- ① Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости
- 2 Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

- ① Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости
- 2 Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

Ортогональное дополнение множества

Пусть X — евклидово пространство, $A \subset X$ — множество.

Определение

Ортогональное дополнение множества A — это

$$A^{\perp} = \{ x \in X : \forall v \in A \ \langle x, v \rangle = 0 \}$$

Свойства

- A^{\perp} линейное подпространство
- $A^{\perp} = \operatorname{Lin}(A)^{\perp}$

Ортогональное дополнение подпространства

Теорема

Пусть X — конечномерное евклидово пространство, $V\subset X$ — линейное подпространство. Тогда

- \bullet $X = V \oplus V^{\perp}$
- $(V^{\perp})^{\perp} = V$

Доказательство.

Пусть $n = \dim X$, $k = \dim V$.

Выберем ортонормированный базис e_1, \ldots, e_k в V, дополним до ортонормированного базиса e_1, \ldots, e_n в X. Тогда

$$V^{\perp} = \operatorname{Lin}(e_{k+1}, \ldots, e_n)$$

Аналогично,

$$(V^{\perp})^{\perp} = \operatorname{Lin}(e_1, \ldots, e_k) = V$$

Ортогональная проекция

Пусть $V \subset X$ — линейное подпространство, $x \in X$.

Так как $X=V\oplus V^\perp$, вектор x однозначно раскладывается в сумму

$$x = y + z, \qquad y \in V, \ z \in V^{\perp}$$

Определение

Вектор y из формулы — ортогональная проекция x на V.

Обозначение: $y = \Pr_V(x)$.

Переформулировка

 $\Pr_V(x)$ — такой вектор $y \in V$, что $x - y \in V^{\perp}$.

Свойства

- $\Pr_{V}: X \to V$ линейное отображение.
- $Pr_V(x)$ ближайшая к x точка из V.

- ① Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости

- Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

Гиперплоскости

Определение

Линейная гиперплоскость — линейное подпространство коразмерности 1 (т.е. размерности $\dim X - 1$). Аффинная гиперплоскость — образ линейной гиперпоскости при параллельном переносе.

Замечание

Аналогично определяется понятие аффинного подпространства любой размерности.

Пока будем рассматривать только линейные.

Нормаль гиперплоскости

Определение

Нормаль линейной гиперплоскости H — любой ненулевой вектор $v \in H^{\perp}$.

Свойства

- Нормаль гиперплоскости существует, она единственна с точностью до пропорциональности.
- Если v нормаль для H, то $H = v^{\perp} = \{x \in X : x \perp v\}$. (Нормаль задаёт гиперплоскость)

Это следует из теоремы об ортогональном дополнении: $\dim H^{\perp} = 1, \ H^{\perp} = \text{Lin}(v), \ v^{\perp} = (H^{\perp})^{\perp} = H.$

Соответствие между векторами и линейными функциями

Теорема (конечномерная лемма Рисса)

 Π усть X — конечномерное евклидово пространство,

 $L \colon X \to \mathbb{R}$ — линейное отображение.

Тогда существует единственный вектор $v \in X$ такой, что

$$L(x) = \langle v, x \rangle$$

для всех $x \in X$.

Переформулировка

Отображение $X \to X^*$, которое сопоставляет каждому вектору $v \in X$ линейную функцию $\langle v, \cdot \rangle$ — биекция между X и X^* .

Доказательство леммы Рисса

Пусть e_1, \ldots, e_n — ортонормированный базис.

Положим $a_i = L(e_i)$ для всех $i = 1, \ldots, n$.

Искомый вектор: $v = \sum a_i e_i$.

Почему он подходит: для $x = \sum x_i e_i$ (где $x_i \in \mathbb{R}$)

$$L(x) = \sum a_i x_i = \langle v, x \rangle$$

Единственность: пусть есть другой такой вектор v'. Тогда $L(x) = \langle v, x \rangle = \langle v', x \rangle \implies \langle v - v', x \rangle = 0 \quad (\forall x \in X)$. Подставим x = v - v', получим $|v - v'|^2 = 0$, противоречие.

