This is a counter to spy on visitors

free counter

Here are
links to
Tatjana Mneva
Pavel Mnev

This is my drawing for the paper of Vershik and Gershkovich.
Here is my writing. I have not so much writing, sorry.
Nikolai Mnev, "Note on local combinatorial formula for Euler class of spherical bundle as an invariant of chains of combinatorial subdivisions"
N. Mnev, G. Sharygin, "On local combinatorial formulas for Chern classes of triangulated circle bundle"
N. Mnev, G. Sharygin, "Note on electric circuits and local combinatorial formula for Euler class of vector bundles"
Nikolai Mnev, "A local combinatorial formula for the Chern class of a triangulated $S^1$ bundle in terms of shellings" arXiv:1108.4733
N. Mnev
On D.K. Biss' papers "The homotopy type of the matroid Grassmannian" and "Oriented matroids, complex manifolds, and a combinatorial model for BU" arXiv:0709.1291 [math.CO]
( As for March 2009, Daniel's errata are accepted for publication. In Annals. I have heard that it will be published at July 2009. In Advances, see also )

"N. Mnev "Combinatorial fiber-bundles and fragmentation of fiberwise homeomorphism" Zapiski Nauchnyh Seminarov POMI ,v344, p 56-173, 2007 (Russian)
arXiv:0708.4039 [math.GT] (English). English verision is published in Journal of Mathematical Sciences Vol 145 No 3, 2007.

N. Mnev "Tangent bundle and Gauss functor of a combinatorial manifold" math.GT/0609257

Correction on announcement:
L.Anderson, N.Mnev "Triangulations of manifolds and combinatorial bundle theory: announcement",
Zap. Nauchn. Sem. POMI v. 267 (2000)

N. Mnev "On the Topology of Cycles in Pseudolinear Programs"
Zap. Nauchn. Sem POMI v. 280 (2001)

L.Anderson, N.Mnev "Triangulations of manifolds and combinatorial bundle theory: announcement", 
Zap. Nauchn. Sem. POMI v. 267 (2000)

H. Lombardi, N. Mnev and M.-F. Roy, The Positivstellensatz and small deduction rules for
systems of inequalities, Math. Nachr. {\bf 181} (1996), 245--259; MR 97h:14077

A. I. Barvinok, A. M. Vershik and N. E. Mn\"ev, Topology of configuration spaces, of convex polyhedra and of representations of lattices, (Russian) Trudy Mat. Inst. Steklov. {\bf 193} (1992), ; ; translation in Proc. Steklov Inst. Math. {\bf 1993}, no.~3

N. E. Mn\"ev and G. M. Ziegler, Combinatorial models for the finite-dimensional
Grassmannians, Discrete Comput. Geom. {\bf 10} (1993), no.~3, 241--250; MR 94g:52016

N. E. Mn\"ev and J. Richter-Gebert, Two constructions of oriented matroids with disconnected extension space, Discrete Comput. Geom. {\bf 10} (1993), no.~3, 271--285;

N. Mn\"ev, The universality theorem on the oriented matroid stratification of the space
of real matrices, in {\it Discrete and computational geometry (New Brunswick, NJ,
1989/1990)}, 237--243, Amer. Math. Soc., Providence, RI, Providence, RI, 1991; MR

N. E. Mn\"ev, The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties
, in {\it Topology and geometry---Rohlin
Seminar}, 527--543, Lecture Notes in Math., 1346, Springer, Berlin-New York, Berlin,
1988; MR 90a:52013

Н.Е. Мнeв, Топология многообразий комбинатрных типов проективных конфигураций
и выпуклых многогранников, кандидатская диссертация, 116 стр., Ленинград, 1986
(N. E. Mn\"ev, The topology of configuration varieties and convex polytopes varieties,
PHD thesis, 116 pp., Leningrad, 1986) (Russian, scaned typewritten manuscript 4,7MB)

N. E. Mn\"ev, Varieties of combinatorial types of projective configurations and convex
polyhedra, Dokl. Akad. Nauk SSSR {\bf 283} (1985), no.~6, 1312--1314; MR 87f:52010

N. E. Mn\"ev, The structure of the set of Pareto-critical points of a smooth mapping,
Uspekhi Mat. Nauk {\bf 40} (1985), no.~6(246), 151--152; MR 87c:58032

N. E. Mn\"ev, On the realizability over fields of the combinatorial types of convex
polytopes, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) {\bf 123}
(1983), 203--207; MR 84m:52012

Also managing

Here is a brief history of the universality theorem for moduli spaces of line arrangements

Here are some pictures related to my last lovely toy -- the tangent bundle of a combinatorial manifold. It has a canonical combinatorial manifold structure! For me it was a great surprise. Imagine: a convex polytope has a canonical cellular structrure on its tangent bundle! Just simplex has! Triangle! Where is applause?

Research interests: to draw some pictures,
like this (warning: Cinderella 1,4M Java applet inside!):

Senior Researcher, Laboratory of representation theory and computational mathematics,
Steklov Institute of Mathematics at St.Petersburg,
27 Fontanka
St.Petersburg 191011
e-mail: mnev /at/ pdmi /dot/ ras /dot/ ru

Nikolai Mnev
Николай Мнёв

For Googlers:

I am not producing inflatable boats
Яне имею никакого отношения к надувным лодкам