Содержание

- Накрытия (продолжение)
 - Поднятие пути
 - Поднятие гомотопии
 - Случай универсального накрытия
- Вычисление некоторых фундаментальных групг
 - Проективное пространство
 - Окружность
- Приложения
 - Инвариантность размерности и края (dim = 2)
 - Теоремы Борсука и Брауэра

Лекция 22

Определение накрытия (повтор)

```
Пусть X, Y — топологические пространства,
p: X \to Y — непрерывное отображение.
```

Определение

```
p — накрытие, если у любой точки y \in Y есть
окрестность U \ni y такая, что:
p^{-1}(U) представляется в виде дизъюнктного
объединения | |_{i \in I} V_i,
где V_i \subset X — открытые множества такие, что для
каждого i сужение p|_{V_i} — гомеоморфизм между V_i и U.
Термины:
X — накрывающее пространство;
```

```
Y — база накрытия;
U — правильно накрываемая окрестность;
V_i — правильно накрывающая окрестность
(нестандартный термин);
р иногда называют проекцией накрытия.
```

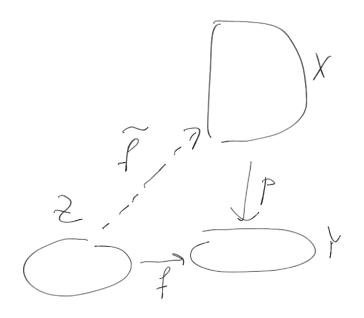

Поднятия (повтор)

Определение

Пусть $p\colon X \to Y$ — накрытие, Z — топологическое пространство, $f\colon Z \to Y$ — непрерывное отображение. Поднятие f — отображение $\widetilde{f}\colon Z \to X$ такое, что $f=p\circ \widetilde{f}$.

Замечание

Поднятие не всегда существует. Например, $\mathrm{id}\colon\mathbb{S}^1\to\mathbb{S}^1$ не имеет поднятия относительно стандартной намотки $p\colon\mathbb{R}\to\mathbb{S}^1$ (упражнение).



3 / 41

Теорема о поднятии пути

Пусть $p: X \to Y$ — накрытие.

Теорема

Для любого пути $\alpha\colon [0,1] \to Y$ и любой точки $x_0 \in p^{-1}(\alpha(0))$ существует единственное поднятие $\widetilde{\alpha}$ пути α такое, что $\widetilde{\alpha}(0) = x_0$.

Доказательство -1: существование

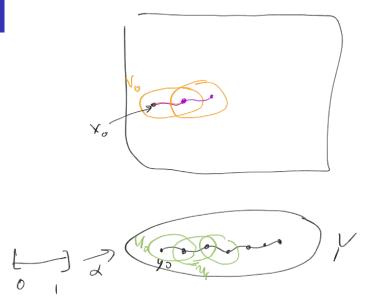
Покроем Y правильно накрываемыми окрестностями и применим лемму Лебега: существует такое $\delta>0$, что α -образ любого интервала длины δ лежит в одной из правильно накрываемых окрестностей.

Разобьем [0,1] точками $0=t_0\leq t_1\leq\cdots\leq t_N=1$ на отрезки $[t_i,t_{i+1}]$ с длинами меньше δ . Поднятие будем строить по индукции: сначала на $[t_0,t_1]$, потом на $[t_1,t_2]$ и т. д.

Как построить $\widetilde{\alpha}|_{[t_0,t_1]}$: Пусть U_0 — правильно накрываемая окрестность, содержащая $\alpha(t_0)$, V_0 — окрестность точки y_0 , правильно накрывающая $\alpha(t_0)$. Определяем $\widetilde{\alpha}(t)=(p|_{V_0})^{-1}(\alpha(t))$ для всех $t\in[t_0,t_1]$.

На $[t_1,t_2]$ достраиваем $\widetilde{\alpha}$ аналогично, начиная с уже построенной точки $\widetilde{\alpha}(t_1)$ вместо y_0 .

И так далее.