Гиперплоскость — ядро линейной функции

Напоминание

Для линейного отображения $L\colon X\to Y$, $\ker L=L^{-1}(0)$,

$$\dim \ker L = \dim X - \dim L(X)$$

Следствие для $L\colon X \to \mathbb{R}\colon L \neq 0 \implies \ker L$ — гиперплоскость.

Теорема

- ullet Любая линейная гиперплоскость имеет вид ker L, где $L\colon X o \mathbb{R}$ линейное отображение, L
 eq 0.
- L определено однозначно с точностью до умножения на константу.

Доказательство.

$$L = \langle v, \cdot \rangle$$
, где v — нормаль.

Уравнение в координатах

Пусть $X=\mathbb{R}^n$. Тогда $L\colon \mathbb{R}^n o \mathbb{R}$ имеет вид

$$L(x) = \langle v, x \rangle = \sum a_i x_i$$

где x_1,\ldots,x_n — координаты точки x, a_1,\ldots,a_n — константы (координаты вектора v).

Отсюда следует общий вид уравнения линейной гиперплоскости в координатах x_1, \ldots, x_n :

$$a_1x_1 + a_2x_2 + \dots a_nx_n = 0$$

где a_1, \ldots, a_n — коэффициенты, не все равные 0.

Эти коэффициенты — координаты нормали.

Расстояние до гиперплоскости

Теорема

Пусть $H = v^{\perp}$. Тогда расстояние от x до H равно

$$d(x, H) = \frac{|\langle v, x \rangle|}{|v|}$$

Или в координатах, где a_1,\ldots,a_n — координаты v ,

$$d(x,H) = \frac{|a_1x_1 + \ldots + a_nx_n|}{\sqrt{a_1^2 + \cdots + a_n^2}}$$

Доказательство формулы для расстояния

Доказываем формулу

$$d(x,H) = \frac{|\langle v, x \rangle|}{|v|}$$

Запишем x = y + z, где $y \in H$, $z \in H^{\perp}$.

$$d(x,H)=|z|$$
, так как $y=\Pr_H(x)$ — ближайшая точка.

$$\langle v, x \rangle = \langle v, y + z \rangle = \langle v, z \rangle = \pm |v||z|,$$
 так как $\langle v, y \rangle = 0$ и $z \in \mathsf{Lin}(v).$

Отсюда

$$\frac{|\langle v, x \rangle|}{|v|} = |z| = d(x, H)$$

Аффинные гиперплоскости

Упражнение

Любая аффинная гиперплоскость имеет вид

$$H = \{x \in X : \langle v, x \rangle + c = 0\}$$

где v — ненулевой вектор, $c \in \mathbb{R}$.

Расстояние до нее задается формулой

$$d(x,H) = \frac{|\langle v, x \rangle + c|}{|v|}$$

- 1 Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости
- Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

Определения

Пусть X, Y — евклидовы пространства.

Определение

Изометрическое отображение (изометрическое вложение)

X в Y — линейное отображение из X в Y, сохраняющее скалярное произведение.

Ортогональное преобразование пространства X — изометрическое отображение из X в себя.

Очевидно, ортогональные преобразования X — группа относительно композиции.

Определение

Ортогональная группа порядка n — группа ортогональных преобразований \mathbb{R}^n .

Обозначение: O(n).

Свойства

Пусть f:X o Y — линейное отображение. Тогда

- ullet изометрическое \Longleftrightarrow оно сохраняет длины векторов.
 - Из формулы

$$\langle x, y \rangle = \frac{|x+y|^2 - |x|^2 - |y|^2}{2}$$

- f изометрическое \iff оно переводит какой-нибудь ортонормированный базис в ортонормированный набор
 - Было.

- Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости
- Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

Матрица изометрического отображения

Теорема

Пусть $f: X \to Y$ линейно, A — его матрица в ортонормированных базисах X и Y. Тогда f изометрическое $\iff A^T A = E$.

Доказательство.

Пусть
$$A^T A = (c_{ij})$$
.
Тогда $c_{ij} = \langle f(e_i), f(e_i) \rangle$, где $\{e_i\}$ — выбранный базис X .

Следствие

При $\dim X = \dim Y$ это равносильно тому, что $AA^T = E$ или $A^T = A^{-1}$.

Ортогональные матрицы

Определение

Ортогональная матрица — квадратная матрица A, для которой $A^T A = AA^T = E$.

Замечание

A ортогональная $\iff A^T$ ортогональная.

Эквивалентные переформулировки

- \bullet $AA^T = E$
- \bullet $A^TA = E$
- Столбцы ортонормированы
- Строки ортонормированы

Определитель ортогональной матрицы

Теорема

Eсли A — ортогональная матрица, то $\det A = \pm 1$.

Доказательство.

$$det(A^T A) = det(E) = 1$$

$$det(A^T A) = det(A^T) det(A) = det(A)^2$$

Определение

Специальная ортогональная группа SO(n) — группа ортогональных преобразований с определителем 1.

- Ортогональность (продолжение)
 - Ортогональное дополнение, ортогональная проекция
 - Уравнение гиперплоскости
- Ортогональные преобразования
 - Ортогональные матрицы
 - Строение ортогонального преобразования

Примеры ортогональных преобразований

Примеры ортогональных преобразований:

- id
- — id (центральная симметрия относительно 0)
- Поворот плоскости относительно 0
- Симметрия относительно линейного подпространства Y: id на Y, id на Y^{\perp} .
- ullet Пусть X разложено в ортогональную прямую сумму

$$X = X_1 \oplus \ldots \oplus X_n$$

и на каждом X_i задано ортогональное преобразование f_i .

Тогда есть ортогональное $f:X\to X$ такое, что $f|_{X_i}=f_i$.

Ортогональные преобразования плоскости

Матрица ортогонального преобразования \mathbb{R}^2 имеет вид

$$\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \qquad \text{или} \qquad \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

(других вариантов нет, так как столбцы должны быть ортонормированы).

Первое — поворот на угол α .

Второе — симметрия относительно прямой, образующей угол $\alpha/2$ с e_1 .

Общий вид ортогонального преобразования

Теорема

Пусть $f: X \to X$ — ортогональное преобразование. Тогда существует разложение X в ортогональную прямую сумму

$$X = X_+ \oplus X_- \oplus \Pi_1 \oplus \ldots \oplus \Pi_m \qquad (m \ge 0)$$

инвариантных (т.е. переходящих в себя) подпространств т.ч.

- $f|_{X_{\perp}} = id$
- $f|_{X_{-}} = -id$
- dim $\Pi_i = 2$, $f|_{\Pi_i} поворот$.

Случай \mathbb{R}^3

В зависимости от m и размерностей X_+ и X_- в \mathbb{R}^3 есть такие случаи:

- m = 1, dim $X_{+} = 1$, dim $X_{-} = 0$: поворот вокруг оси.
- \bullet m=1, dim $X_+=0$, dim $X_-=1$: «зеркальный поворот».
- m = 0, dim $X_{+} = 3$, dim $X_{-} = 0$: id.
- m = 0, dim $X_{+} = 2$, dim $X_{-} = 1$: симметрия отн. плоскости.
- m = 0, dim $X_{+} = 1$, dim $X_{-} = 2$: симметрия отн. прямой (она же поворот на угол π)
- m = 0, dim $X_{+} = 0$, dim $X_{-} = 3$: id

Задача

- SO(2) гомеоморфна S^1 ,
- SO(3) гомеоморфна RP^3 .