Skip to main content
Home

St. Petersburg Department
of Steklov Mathematical Institute
of Russian Academy of Sciences

27 Fontanka, St. Petersburg, Russia

Main menu

  • Institute structure
    • Administration
    • EIMI
    • Laboratories
    • Researchers
    • Academic council
    • Center of Research and Education
    • Publishing Department
    • Contacts
  • Activities
    • Conferences
    • Seminars
    • Dissertation Councils
    • Journal "Algebra and Analysis"
    • Journal "Zapiski Nauchnykh Seminarov POMI"
    • Preprints (partially in Russian)
    • Publications
  • Search
  • Resources
    • Video records
    • History of the Institute
    • Digital libraries (in Russian)
    • Links (in Russian)
    • Former Employees
    • Remembering Olga Ladyzhenskaya
    • PDMI Library

группы перестановок

Илья Николаевич Пономаренко

лаборатория математической логики и дискретной математики
Position: 
Leading Researcher
Scientific Degree: 
Doctor of Sciences
Email: 
inp [at] pdmi.ras.ru
Phone Number: 
+7 (812) 310-73-17
Homepage: 
http://www.pdmi.ras.ru/~inp/
Scientific Interests: 
алгебраическая комбинаторика
группы перестановок
теория сложности вычислений

Краткая биография:

1979 - Ленинградский государственный университет, мат-мех, математик-преподаватель;

1990 - настоящее время, ПОМИ РАН.

Избранные публикации:

  1. I. Ponomarenko, The isomorphism problem for classes of graphs that are invariant with respect to contraction, Zapiski Nauchnykh Semin. LOMI, 174, 147–177 (1988).
  1. S. Evdokimov and I. Ponomarenko, Recognizing and isomorphism testing circulant graphs in polynomial time, Algebra Analiz, 15, No. 6, 1–34 (2003).
  1. S. Kiefer, P. Schweitzer, and I. Ponomarenko, The Weisfeiler-Leman dimension of planar graphs is at most 3, Journal of the ACM, 66, No. 6, Article 44 (2019).
  1. M. Muzychuk and I. Ponomarenko, Testing isomorphism of circulant objects in polynomial time, J. Combin. Theory, A169, 105128 (2020).
  1.  E. A. O’Brien, I. Ponomarenko, A. V. Vasil’ev, E. Vdovin The 3-closure of a solvable permutation group is solvable, 607, J. Algebra, no. 1, 618–637 (2022).

  • Русский Русский
  • English English