The "Caterpillar"-SSA approach: automatic trend extraction and other applications

Theodore Alexandrov

theo@pdmi.ras.ru

St.Petersburg State University, Russia

Bremen University, 28 Feb 2006

History – Present

Origins of the "Caterpillar"-SSA approach

- Singular System Analysis (Broomhead)
 Dynamic Systems, method of delays for analysis of attractors [middle of 80's],
- Singular Spectrum Analysis (Vautard, Ghil, Fraedrich) Geophysics/meteorology – signal/noise enhancing, signal detection in red noise (Monte Carlo SSA) [90's],
 - "Caterpillar" (Danilov, Zhigljavsky, Solntsev, Nekrutkin, Golyandina) Principal Component Analysis for time series [end of 90's],

Present

- Automation: papers are published, see http://www.pdmi.ras.ru/~theo/autossa/ (Alexandrov, Golyandina)
- **Change-point detection** (Golyandina, Nekrutkin, Zhigljavsky)
- Missed observations: a paper is published, a software is on www.gistatgroup.com (Golyandina, Osipov)
- **2-channel SSA:** a paper is published, see www.gistatgroup.com (Golyandina, Stepanov)
- Some generalizations

Future

2D, online "Caterpillar"-SSA...

"Caterpillar"-SSA kernel

Theoretical framework, the most important concepts are

- Time series of finite rank (=order of Linear Recurrent Formula)
- **Separability** (possibility to separate/extract additive components)

General tasks

- Additive components extraction (for example trend, harmonics, exp.modulated harmonics)
- **Smoothing** (self-adaptive linear filter with small *L*)
- Automatic calculation of LRF for t.s. of finite rank => prolongation of an extracted additive component => forecast of an extracted additive component
- Change-point detection

Advantages

- Model-free
- Works with non-stationary time series (constrains will be described)
- Suits for short t.s., robust to noise model etc.

- Decomposes time series into sum of additive components: $F_N = F_N^{(1)} + \ldots + F_N^{(m)}$
- Provides the information about each component

Algorithm

- 1. Trajectory matrix construction: $F_N = (f_0, \dots, f_{N-1}), \ F_N \to \mathbf{X} \in \mathbb{R}^{L \times K}$
 - (L window length, parameter)
- 2. Singular Value Decomposition (SVD): $\mathbf{X} = \sum \mathbf{X}_j$
- 3. Grouping of SVD components: $\{1, \ldots, d\} = \bigoplus I_k$,
- 4. Reconstruction by diagonal averaging: $\mathbf{X}^{(k)} \to \widetilde{F}_N^{(k)}$

$$\mathbf{X} = \begin{bmatrix} f_0 & f_1 & \dots & f_{N-L} \\ f_1 & f_2 & \dots & f_{N-L+1} \\ \vdots & \ddots & \ddots & \vdots \\ f_{L-1} & f_L & \dots & f_{N-1} \end{bmatrix}$$
$$\mathbf{X}_j = \sqrt{\lambda_j} U_j V_j^\mathsf{T}$$
$$\lambda_j - \text{eigenvalue, } U_j - \text{e.vector of } \mathbf{X} \mathbf{X}^\mathsf{T},$$
$$V_j - \text{e.vector of } \mathbf{X}^\mathsf{T} \mathbf{X}, \quad V_j = \mathbf{X}^\mathsf{T} U_j / \sqrt{\lambda_j}$$
$$\mathbf{X}^{(k)} = \sum_{j \in I_k} \mathbf{X}_j$$
$$F_N = \widetilde{F}_N^{(1)} + \dots + \widetilde{F}_N^{(m)}$$

Does exist an SVD such that it forms necessary additive component & how to group SVD components?

We said model-free, but the area of action is constrained to: span(exp * cos * Pn).

Important concepts

- $\mathfrak{L}^{(L)} = \mathfrak{L}^{(L)} = \operatorname{span}(X_1, \dots, X_K) \operatorname{the trajectory space for } F_N, X_i = (f_{i-1}, \dots, f_{i+L-2})^{\mathsf{T}}.$
 - Time series F_N is a time series of (finite) rank d (rank $(F_N) = d$), if $\forall L$ dim $\mathfrak{L}^{(L)} = d$.