Лекция 22 23 апреля 2020 г

Доказательство — 2: единственность

Единственность следует из конструкции — докажем, что любое поднятие $\widetilde{\alpha}$ с $\widetilde{\alpha}(0)=y_0$ совпадает с построенным. Докажем это для первого участка $\widetilde{\alpha}|_{[t_0,t_1]}$, далее аналогично по индукции.

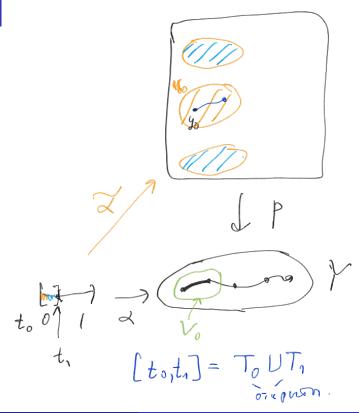
Достаточно доказать, что $\widetilde{\alpha}([t_0,t_1])\subset U_0$ (в обозначениях из доказательства существования). Предположим противное и рассмотрим множества

$$T_0 = \{t \in [t_0, t_1] : \widetilde{\alpha}_1(t) \in U_0\},\$$

$$T_1 = \{t \in [t_0, t_1] : \widetilde{\alpha}_1(t) \notin U_0\},\$$

Из непрерывности $\widetilde{\alpha}$ и определения накрытия T_0 и T_1 открыты в $[t_0,t_1]$ \Longrightarrow противоречие со связностью отрезка $[t_0,t_1]$.

Теорема доказана



◆□▶ ◆□▶ ◆□▶ ◆□▶ ■ めの○

Лекция 22 23 апреля 2020 г.

Лемма о непрерывном аргументе

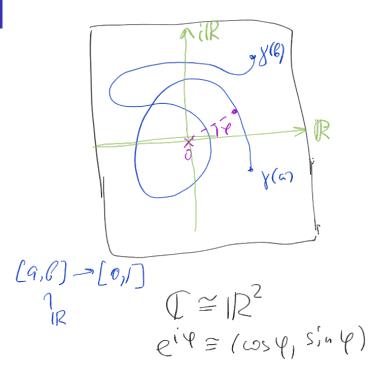
Следствие (Лемма о непрерывном аргументе)

Пусть $\gamma\colon [a,b] o \mathbb{C}\setminus\{0\}$ непрерывно. Тогда

ullet Существует непрерывная функция $arphi \colon [\mathsf{a},\mathsf{b}] o \mathbb{R}$ такая, что

$$\gamma(t) = |\gamma(t)| \cdot e^{i\varphi(t)} \quad \forall t \in [a, b]$$

• Такая φ единственна с точностью до прибавления константы, кратной 2π .



7 / 41

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

Лемма о непрерывном аргументе

Следствие (Лемма о непрерывном аргументе)

Пусть $\gamma\colon [a,b] o \mathbb{C}\setminus \{0\}$ непрерывно. Тогда

ullet Существует непрерывная функция arphi: $[a,b] o \mathbb{R}$ такая, что

$$\gamma(t) = |\gamma(t)| \left(e^{i\varphi(t)}\right) \quad \forall t \in [a, b]$$

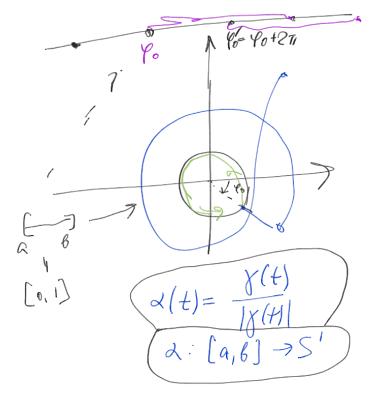
• Такая φ единственна с точностью до прибавления константы, кратной 2π .

Доказательство.

