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Signal approximation

FN = (f0, . . . , fN−1) : fn = sn + εn,

SN = (s0, . . . , sN−1) – determinate signal,

(ε0, ε1, ε2, . . . , εN−1) – residual (noise).

Signal approximation – in mean-square terms.

We want to approximation such signals:

¥ non-stationary,

¥ without information about its parametric model,

¥ and more, without knowledge of its structure.
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“Caterpillar”-SSA approach

The method accomplishes such tasks:

¥ finding trend of different resolution,

¥ smoothing,

¥ seasonality extraction,

¥ extraction periodicities with changing amplitudes,

¥ forecast,

¥ change-point detection.

History:

¥ USA, UK – SSA (Singular Spectrum Analysis),

¥ Russia – “Caterpillar”-SSA.

Advantages:

¥ doesn’t require the knowledge of parametric model of time series,

¥ processes wide spectrum of real-life time series,

¥ match up for non-stationary time series,

¥ work with such natural components as modulated harmonics.
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“Caterpillar”-SSA: base algorithm

¥ Decomposition into sum of components: FN = F
(1)
N + . . . + F

(m)
N .

¥ Gives the information about each component.

Algorithm:

1. Trajectory matrix

construction: FN → X ∈ R
L×K

(L – window length, parameter)
X =




f0 f1 . . . fN−L

f1 f2 . . . fN−L+1

.

..
. . .

. . .
.
..

fL−1 fL . . . fN−1




.

2. Singular Value Decomposition
(SVD): X =

∑
Xj ,

Xj =
√

λjUjV T

j ,

λj – e.val. S = XX
T, Uj – e.v-r S,

Vj – e.v-r ST, Vj = XTUj

√
λj .

3. Components grouping
SVD: {1, . . . , d} =

⊕
Ik,

X(k) =
∑

j∈Ik
Xj .

4. Reconstruction by diagonal

averaging: X
(k) → F̃N

(k)
.
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Grouping

Common case: FN = F
(1)
N + F

(2)
N I1 : X

(1) ↔ F̃N

(1)
.

Grouping is possible, if:

1. F
(1)
N – has finite amount of components,

2. F
(1)
N is separable from a residual.

Approximation case:

FN = F
(1)
N + F

(2)
N

I1 : X
(1) ↔ F̃N

(1)
–

approximation
of a signal.

signal, noise

1. Every linear combination of multiplication of exponents,
e-m harmonics and polynomials has finite amount of components.

2. Asymptotic separability examples:

¥ A determinate signal is asympt. separable from a white noise.

¥ A periodicity is asympt. separable from a trend.
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Identification

Identification – choosing of components during grouping.

Exponential trend: fn = Aeαn.

¥ it generates one SVD component,

¥ eigenvector:

U = (u1, . . . , uL)T : uk = Ceαk.

(“exponential” form with the same α)

Exponentially-modulated harmonic: fn = Aeαn cos(2πωn).

¥ it generates two SVD components,

¥ eigenvectors:

U1 = (u
(1)
1 , . . . , u

(1)
L )T : u

(1)
k = C1e

αk cos(2πωk).

U2 = (u
(2)
1 , . . . , u

(2)
L )T : u

(2)
k = C2e

αk sin(2πωk).

(“exponentially-modulated” form with the same α и ω)
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Trend: low frequencies method

Investigate every eigenvector Uj . Let us take U = (u1, . . . , uL)T.

LOW FREQUENCIES METHOD

¥ un = c0 +
∑

16k6 L−1

2

(
ck cos(2πnk/L) + sk sin(2πnk/L)

)
+ (−1)ncL/2,

¥ Periodogram:

ΠL
U (k/L) = L

4





2c02, k = 0,

ck
2 + sk

2, 1 6 k 6 L−1
2

,

2cL/2
2, L – even and k = L/2.

ΠL
U (ω), ω ∈ {k/L}, reflects the contribution of harmonic

with frequency ω into the form of U .

¥ Parameter: ω0 – upper boundary for the “low frequencies” interval

C(U) =

∑
06k6Lω0

Π
L

U(k/L)∑
06k6L/2 Π

L

U(k/L)
– contribution of LF frequencies.

C(U) > C0 ⇒ e. v-r U corresponds to a trend.

(C0 ∈ (0, 1) – threshold)
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LF method: optimal thresholds values

This slide isn’t translated and omitted due to its obsoleteness.
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Periodicity: Fourier method

Let us investigate sequences of eigenvectors elements Uj ,Uj+1 for all pairs of
neighbor components.

FOURIER METHOD

¥ Stage 1. Check “maximal” frequencies: θj = arg mink ΠM
Uj

(k/M),

M |θj − θj+1| 6 s0 ⇒ the pair (j, j + 1) is a “harmonical” pair.

¥ Stage 2. Check the form of periodogram:

ρ(j,j+1) = 1
2

maxk

(
ΠM

Uj
(k/M) + ΠM

Uj+1
(k/M)

)
, for a harm. pair

ρ(j,j+1) = 1.

ρ(j,j+1) > ρ0 ⇒ the pair (j, j + 1) corresponds to a harmonic.

(ρ0 ∈ (0, 1) is the threshold.)
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Fourier method: optimal thresholds values

This slide isn’t translated and omitted due to its obsoleteness.
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Real-life situation

This slide isn’t translated and omitted due to its obsoleteness.
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Conclusion

Monthly data: traffic fatalities, 1960-1974, Ontario.

Trend components numbers: 1, 4, 5.
Seasonality components numbers: 2, 3, 6-8, 11-14.
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