References beginning with P

  1. $ \star$ P. Papi and C. Procesi (assisted by P. Cellini), Invarianti di nodi, survey monograph, to appear in Quaderni Dell'U.M.I.

  2. $ \star$ B. Patureau-Mirand, Caractères sur l'algèbre de diagrammes trivalents $ \Lambda$, Geometry and Topology 6-20 (2002) 565-607, arXiv:math.GT/0107137.

  3. $ \star$ B. Patureau-Mirand, Invariant d'entrelacs associé à la représentation des spineurs de $ so(7)$, Université Paris 7 preprint, July 2001, arXiv:math.GT/0107138.

  4. $ \star$ B. Patureau-Mirand, Non injectivity of the ``hair'' map, Université Paris 7 preprint, February 2002, arXiv:math.GT/0202065.

  5. $ \star$ B. Patureau-Mirand, Quantum link invariant from the Lie superalgebra $ D(2,1,\alpha)$, Université de Bretagne-Sud preprint, April 2004, arXiv:math.GT/0404548.

  6. $ \star$ R. Picken, Knot invariants from a Kohno-Kontsevich integral for braids, q-alg/9707010 preprint, July 1997.

  7. $ \star$ S. Piunikhin, Weights of Feynman diagrams, link polynomials and Vassiliev knot invariants, Jour. of Knot Theory and its Ramifications 4(1) (1995) 165-188.

  8. $ \star$ S. Piunikhin, Combinatorial expression for universal Vassiliev link invariant, Comm. Math. Phys. 168-1 1-22.

  9. $ \star$ S. Piunikhin, Addendum to the paper ``Combinatorial expression for universal Vassiliev link invariant, November 1993, preprint.

  10. $ \star$ S. Podkorytov, Vassiliev invariants of smooth submanifolds, Abstract of a talk (1998, in Russian).

  11. $ \star$ S. Podkorytov, On the maps of a sphere into a simply connected space, Zapiski POMI, v. 329 (2005), pp. 159-194 (in Russian).

  12. $ \star$ S. Poirier, Rationality results for the configuration space integral of knots, Université de Grenoble I preprint, December 1998. See also math.GT/9901028.

  13. $ \star$ S. Poirier, The limit configuration space integral for tangles and the Kontsevich integral, Université de Grenoble I preprint, February 1999, arXiv:math.GT/9902058.

  14. $ \star$ S. Poirier, The configuration space integral for links and tangles in $ {\mathbb{R}}^3$, Algebraic and Geometric Topology, 2-40 (2002) 1001-1050, arXiv:math.GT/0005085.

  15. $ \star$ S. Poirier, A note on the configuration space integral, preprint, January 2002.

  16. $ \star$ M. Polyak, Link homotopy and Vassiliev knot invariants, IHES preprint, June 1996.

  17. $ \star$ M. Polyak, On Milnor's triple linking number, Comp. Rend. A. S. Paris 325 Serie I (1997), 77-82.

  18. $ \star$ M. Polyak, Skein relations and Gauss diagram formulas for Milnor's $ \mu$-invariants, Tel Aviv University preprint, December 1998.

  19. $ \star$ M. Polyak, On the algebra of arrow diagrams, Let. Math. Phys. 51 (2000) 275-291.

  20. $ \star$ M. Polyak, Feynman diagrams for pedestrians and mathematicians, Technion preprint, June 2004, arXiv:math.GT/0406251.

  21. $ \star$ M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. Notes 11 (1994) 445-454.

  22. $ \star$ M. Polyak and O. Viro, On the Casson knot invariant, Jour. of Knot Theory and its Ramifications, to appear, arXiv:math.GT/9903158.

  23. $ \star$ V. V. Prasolov and A. B. Sossinsky, Knots, links, braids and 3-manifolds: an introduction to the new invariants in low-dimensional topology, Translations of Mathematical Monographs 154, American Mathematical Society 1997.

  24. $ \star$ J. H. Przytycki, Vassiliev-Gusarov skein modules of 3-manifolds and criteria for periodicity of knots, in Low-Dimensional Topology, Knoxville 1992, 143-162, International Press, Cambridge MA, 1994.

  25. $ \star$ J. H. Przytycki, Symmetric knots and billiard knots, Chapter 20 of Ideal Knots, Series on Knots and Everything 19, Eds. A. Stasiak, V. Katrich and L. Kauffman, World Scientific (1999) 374-414, arXiv:math.GT/0405151.

  26. $ \star$ J. H. Przytycki, Graphs and links, arXiv:math.GT/0601227.

  27. $ \star$ J. H. Przytycki and A. S. Sikora, Topological insights from the Chinese rings, Proc. Amer. Math. Soc., to appear, arXiv:math.GT/0007134.

  28. $ \star$ J. H. Przytycki and K. Taniyama, The Kanenobu-Miyazawa conjecture and the Vassiliev-Gusarov skein modules based on mixed crossings, Proc. Amer. Math. Soc. 129 (2001) 2799-2802.

Sergei DUZHIN 2013-07-04