Применим теорему о поднятии пути к накрытию $p: \mathbb{R} \to \mathbb{S}^1$, $p(x) = e^{ix}$, и пути $\alpha(t) = \frac{\gamma(t)}{|\gamma(t)|}$ в \mathbb{S}^1 .

$$X = \mathbb{R}$$

 $Y = S'$



Лекция 22

Для записей

$$\begin{cases} d_t \end{cases} - cos. \text{ rows. round were } \\ R^2 - \{0\} \end{cases} = \begin{cases} 1 - loop. \end{cases}$$

$$\begin{cases} d_t (x) = \frac{d_t(x)}{|x_t(x)|} \end{cases} = const \end{cases} + \begin{cases} 0, 1 \times \{0, 1\} \rightarrow R \end{cases}$$

$$P: R \rightarrow S'$$

$$P(x) = (cos \times sin x)$$

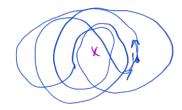
Изменение аргумента

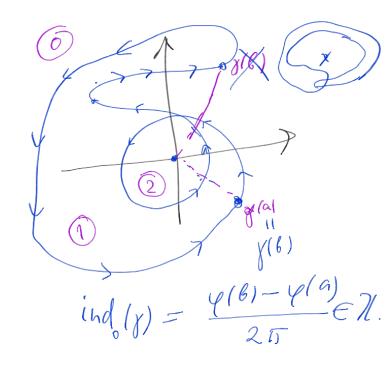
Замечание

Из единственности непрерывного аргумента с точностью до прибавления константы следует, что изменение аргумента $\varphi(b) - \varphi(a)$ корректно определено (не зависит от выбора φ).

Если $\gamma(a)=\gamma(b)$, то изменение аргумента кратно 2π , то есть $\frac{\varphi(b)-\varphi(a)}{2\pi}\in\mathbb{Z}$. Это целое число называется индексом петли γ относительно 0.

Аналогично (с помощью параллельного переноса на -p) определяется индекс петли относительно произвольной точки $p \in \mathbb{R}^2 \simeq \mathbb{C}$, не лежащей в множестве значений γ .





Лекция 22 23 апреля 2020 г.

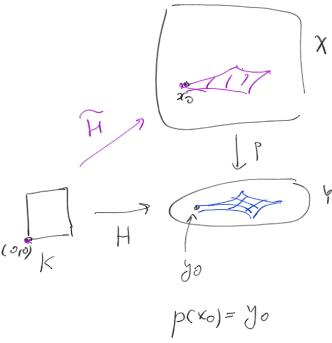
Содержание

- Накрытия (продолжение)
 - Поднятие пути
 - Поднятие гомотопии
 - Случай универсального накрытия
- - Проективное пространство
 - Окружность
- - Инвариантность размерности и края (dim = 2)
 - Теоремы Борсука и Брауэра

Формулировка

Пусть $p: X \to Y$ — накрытие.

Обозначим $K = [0,1] \times [0,1]$. Теорема Пусть $H: K \to Y$ — непрерывное отображение, $y_0 = H(0,0), x_0 \in p^{-1}(y_0).$ Тогда существует единственное поднятие $\widetilde{H}\colon K o X$ отображения H такое, что $\widetilde{H}(0,0)=x_0$.

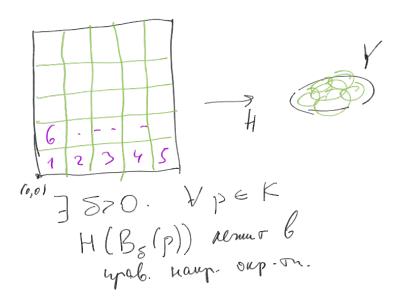


Доказательство (план)

По лемме Лебега, существует такое $\delta>0$, что H-образ любого δ -шара лежит в правильно накрываемой окрестности.

Разобьем K на одинаковые квадратики диаметра меньше $\delta.$

Строим H по очереди на каждом квадратике, перечисляя их слева направо и снизу вверх (аналогично поднятию пути).



12 / 41

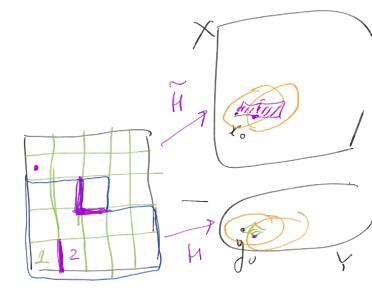
Доказательство (план)

По лемме Лебега, существует такое $\delta > 0$, что H-образ любого δ -шара лежит в правильно накрываемой окрестности.