Rank \leftrightarrow amount of SVD components \leftrightarrow order of LRF

- rank_L(F_N) = rank **X** \Rightarrow amount of SVD components with $\lambda_j \neq 0$ is equal to the rank.
- $F = (\dots, f_{-1}, f_0, f_1, \dots) \text{ infinite time series, then}$ $f_{i+d} = \sum_{k=1}^{d} a_k f_{i+d-k}, a_d \neq 0 \quad \Leftrightarrow \quad \text{rank}(F) = d.$

Examples of finite rank time series

- Exponentially modulated (e-m) harmonic F_N : $f_n = Ae^{\alpha n} \cos(2\pi\omega n + \phi)$.
 - e-m harmonic ($0 < \omega < 1/2$): rank = 2
 - e-m saw ($\omega = 1/2$): rank = 1
 - exponential time series ($\omega = 0$): rank = 1
 - harmonic ($\alpha = 1$): rank = 2
 - Polynomial F_N : $f_n = \sum_{k=0}^m a_k n^k$, $a_m \neq 0$: rank = m + 1

 $F_N = F_N^{(1)} + F_N^{(2)}$, window length L, traj.matrices $\mathbf{X} = \mathbf{X}^{(1)} + \mathbf{X}^{(1)}$, traj.spaces $\mathfrak{L}^{(L,1)}, \mathfrak{L}^{(L,2)}$.

 $F_N^{(1)}$ and $F_N^{(2)}$ are the *L*-separable if $\mathfrak{L}^{(L,1)} \perp \mathfrak{L}^{(L,2)}$ and $\mathfrak{L}^{(K,1)} \perp \mathfrak{L}^{(K,2)}$.

If $F_N^{(1)}$ and $F_N^{(2)}$ are separable then the SVD components of **X** can be grouped so that the first group corresponds to **X**⁽¹⁾ and the second to **X**⁽²⁾.

i.e. separability (separation of trajectory spaces) ⇔ separation of additive components Reality:

Approximate separability (approximate orthogonality of trajectory spaces)

Asymptotic separability (with $L, N \rightarrow \infty$)

Examples

	const	COS	exp	exp*cos	Pn
const		+ +	- +	- +	
COS	++	+ +	-+	-+	-+
exp	-+	-+	-+	+ +	-+
exp*cos	-+	-+	+ +	+ +	-+
Pn		-+	-+	-+	

Separability (strict, asymptotic) on some conditions

- signal is asymptotically separated from noise
- periodicity is asymptotically separated from trend

Separability conditions (and the rate of convergence) \Rightarrow rules for L setting (this problem had no solution before)

Trend – slow varying deterministic additive component.

Examples of parametric trends: exp, Pn, harmonic with large T (T > N/2).

How to identify trend SVD components

Eigenvalues

 λ_j – contribution of $F^{(j)}$ to the form of F_N ($F^{(j)}$ is reconstructed by $\sqrt{\lambda_j}U_jV_j^{\mathsf{T}}$). Trend is large \Rightarrow its SVD components are the first.

Eigenvectors

 $U_j = (u_1^{(j)}, \dots, u_L^{(j)})^{\mathsf{T}}$

Form of eigenvectors for some slow-varying time series

$$\begin{array}{c|cccc}
 f_n & u_k^{(\cdot)} \\
 e^{\alpha n} & e^{\alpha k} \\
 \sum_{m} a_m n^m & \sum_{m} b_m k^m \\
 e^{\alpha n} \cos(2\pi\omega n + \phi) & e^{\alpha k} \cos(2\pi\omega k + \psi)
\end{array}$$

Trend SVD components have slow-varying eigenvectors.

Continuation

 $F_N = (f_0, \ldots, f_{N-1})$, rank $(F_N) = d < L$, then ,typically, F_N is governed by LRF of order d.

Main variant of the continuation: recurrent continuation using LRF.

