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History – Present

Origins of the “Caterpillar”-SSA approach

¥ Singular System Analysis (Broomhead)

Dynamic Systems, method of delays for analysis of attractors [middle of 80’s],

¥ Singular Spectrum Analysis (Vautard, Ghil, Fraedrich)

Geophysics/meteorology – signal/noise enhancing, signal detection in red noise (Monte Carlo SSA) [90’s],

¥ “Caterpillar” (Danilov, Zhigljavsky, Solntsev, Nekrutkin, Golyandina)

Principal Component Analysis for time series [end of 90’s],

Present
¥ Automation: papers are published, see http://www.pdmi.ras.ru/∼theo/autossa/ (Alexandrov, Golyandina)

¥ Change-point detection (Golyandina, Nekrutkin, Zhigljavsky)

¥ Missed observations: a paper is published, a software is on www.gistatgroup.com (Golyandina, Osipov)

¥ 2-channel SSA: a paper is published, see www.gistatgroup.com (Golyandina, Stepanov)

¥ Some generalizations

Future
¥ 2D, online “Caterpillar”-SSA...
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Tasks and advantages

“Caterpillar”-SSA kernel

Theoretical framework, the most important concepts are

¥ Time series of finite rank (=order of Linear Recurrent Formula)

¥ Separability (possibility to separate/extract additive components)

General tasks

¥ Additive components extraction (for example trend, harmonics, exp.modulated harmonics)

¥ Smoothing (self-adaptive linear filter with small L)

¥ Automatic calculation of LRF for t.s. of finite rank => prolongation of an extracted additive component =>
forecast of an extracted additive component

¥ Change-point detection

Advantages

¥ Model-free

¥ Works with non-stationary time series (constrains will be described)

¥ Suits for short t.s., robust to noise model etc.
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“Caterpillar”-SSA basic algorithm

¥ Decomposes time series into sum of additive components: FN = F
(1)
N + . . . + F

(m)
N

¥ Provides the information about each component

Algorithm

1. Trajectory matrix construction:

FN = (f0, . . . , fN−1), FN → X ∈ R
L×K

(L – window length, parameter)

X =




f0 f1 . . . fN−L

f1 f2 . . . fN−L+1

...
. . .

. . .
...

fL−1 fL . . . fN−1




2. Singular Value Decomposition (SVD):
X =

∑
Xj

Xj =
√

λjUjV T
j

λj– eigenvalue, Uj– e.vector of XX
T,

Vj– e.vector of XT
X, Vj = X

TUj/
√

λj

3. Grouping of SVD components:
{1, . . . , d} =

⊕
Ik,

X
(k) =

∑
j∈Ik

Xj

4. Reconstruction by diagonal averaging:

X
(k) → F̃

(k)
N

FN = F̃
(1)
N + . . . + F̃

(m)
N

Does exist an SVD such that it forms necessary additive component & how to group SVD components?
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974 (Abraham, Redolter. Stat. Methods for Forecasting, 1983)

N=180, L=60
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974 (Abraham, Redolter. Stat. Methods for Forecasting, 1983)

N=180, L=60 SVD components: 1, 4, 5
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Example: trend and seasonality extraction

Traffic fatalities. Ontario, monthly, 1960-1974 (Abraham, Redolter. Stat. Methods for Forecasting, 1983)

N=180, L=60 SVD components: 1, 4, 5

SVD components with estimated periods:
2-3 (T=12), 6-7(T=6), 8(T=2), 11-12(T=4), 13-14(T=2.4)
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Finite rank time series

We said model-free, but the area of action is constrained to: span(exp ∗ cos ∗ Pn).

Important concepts

¥ L
(L) = L

(L) = span(X1, . . . , XK) – the trajectory space for FN , Xi = (fi−1, . . . , fi+L−2)
T.

¥ Time series FN is a time series of (finite) rank d (rank(FN ) = d), if ∀L dim L
(L) = d.

Rank ↔ amount of SVD components ↔ order of LRF
¥ rankL(FN ) = rank X ⇒ amount of SVD components with λj 6= 0 is equal to the rank.

¥ F = (. . . , f−1, f0, f1, . . .) – infinite time series, then

fi+d =
∑ d

k=1 akfi+d−k, ad 6= 0 ⇔ rank(F ) = d.