Разобьем K на одинаковые квадратики диаметра меньше δ .

Строим H по очереди на каждом квадратике, перечисляя их слева направо и снизу вверх (аналогично поднятию пути).

На каждом очередном шагу пересечение нового квадратика с теми, на которых \widetilde{H} уже построено, линейно связно \Longrightarrow по единственности поднятия пути поднятие на квадратике будет совпадать с ранее построенным на общей части.



12 / 41

Доказательство (план)

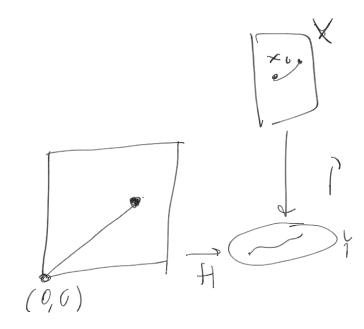
По лемме Лебега, существует такое $\delta>0$, что H-образ любого δ -шара лежит в правильно накрываемой окрестности.

Разобьем K на одинаковые квадратики диаметра меньше δ .

Строим H по очереди на каждом квадратике, перечисляя их слева направо и снизу вверх (аналогично поднятию пути).

На каждом очередном шагу пересечение нового квадратика с теми, на которых \widetilde{H} уже построено, линейно связно \Longrightarrow по единственности поднятия пути поднятие на квадратике будет совпадать с ранее построенным на общей части.

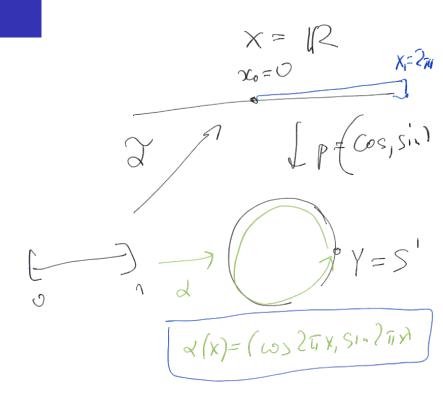
Единственность $ilde{H}$ следует из линейной связности K и единственности поднятия пути.



Лекция 22 23 апреля 2020 г.

Для записей

$$I(x) = 2\pi x$$



Лекция 22 23 апреля 2020 г.

Следствия для путей

Следствие

Если пути α, β в Y гомотопны как пути (т.е. с фиксированными концами), то их поднятия с общим началом тоже гомотопны как пути.

Следствие

Поднятие стягиваемой петли — тоже петля, причём стягиваемая.

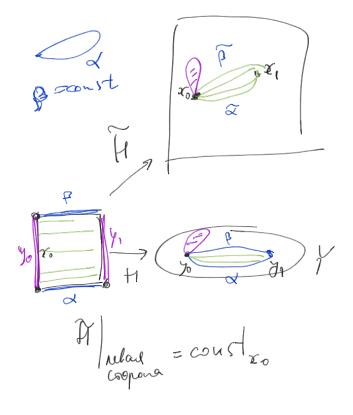
Термин: «петля не размыкается при поднятии».

В частности, у поднятий совпадают концы.

$$x_i := \widetilde{H}(1,0)$$

$$P(x_i) = J_i$$

$$H \mid \text{web.} = \text{const} x_i$$

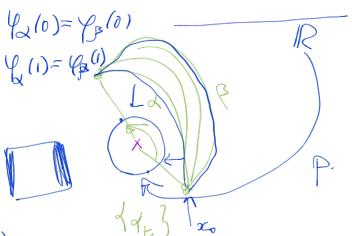


14 / 41

Следствия для индекса относительно точки

Следствие

- 1. Если два пути в $\mathbb{R}^2\setminus\{0\}$ гомотопны с фиксированными концами, то изменение аргумента у них одно и то же.
- 2. Если две петли в $\mathbb{R}^2\setminus\{0\}$ свободно гомотопны, то их индексы относительно 0 одинаковы.