- There are the unique minimal LRF (order d) and many LRFs of order > d
- The "Caterpillar"-SSA:
 - $\mathfrak{L}^{(L)}$: an orthogonal basis (e.g. eigenvectors) \rightarrow the LRF of order L-1 (automatically)
 - deflation of LRF (considering characteristic polynomial of LRF) (can be automated)

Continuation of an additive component

 $F_N = F_N^{(1)} + F_N^{(2)}$, rank $(F_N^{(1)}) = d_1 < L$, rank $(F_N^{(1)}) = d_1 < L$. $F_N^{(1)}$ and $F_N^{(2)}$ are separable \Rightarrow we can continue them separately.

Forecast (approximate)

 $F_N = F_N^{(1)} + F_N^{(2)}$, approximate separability (for example, signal+noise or slightly distorted time series) \Rightarrow approximation of $F_N^{(1)}$ by *d*-dimension trajectory space \Rightarrow approximation by LRF.

Problem statement

 F_N is homogeneous if it is governed by some LRF with order << N.

Assume that at one time it stops following the original LRF and after a certain time period it again becomes governed by an LRF.

We want to a posteriori detect such heterogeneities (change-points) and compare somehow homogeneous partes before and after change.

Solution

F_N is governed by the LRF \Rightarrow for suff. large *N*, *L*: $\mathfrak{L}^{(L)} = \operatorname{span}(X_1, \ldots, X_K)$ is independent of *N*

Minimal LRF
$$\leftrightarrow \mathfrak{L}^{(L)}$$

 \Rightarrow LRF heterogeneities can be described in terms of corresponding lagged vectors: the perturbations force the lagged vectors to leave the space $\mathfrak{L}^{(L)}$

We can measure this distance and detect a change-point

Problem statement

Automation of manual processing of large set of similar time series (family)

Manual processing is the ideal	\Rightarrow quality in comparison with manual processing		
	\Rightarrow we can use the stated theory		

Why family?

Family processing \Rightarrow several randomly taken time series can be used for:

- testing the auto-procedure, whether it works in general (necessary condition)
- finding proper parameters of the auto-procedure for the whole family (performance optimization)

Bootstrap test of the procedure

We must know noise (residual) model (or its approximation)

- Extract trend $\widetilde{F}_N^{(T)}$ manually
- Consider $F_N \tilde{F}_N^{(T)}$ and estimate parameters of noise

Simulate noise using these parameters and generate surrogate data: $G_N = \tilde{F}_N^{(T)} + noise$

- Extract trend from surrogate data $\widetilde{G}_N^{(T)}$
- MSE($\widetilde{F}_N^{(T)}, \widetilde{G}_N^{(T)}$) a measure of procedure quality

Eigenvectors of trend SVD components have slow-varying form

Search all eigenvectors, let us assume we process an $U = (u_1, \ldots, u_L)^T$.

$$u_n = c_0 + \sum_{1 \le k \le \frac{L-1}{2}} \left(c_k \cos(2\pi nk/L) + s_k \sin(2\pi nk/L) \right) + (-1)^n c_{L/2},$$

Periodogram $\Pi(\omega), \omega \in \{k/L\}$, reflects the contribution of a harmonic with the frequency ω into the Fourier decomposition of U.

$$\Pi_{U}^{L}(k/L) = \frac{L}{2} \begin{cases} 2c_0^2, \quad k = 0, \\ c_k^2 + s_k^2, \quad 1 \leqslant k \leqslant \frac{L-1}{2}, \\ 2c_{L/2}^2, \quad L \text{ is even and } k = L/2. \end{cases}$$

Low Frequencies method

Parameter – ω_0 , upper boundary for the "low frequencies" interval

Define $C(U) = \frac{\sum_{\mathbf{0} \leq \omega \leq \omega_{\mathbf{0}}} \mathbf{\Pi}(\omega)}{\sum_{\mathbf{0} \leq \omega \leq \mathbf{0.5}} \mathbf{\Pi}(\omega)}, \omega \in k/L, k \in \mathbb{Z}$ – contribution of LF frequencies

 $C(U) \ge C_0 \Rightarrow$ eigenvector U corresponds to a trend, where $C_0 \in (0, 1)$ – the threshold

Examining the periodogram of an original time series

Periodicity with period T exists $\Rightarrow \omega_0 < 1/T$

55

0.08 0.16

0.24

0.32

0.40

0.48 0

121 145 169 0

73 97

Exp+cos and its periodogram, $f_n = e^{0.01*n} + \cos(2*\pi*n/12)$ $0.3 < \omega_0 < 0.8$