Examples of finite rank time series

¥ Exponentially modulated (e-m) harmonic FN : fn = Aeαn cos(2πωn + φ).
• e-m harmonic (0 < ω < 1/2): rank = 2

• e-m saw (ω = 1/2): rank = 1

• exponential time series (ω = 0): rank = 1

• harmonic (α = 1): rank = 2

¥ Polynomial FN : fn =
∑m

k=0 aknk, am 6= 0: rank = m + 1
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Separability

FN = F
(1)
N + F

(2)
N , window length L, traj.matrices X = X

(1) + X
(1), traj.spaces L

(L,1), L
(L,2).

F
(1)
N and F

(2)
N are the L-separable if L

(L,1)⊥ L
(L,2) and L

(K,1)⊥ L
(K,2).

If F
(1)
N and F

(2)
N are separable then the SVD components of X can be grouped so that the first group corresponds

to X
(1) and the second to X

(2).

i.e. separability (separation of trajectory spaces) ⇔ separation of additive components

Reality:

¥ Approximate separability (approximate orthogonality of trajectory spaces)

¥ Asymptotic separability (with L, N → ∞)

Examples
Separability (strict, asymptotic) on some conditions

const cos exp exp*cos Pn

const - - + + - + - + - -
cos + + + + - + - + - +
exp - + - + - + + + - +

exp*cos - + - + + + + + - +
Pn - - - + - + - + - -

¥ signal is asymptotically separated from noise

¥ periodicity is asymptotically separated from trend

Separability conditions (and the rate of convergence) ⇒ rules for L setting (this problem had no solution before)
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General trend extraction

Trend – slow varying deterministic additive component.

Examples of parametric trends: exp, Pn, harmonic with large T (T > N/2).

How to identify trend SVD components

¥ Eigenvalues
λj – contribution of F (j) to the form of FN (F (j) is reconstructed by

√
λjUjV T

j ).

Trend is large ⇒ its SVD components are the first.

¥ Eigenvectors

Uj = (u
(j)
1 , . . . , u

(j)
L )T

Form of eigenvectors for some slow-varying time series

fn u
(·)
k

eαn eαk

∑
m amnm ∑

m bmkm

eαn cos(2πωn + φ) eαk cos(2πωk + ψ)

Trend SVD components have slow-varying eigenvectors.
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Continuation and forecast

Continuation
FN = (f0, . . . , fN−1), rank(FN ) = d < L, then ,typically, FN is governed by LRF of order d.

Main variant of the continuation: recurrent continuation using LRF.

¥ There are the unique minimal LRF (order d) and many LRFs of order > d

¥ The “Caterpillar”-SSA:

• L
(L) : an orthogonal basis (e.g. eigenvectors) → the LRF of order L − 1 (automatically)

• deflation of LRF (considering characteristic polynomial of LRF) (can be automated)

Continuation of an additive component

FN = F
(1)
N + F

(2)
N , rank(F (1)

N ) = d1 < L, rank(F (1)
N ) = d1 < L.

F
(1)
N and F

(2)
N are separable ⇒ we can continue them separately.

Forecast (approximate)

FN = F
(1)
N + F

(2)
N , approximate separability (for example, signal+noise or slightly distorted time series) ⇒

approximation of F
(1)
N by d-dimension trajectory space ⇒ approximation by LRF.
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Change-point detection in brief

Problem statement

FN is homogeneous if it is governed by some LRF with order << N .

Assume that at one time it stops following the original LRF and after a certain time period it again becomes
governed by an LRF.

We want to a posteriori detect such heterogeneities (change-points) and compare somehow homogeneous partes
before and after change.

Solution
¥ FN is governed by the LRF ⇒ for suff. large N, L: L

(L) = span(X1, . . . , XK) is independent of N

¥ Minimal LRF ↔ L
(L)

⇒ LRF heterogeneities can be described in terms of corresponding lagged vectors: the perturbations force the

lagged vectors to leave the space L
(L)

We can measure this distance and detect a change-point
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Automation of time series processing

Problem statement
Automation of manual processing of large set of similar time series (family)

Manual processing is the ideal ⇒ quality in comparison with manual processing
⇒ we can use the stated theory

Why family?
Family processing ⇒ several randomly taken time series can be used for:

¥ testing the auto-procedure, whether it works in general (necessary condition)

¥ finding proper parameters of the auto-procedure for the whole family (performance optimization)

Bootstrap test of the procedure
We must know noise (residual) model (or its approximation)

¥ Extract trend F̃
(T )
N manually

¥ Consider FN − F̃
(T )
N and estimate parameters of noise

¥ Simulate noise using these parameters and generate surrogate data: GN = F̃
(T )
N + noise

