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History

Origins:

¥ Singular system approach to the method of delays.
Dynamic Systems – analysis of attractors [middle of 80’s] (Broomhead)

¥ Singular Spectrum Analysis. Geophysics/meteorology – signal/noise enhancing,

distinguishing of a time series from the red noise realization (Monte Carlo SSA) [90’s]

(Vautard, Ghil, Fraedrich)

¥ “Caterpillar”. Principal Component Analysis evolution [end of 90’s]

(Danilov, Zhigljavskij, Solntsev, Nekrutkin, Goljandina)

Books:

¥ Elsner, Tsonis. Singular Spectrum Analysis. A New Tool in Time Series Analysis, 1996.

¥ Golyandina, Nekrutkin, and Zhigljavsky. Analysis of Time Series Structure: SSA and

Related Techniques, 2001.

Internet links and software:

¥ http://www.atmos.ucla.edu/tcd/ssa/

¥ http://www.gistatgroup.com/cat/

¥ http://www.pdmi.ras.ru/˜theo/autossa/
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Possibilities and advantages

Basic possibilities of the “Caterpillar”-SSA technique:

¥ Finding trend of different resolution

¥ Smoothing

¥ Extraction of seasonality components

• Simultaneous extraction of cycles with small and large periods

• Extraction periodicities with varying amplitudes

• Simultaneous extraction of complex trends and periodicities

¥ Forecast

¥ Change-point detection

Advantages:

¥ Doesn’t require the knowledge of parametric model of time series

¥ Works with wide spectrum of real-life time series

¥ Matches up for non-stationary time series

¥ Allows to find structure in short time series

“Caterpillar”-SSA and its automatization – p. 4/15



“Caterpillar”-SSA: basic algorithm

¥ Decomposes time series into sum of additive components: FN = F
(1)
N + . . .+F

(m)
N

¥ Provides the information about each component

Algorithm:

1. Trajectory matrix construction:

FN = (f0, . . . , fN−1), FN → X ∈ R
L×K

(L – window length, parameter)

X =




f0 f1 . . . fN−L

f1 f2 . . . fN−L+1

...
. . .

. . .
...

fL−1 fL . . . fN−1




2. Singular Value Decomposition (SVD):

X =
∑

Xj

Xj =
√

λjUjV T
j

λj – eigenvalue, Uj – e.vector of XX
T,

Vj – e.vector of X
T
X, Vj = X

TUj/
√

λj

3. Grouping of SVD components:

{1, . . . , d} =
⊕

Ik,
X

(k) =
∑

j∈Ik
Xj

4. Reconstruction by diagonal averaging:

X
(k) → F̃

(k)
N

FN = F̃
(1)
N + . . . + F̃

(m)
N
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Decomposition feasibility

FN = F
(1)
N + F

(2)
N , X = X

(1) + X
(2)

Separability: we can form the group I1 of SVD components so that I1 ↔ X
(1)

¥ Separability is the necessary condition for “Caterpillar”-SSA application

¥ Exact separability impose strong constraints at the spectrum of time series

which could be processed

Real-life: asymptotic separability

The case of finite N : FN = F
(1)
N + F

(2)
N , I1 ↔ X

(1) ↔ F̃
(1)
N – approximation of the F

(1)
N

Examples of asymptotic separability:

¥ A determinate signal is asympt. separable from a white noise

¥ A periodicity is asympt. separable from a trend

Fulfilment of (asymptotic) separability conditions places limitations on the value of window length L

Only time series which generate finite amount of SVD components – hard constraint?

Any linear combination of product of exponents, harmonics and polynomials generates finite

amount of SVD components
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Identification of SVD components

Identification – choosing of SVD components on the stage of grouping.

Important examples

Exponential trend: fn = Aeαn

¥ it generates one SVD component,

¥ eigenvector:

U = (u1, . . . , uL)T : uk = Ceαk

(“exponential” form with the same α)

Exponentially-modulated harmonic: fn = Aeαn cos(2πωn)

¥ it generates two SVD components,

¥ eigenvectors:

U1 = (u
(1)
1 , . . . , u

(1)
L )T : u

(1)
k = C1e

αk cos(2πωk)

U2 = (u
(2)
1 , . . . , u

(2)
L )T : u

(2)
k = C2e

αk sin(2πωk)

(“exponentially-modulated” form with the same α and ω)
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974

Abraham, Redolter. Stat. Methods for Forecasting, 1983

N=180, L=60
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974

Abraham, Redolter. Stat. Methods for Forecasting, 1983

N=180, L=60
SVD components: 1, 4, 5
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974

Abraham, Redolter. Stat. Methods for Forecasting, 1983

N=180, L=60
SVD components: 1, 4, 5

SVD components with periods estimations:

2-3 (12), 4-5, 6-7(6), 8(2), 9-10(10), 11-12(4), 13-14(2.4)
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Forecast

Recurrent forecast in the framework of the “Caterpillar”-SSA.