Pn+cos and its periodogram, $f_n = (x - 10)(x - 40)(x - 60)(x - 95)$ $\cos(2 * \pi * n/12)$ $\omega_0 \approx 0.7 < 0.8$

> Traffat (left), its periodogram (center) and periodogram of normalized time series (right) $0.3 < \omega_0 < 0.8$

0.08 0.16 0.24 0.32 0.40 0.48

Choice of \mathcal{C}_0 , measure of quality of trend extraction

If we have a measure \mathcal{R} of quality of trend extraction $\Rightarrow \mathcal{C}_{opt} = \operatorname{argmin}_{\mathcal{C}_0 \in [0,1]} \mathcal{R}$

Measure

The natural measure of quality is $MSE(F^{(T)}, \tilde{F}_0^{(T)})$, where $F^{(T)}$ is the real trend and $\tilde{F}_0^{(T)}$ is the extracted trend (with C_0), but it requires unknown $F^{(T)}$.

We propose
$$\mathcal{R}(\mathcal{C}_0) = \frac{\mathcal{C}(F - \widetilde{F}_0^{(T)})}{\mathcal{C}(F)}, \quad \widetilde{F}_0^{(T)}$$
 is extracted with \mathcal{C}_0

 $\mathcal{R}(\mathcal{C}_0)$ is consistent with $\mathsf{MSE}(F^{(T)},\widetilde{F}^{(T)}_0)$ in such a way:

it behaves like MSE

by means of $\mathcal{R}(\mathcal{C}_0)$ we can define $\mathcal{C}_{opt} = \operatorname{argmin}_{\mathcal{C}_0} \mathsf{MSE}(F^{(T)}, \widetilde{F}_0^{(T)})$

 $\Pi_{N}^{\mathsf{F}}(\omega)$

0.4

0.5

1

Model example, Pn+noise

$$f_n = (n - 10)(n - 70)(n - 160)^2 \cdot (n - 290)^2 / 1e^{11} + N(0, 25),$$

$$N = 329, L = N/2 = 160,$$

$$\omega_0 = 0.07$$

$$C_0 = 1 \dots 0.9 : \text{ graphics res}$$

flect stepwise identification of trend SVD components \Rightarrow considerable changes of $\mathsf{MSE}(F^{(T)}, \widetilde{F}_0^{(T)})$ $C_{\text{opt}} < 0.9 (\approx 0.9)$

Real-life example, Massachusetts unemployment

Massachusetts unemployment (thousands, monthly), from economagic.com

N = 331, L = N/2 = 156,

 $\omega_0 = 0.05 < 1/12 = 0.08(3)$

= 1...0.75 : graphics re- \mathcal{C}_{0} flect stepwise identification of trend SVD components \Rightarrow considerable changes of $\mathsf{MSE}(F^{(T)}, \widetilde{F}_0^{(T)})$ $C_{\rm opt} < 0.75 (\approx 0.75)$

I. We have a family of similar time series $\mathfrak{F} = \{F_N\}$.

II. Take randomly (or somehow otherwise) a test subset \mathfrak{T} of several characteristic time series.

On these time series perform:

- 1. Extract trends manually
- 2. Examine periodograms of the time series and choose ω_0
- 3. Check if the proposed auto-procedure works in general on such time series:
 - Bootstrap comparison: how trends automatically extracted from surrogate data are close to manually extracted trends If they are sufficiently close then auto-procedure is accepted
 - It requires knowledge of noise model but we can take a simple one as a first approximation
- 4. Estimate $C_{opt}^{(F)}$ for each time series and take a minimum from them

$$\mathcal{C}_{\mathsf{opt}}^{(\mathfrak{F})} = \min_{F \in \mathfrak{T}} \mathcal{C}_{\mathsf{opt}}^{(F)}$$

as the optimal \mathcal{C}_0 for the family \mathfrak{F}

(this optimization step can be skipped, then during processing of \mathfrak{F} we have to estimate \mathcal{C}_{opt} for each time series)

III. Process all time series from the family $\mathfrak F$