¥ Extract trend from surrogate data G̃
(T )
N

¥ MSE(F̃ (T )
N , G̃

(T )
N ) – a measure of procedure quality
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Auto-method of trend extraction

Eigenvectors of trend SVD components have slow-varying form

Search all eigenvectors, let us assume we process an U = (u1, . . . , uL)T.

un = c0 +
∑

16k6
L−1

2

(
ck cos(2πnk/L) + sk sin(2πnk/L)

)
+ (−1)

n
cL/2,

Periodogram Π(ω), ω ∈ {k/L}, reflects
the contribution of a harmonic with the frequency ω

into the Fourier decomposition of U .

ΠL
U (k/L) = L

2





2c0
2, k = 0,

ck
2 + sk

2, 1 6 k 6 L−1
2 ,

2cL/2
2, L is even and k = L/2.

Low Frequencies method

+ examples

Parameter – ω0, upper boundary
for the “low frequencies” interval

Define C(U) =

∑
06ω6ω0

Π(ω)∑
06ω60.5 Π(ω)

, ω ∈ k/L, k ∈ Z – contribution of LF frequencies

C(U) > C0 ⇒ eigenvector U corresponds to a trend, where C0 ∈ (0, 1) – the threshold

AutoSSA: http://www.pdmi.ras.ru/∼theo/autossa/ – p. 12/16



Choice of ω0

Examining the periodogram of an original time series

¥ Periodicity with period T exists ⇒ ω0 < 1/T

Examples

Exp+cos and its periodogram,

fn = e0.01∗n + cos(2 ∗ π ∗ n/12)
0.3 < ω0 < 0.8

Pn+cos and its periodogram,
fn = (x − 10)(x − 40)(x − 60)(x − 95)

cos(2 ∗ π ∗ n/12)
ω0 ≅ 0.7 < 0.8

Traffat (left),
its periodogram (center) and
periodogram of normalized
time series (right)

0.3 < ω0 < 0.8
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Choice of C0, measure of quality of trend extraction

If we have a measure R of quality of trend extraction ⇒ Copt = argmin
C0∈[0,1]R

Measure
The natural measure of quality is MSE(F (T ), F̃

(T )
0 ), where F (T ) is the real trend and F̃

(T )
0 is the extracted

trend (with C0), but it requires unknown F (T ).

We propose R(C0) =
C(F − F̃

(T )
0 )

C(F )
, F̃

(T )
0 is extracted with C0

R(C0) is consistent with MSE(F (T ), F̃
(T )
0 ) in such a way:

¥ it behaves like MSE

¥ by means of R(C0) we can define Copt = argmin
C0

MSE(F (T ), F̃
(T )
0 )
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Examples of Copt estimation

Model example, Pn+noise

fn = (n − 10)(n − 70)(n − 160)2·

(n − 290)2/1e11 + N(0, 25),

N = 329, L = N/2 = 160,

ω0 = 0.07

C0 = 1 . . . 0.9 : graphics re-
flect stepwise identification of trend SVD
components ⇒ considerable changes of

MSE(F (T ), F̃
(T )
0 )

Copt < 0.9(≈ 0.9)

Real-life example, Massachusetts unemployment

Massachusetts unemployment (thousands,
monthly), from economagic.com

N = 331, L = N/2 = 156,

ω0 = 0.05 < 1/12 = 0.08(3)

C0 = 1 . . . 0.75 : graphics re-
flect stepwise identification of trend SVD
components ⇒ considerable changes of

MSE(F (T ), F̃
(T )
0 )

Copt < 0.75(≈ 0.75)
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Final slide: to sum up

I. We have a family of similar time series F = {FN}.

II. Take randomly (or somehow otherwise) a test subset T of several characteristic time series.

On these time series perform:

1. Extract trends manually

2. Examine periodograms of the time series and choose ω0

3. Check if the proposed auto-procedure works in general on such time series:

¥ Bootstrap comparison: how trends automatically extracted from surrogate data are close to
manually extracted trends
If they are sufficiently close then auto-procedure is accepted

¥ It requires knowledge of noise model but we can take a simple one as a first approximation

4. Estimate C
(F )
opt for each time series and take a minimum from them

C
(F)
opt = min

F∈T
C
(F )
opt

as the optimal C0 for the family F

(this optimization step can be skipped, then during processing of F we have to estimate Copt for each time series)

III. Process all time series from the family F
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