Man. apz. $\mathcal{A} = \mathcal{A}(1) - \mathcal{A}(0)$ $\mathcal{A} - \text{herp. apyrens} \quad \mathcal{A} - \text{nod twome} \quad \mathcal{A} = \text{heaprone} \quad \mathcal{A} =$

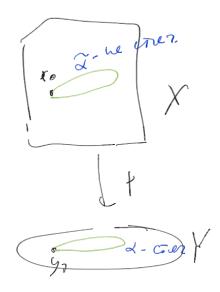
Группа накрытия

Следствие

Гомоморфизм $p_*: \pi_1(X,x_0) \to \pi_1(Y,y_0)$, индуцированный накрытием $p: X \to Y$, — мономорфизм (т.е. инъективен).

Доказательство.

Если p_* имеет нетривиальное ядро, то поднятие некоторой стягиваемой петли нестягиваемо. Противоречие.



Группа накрытия

Следствие

Гомоморфизм $p_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$, индуцированный накрытием $p: X \to Y$, — мономорфизм (т.е. инъективен).

Доказательство.

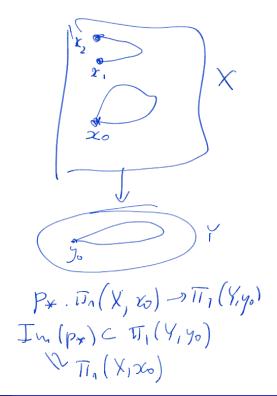
Если p_* имеет нетривиальное ядро, то поднятие некоторой стягиваемой петли нестягиваемо. Противоречие.

Определение

Образ p_* в $\pi_1(Y, y_0)$ — группа накрытия.

Замечание

- 1. Группа накрытия состоит из петель, не размыкающихся при поднятии.
- 2. Она может зависеть от выбора $x_0 \in X$.



Содержание

- Накрытия (продолжение)
 - Поднятие пути
 - Поднятие гомотопии
 - Случай универсального накрытия
- Вычисление некоторых фундаментальных групг
 - Проективное пространство
 - Окружность
- Приложения
 - Инвариантность размерности и края (dim = 2)
 - Теоремы Борсука и Брауэра

Лекция 22

Поднятия в универсальное накрывающее

Пусть $p: X \to Y$ — универсальное накрытие.

Зафиксируем $y_0 \in Y$ и $x_0 \in p^{-1}(y_0)$.

Будем рассматривать только пути с началом y_0 и их поднятия с началом x_0 .

Теорема

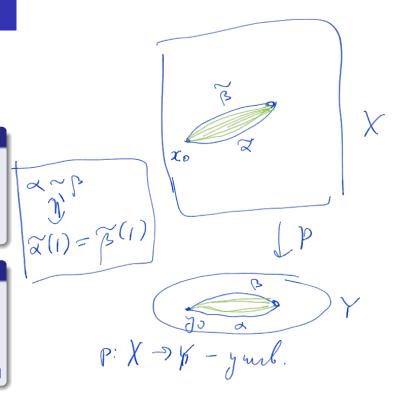
Для универсального накрытия верно следующее: Пути α, β с началом x_0 гомотопны \iff их поднятия с началом x_0 заканчиваются в одной точке. (В частности, стягиваемые петли — те и только те, которые не размыкаются при поднятии.)

Доказательство.

⇒: было (верно для любого накрытия).

 \iff в односвязном X любые два пути с общими концами гомотопны.

Возьмём гомотопию между $\widetilde{\alpha}$ и $\widetilde{\beta}$ и рассмотрим её композицию с p. Получим гомотопию между α и β .



4□ > 4□ > 4 = > 4 = > = 90

Лекция 22 23 апреля 2020 г.

Соответствие между фундаментальной группой и листами универсального накрытия

Теорема

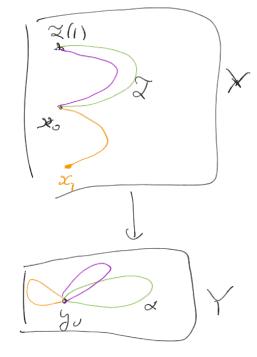
Пусть $p: X \to Y$ — универсальное накрытие, $y_0 \in Y$, $x_0 \in p^{-1}(y_0)$.