Linear Recurrent Formula (LRF):

FN = (f0, . . . , fN−1) : fn =
∑d

k=1 akfn−k

Theory:

¥ All time series with finite number of SVD components generates finite order LRFs

¥ FN = F
(1)
N + F

(2)
N , if {Uj}j∈I1 ↔ F

(1)
N then we can find a LRF governing the F

(1)
N

Algorithm of F
(1)
N one-step forecast:

1. Choose window length L

2. Identify SVD components corresponding to the F
(1)
N : {Uj}j∈I1 ↔ F

(1)
N

3. Reconstruct via diagonal averaging: {Uj}j∈I1 ⇒ F̃
(1)
N

4. Find a LRF governing F̃
(1)
N using the theorem

5. Apply the LRF to last values of the F̃
(1)
N : fN
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Example: signal forecast

First 119 points were given as the base for the signal reconstruction and forecast

Remaining part of the time series is figured to estimate the forecast quality

N=119, L=60, forecast of points 120-180

SVD components: 1 (trend); 2-3, 5-6, 9-10 (harmonics with periods 12, 4, 2.4); 4 (harmonic with period 2)
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AutoSSA: trend extraction

Let us investigate every eigenvector Uj and take U = (u1, . . . , uL)T.

Low Frequencies method

¥ un = c0 +
∑

16k6 L−1
2

(
ck cos(2πnk/L) + sk sin(2πnk/L)

)
+ (−1)ncL/2,

¥ Periodogram:

ΠL
U (k/L) = L

2





2c02, k = 0,

ck
2 + sk

2, 1 6 k 6 L−1
2

,

2cL/2
2, L is even and k = L/2.

ΠL
U (ω), ω ∈ {k/L}, reflects the contribution of a harmonic with the frequency ω

into the Fourier decomposition of U .

¥ Parameter: ω0 – upper boundary for the “low frequencies” interval

C(U) =

∑
06k6Lω0

Π
L

U(k/L)∑
06k6L/2 Π

L

U(k/L)
– contribution of LF frequencies.

C(U) > C0 ⇒ eigenvector U corresponds to a trend, where C0 ∈ (0, 1) – threshold

“Usually” C0 = 0.1
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AutoSSA: periodicity extraction

We consider every pair of neighbor eigenvectors Uj ,Uj+1.

Fourier method

¥ Stage 1. Check “maximal” frequencies: θj = arg mink ΠL
Uj

(k/L),

L|θj − θj+1| 6 s0 ⇒ the pair (j, j + 1) is a “harmonical” pair.

¥ Stage 2. Check the form of periodogram:

ρ(j,j+1) = 1
2

maxk

(
ΠL

Uj
(k/L) + ΠL

Uj+1
(k/L)

)
for a harm. pair ρ(j,j+1) = 1.

ρ(j,j+1) > ρ0 ⇒ the pair (j, j + 1) corresponds to a harmonic, where ρ0 ∈ (0, 1) – threshold

“Usually” ρ0 = 0.7
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AutoSSA: model example

Signal forecast

FN : fn = sn+εn, sn = e0.015n+2e−0.005n sin(2πn/24)+e0.01n sin(2πn/6+2), εn ∼ N(0, 1)

N=95, L=48, forecast of points 96-144

Trend: 1st SVD component (C(U1) = 0.997 > 0.1)

Periodicity, T=6: 2-3 (ρ(2,3) = 0.95 > 0.7); T=24: 4-5 (ρ(2,3) = 0.96 > 0.7)
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AutoSSA: conclusions

Main questions: does automatization make sense? and how to choose thresholds?

There is no general answer.

One application of AutoSSA: processing of time series from the given class (e.g. trend

extraction if we know that trend has exponential form with α < α0)

It’s reasonable for batch processing of time series data

We invested applicability of AutoSSA for extraction and forecast exponential trend/e-m harmonic.

For this task

¥ AutoSSA provides good results and its quality is comparable with interactive identification

¥ We realized that thresholds for extraction and forecast are the same

¥ It’s possible to work out instructions of thresholds setting for a class of time series
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Future plans

Open problems:

¥ SSA: complex time series models. For instance, with modulation of parameters

(e.g. harmonic frequency) in time

Future plans:

¥ AutoSSA: methodology

¥ SSA: comparison of the “Caterpillar”-SSA with other techniques:

• standard techniques

• wavelets

• neural networks

¥ SSA: application of the “Caterpillar”-SSA in other areas

“Caterpillar”-SSA and its automatization – p. 15/15


	Outline
	History
	Possibilities and advantages
	``Caterpillar''-SSA: basic algorithm
	Decomposition feasibility
	Identification of SVD components
	Identification of SVD components
	Identification of SVD components

	Example: trend and seasonality extraction
	Example: trend and seasonality extraction
	Example: trend and seasonality extraction
	Example: trend and seasonality extraction
	Example: trend and seasonality extraction

	Forecast
	Example: signal forecast
	AutoSSA: trend extraction
	AutoSSA: periodicity extraction
	AutoSSA: model example
	AutoSSA: conclusions
	Future plans

