proof. LetM havem boundary components. Denote these components by F1, . . . , Fm.
Pick an ε > 0 and construct smooth disjoint curves γ1, . . . , γm ⊂M in such a way
that

(1) for every i < m the curve γi joins Fi to Fi+1, while γm starts at Fm and
ends at an interior point of M ;

(2) the curves γi do not meet ∂M except at endpoints;
(3) γm is an ε-net in (M,d).

Then, for a sufficiently small δ > 0, consider the set Mδ = MrUδ(
⋃

γi) and denote
by dδ its induced length metric. As δ → 0, the metrics dδ converge uniformly to
the induced length metric of the set

⋃

δ>0Mδ = M r
⋃

γi, and that metric in its
turn coincides with the restriction of d because M is three-dimensional. Thus the
spaces (Mδ, dδ) converge to (M,d) as δ → 0. Furthermore Mδ is homeomorphic to
D3 when δ is small.

Let δ be so small that dH(Mδ,M) < ε and Mδ ≃ D3. Consider the doubling of
Mδ, i.e., the space Sδ = Mδ ∪M

′

δ where M ′

δ is an isometric copy of Mδ attached
to Mδ by means of the natural isometry of their boundaries. (The distance in Sδ
between x ∈ Mδ and x′ ∈ M ′

δ is defined to be infy∈∂Mδ
{dist(x, y) + dist(x′, y)}.)

The space Sδ is homeomorphic to S3 and its metric can be made Riemannian by
smoothing near ∂Mδ (with an arbitarily small change of the distances and the
volume). Moreover Vol(Sδ) = 2Vol(Mδ) < 2Vol(M).

The construction implies that ∂Mδ is an ε-net in M ′

δ. Thus dH(Sδ,Mδ) ≤ ε, and
hence dH(Sδ,M) < 2ε. Since ε is arbitrary, the lemma follows. �

We will need the following technical fact:

4.2. Lemma. For every compact lenght metric space X and every ε > 0 there is

a graph Γ ⊂M such that the inclusion Γ →֒ X is an ε-isometry with respect to the

induced length metric of Γ.

Proof. Pick a finite ε-net S in X. Join every pair of points of S by a shortest path
and denote by Γ0 the union of those paths. Let S′ ⊂ Γ0 be a finite (ε/8)-net with
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respect to the induced length metric of Γ0. For each pair of points x ∈ S, y ∈ S′

with d(x, y) < ε/8 draw a shortest path (in X) joining x to y. Let Γ be the union of
Γ0 and these new paths, dΓ be the induced length metric on Γ. Then the inclusion of
(Γ, dΓ) into (X, d) is an ε-isometry. To prove this, consider any two points x, y ∈ Γ.
Let x1 be a point of S′ closest to x with respect to the metric dΓ, x2 be a point of
S closest to x1 with respect to d, and let y1 ∈ S

′ and y2 ∈ S be constructed in a
similar way for y. The the distances dΓ(x, x1), dΓ(x1, x2), dΓ(y, y1) and dΓ(y1, y2)
are no greater than ε/8, and dΓ(x2, y2) = d(x2, y2). Hence dΓ(x, y) ≤ d(x, y) + ε,
which is the desired relation.

It is easy to show that the shortest paths in the above construction can be chosen
so that the intersection of any two of them, if nonempty, is either a point or an
interval. Then the resulting set Γ is a graph. �

4.3. Theorem. For every Riemannian metric d on S3 there is a sequence {dk}
∞

k=1

of Riemannian metrics on S3 such that (S3, dk)→ (S3, d) and Vol(S3, dk)→ 0 as

k →∞.

Proof. By removing suitable neighborhoods of some point one can approximate
the space (S3, d) by its subsets diffeomorphic to D3. Hence to prove the theorem
it suffices to approximate any prescribed metric on the standard three-disc B ⊂
R3 by spheres of arbitrarily small volume. Lemma 4.1 allows to construct the
approximating metrics on discs with holes instead of spheres.

Let d be a Riemannian metric on B and ε > 0. Split B into small cells by
three families of planes parallel to the coordinate ones so that any straight segment
contained in a single cell has length (with respect to d) no greater than ε. Then,
using Lemma 4.2, find a graph Γ ⊂ B whose inclusion into (B, d) is an ε-isometry
with respect to its length metric. One may assume that every cell contains at least
one vertice of Γ and that the edges of Γ are composed from straight segments.
Include each of those segments into a planar section of B. Let X denote the union
of all those sections and the faces of all cells, and let X be equipped with its induces
length metric. It is easy to see that Γ is a (10ε)-net in X, thus X well approaches
(B, d).

The set X ⊂ B is a union of planar discs that split B into convex domains.
A proper small neighborhood of X, with its induced length metric, is the desired
example of a disc with holes that well approaches (B, d) and have arbitrarily small
volume. �

4.4. Remarks. The constructions from Lemma 4.1 and Theorem 4.3 can be thought
of as a way to construct a metric on a given manifold (the 3-sphere in our case)
such that some prescribed map (the projection of the sphere to disc) is an almost
isometry with respect to that metric. These constructions easily extend to other
manifolds, provided there are maps with relatively simple singularities (for example,
one may allow a ramification over a set of codimension 2 in addition to the projection
structure).

It would be intersting to find out which homotopy types of maps can be realized
by sequences of almost isometries. For two-dimensional manifolds, the answer is
given by Theorem 3.2. For higher dimensions, however, it is unclear whether there
are any restrictions except those from Corollary 2.3.

Another question is, given a convergence realized by almost isometries of zero
degree, is it always possible to modify the metrics so that they converge to the
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same limit but their volumes tend to zero? The construction given in the proof
of Theorem 4.3 is quite flexible, and perhars some its version can serve for this
general case as well. If so, then the problem of semi-continuity of the volume
for given topology completely reduces (by means of Theorem 1.5) to the study of
degrees of almost isometries.
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