Сопоставим каждой петле $\alpha \in \Omega(Y, y_0)$ конец её поднятия в X с началом в x_0 .

Это соответствие определяет биекцию между $\pi_1(Y, y_0)$ и $p^{-1}(y_0)$.

Доказательство.

Это переформулировка предыдущей теоремы.



19 / 41

Содержание

- Накрытия (продолжение)
 - Поднятие пути
 - Поднятие гомотопии
 - Случай универсального накрытия
- 2 Вычисление некоторых фундаментальных групп
 - Проективное пространство
 - Окружность
- Приложения
 - Инвариантность размерности и края (dim = 2)
 - Теоремы Борсука и Брауэра

Лекция 22

Фундаментальная группа \mathbb{RP}^n

Теорема

 $\pi_1(\mathbb{RP}^n)=\mathbb{Z}_2$ при $n\geq 2$.

Доказательство.

Из универсального накрытия $\mathbb{S}^n \to \mathbb{RP}^n$ следует, что $\pi_1(\mathbb{RP}^n)$ состоит из двух элементов. Такая группа единственна с точностью до изоморфизма.

$$|P'(y_0)|=2$$
 $|T_1(RP')|=2$

1/2 = 1/27/ 1) p-loup 7 => p-yuub. 2) S'-00400cb.) => p-yuub. 2) Sueugus Ti (IRP") L> p'1901

Лекция 22

Содержание

- Накрытия (продолжение)
 - Поднятие пути
 - Поднятие гомотопии
 - Случай универсального накрытия
- Вычисление некоторых фундаментальных групп
 - Проективное пространство
 - Окружность
- Приложения
 - Инвариантность размерности и края (dim = 2)
 - Теоремы Борсука и Брауэра

Фундаментальная группа окружности

Теорема

$$\pi_1(\mathbb{S}^1) = \mathbb{Z}.$$

При изоморфизме элементу $\pi_1(\mathbb{S}^1)$ соответствует индекс петли (относительно центра окружности).

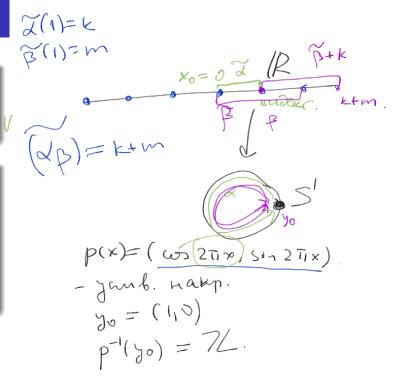
Доказательство.

Рассмотрим универсальное накрытие $p: \mathbb{R} \to \mathbb{S}^1$, $p(x) = (\cos 2\pi x, \sin 2\pi x)$ и $y_0 = (1,0)$.

Оно даёт биекцию между $\pi_1(\mathbb{S}^1,y_0)$ и $p^{-1}(y_0)=\mathbb{Z}$, эта

биекция ставит в соответствие каждой петле из $\Omega(\mathbb{S}^1, y_0)$ её индекс.

Нетрудно проверить, что эта биекция переводит произведение петель в сумму целых чисел.



Лекция 22 23 апреля 2020 г.

Фундаментальная группа проколотой плоскости

Следствие

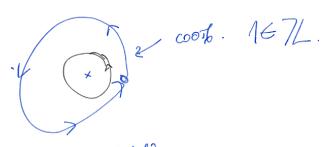
 $\pi_1(\mathbb{R}^2 \setminus \{0\}) = \mathbb{Z}.$

При изоморфизме элементу $\pi_1(\mathbb{R}^2 \setminus \{0\})$ соответствует индекс петли относительно 0.

Доказательство.

 $\mathbb{R}^2\setminus\{0\}\simeq\mathbb{S}^1 imes(0,+\infty)$, изоморфизм сохраняет индекс.

TI, (IR2 10)) ~ Z



24 / 41