next up previous
Next: Exercises Up: 2 A Real Algebraic Previous: 2.7 Rokhlin's Complex Orientation

2.8 Complex Schemes of Degree $ \le 5$

As it was promised in Section 2.5, we can prove now that only schemes realized in Figures 17, 18 and 19 are realizable by curves of degree 3, 4 and 5, respectively. For reader's convinience, I present here a list of all these complex schemes in Table 5.

Table 5:
$ m$ Complex schemes of nonsingular plane curves of degree $ m$
1
$ \langle J\rangle^1_I$  
2
$ \langle1\rangle^2_I$  
  $ \langle0\rangle^2_{II} $
3
$ \langle J\amalg 1^-\rangle^3_I$  
  $ \langle J\rangle^3_{II}$
4
$ \langle 4\rangle^4_{I}$  
  $ \langle 3\rangle^4_{II}$
$ \langle 1\langle 1^-\rangle\rangle^4_{I}$ $ \langle2\rangle^4_{II}$
  $ \langle 1\rangle^4_{II}$
  $ \langle0\rangle^4_{II}$
5
$ J\amalg 3^+\amalg3^-\rangle_{I}^5$  
  $ \langle J\amalg5\rangle^5_{II}$
$ \langle J\amalg1^+\amalg3^-\rangle_{I}^5$ $ \langle J\amalg
4\rangle^5_{II}$
  $ \langle J\amalg 3\rangle^5_{II}$
$ \langle J\amalg1^-\langle 1^-\rangle\rangle^5_{I}$ $ \langle J\amalg
2\rangle^5_{II}$
  $ \langle J\amalg 1\rangle^5_{II}$
  $ \langle
J\rangle^5_{II}$

Degree 3. By Harnack's inequality, the number of components is at most 2. By 1.3.B a curve of degree 3 is one-sided, thereby the number of components is at least 1. In the case of 1 component the real scheme is $ \langle J\rangle$, and the type is II by Klein's congruence 2.6.C. In the case of 2 components the type is I by 2.6.B. The real scheme is $ \langle J\amalg 1\rangle$. Thus we have 2 possible complex schemes: $ \langle J\amalg
1^-\rangle_I^3$ (realized above) and $ \langle J \amalg 1^+ \rangle_I^3$. For the first one $ \int (i_{\mathbb{R}A}(x))^2 d\chi(x)=9/4$ and for the second $ \int
(i_{\mathbb{R}A}(x))^2 d\chi(x)=1/4$. Since the right hand side of the complex orientation formula is $ m^2/4$ and $ m=3$, only the first possibility is realizable.$ \qedsymbol$

Degree 4. By Harnack's inequality the number of components is at most 4. We know (see 1.4) that only real schemes $ \langle 0\rangle$, $ \langle 1\rangle$, $ \langle 2\rangle$, $ \langle1\langle1 \rangle\rangle$, $ \langle3 \rangle$ and $ \langle 4\rangle$ are realized by nonsingular algebraic curves of degree 4. From Klein's congruence 2.6.C it follows that the schemes $ \langle 1\rangle$ and $ \langle3 \rangle$ are of type II. The scheme $ \langle 0\rangle$ is of type II by 2.6.A. By 2.6.B $ \langle 4\rangle$ is of type I.

The scheme $ \langle 2\rangle$ is of type II, since it admits no orientation satisfying the complex orientation formula. In fact, for any orientation $ \int(i_{\mathbb{R}A}(x))^2 d\chi(x)=2$ while the right hand side is $ m^2/4=4$.

By 2.6.D the scheme $ \langle1\langle1 \rangle\rangle$ is of type I. A calculation similar to the calculation above on the scheme $ \langle 2\rangle$, shows that only one of the two semiorientations of the scheme $ \langle1\langle1 \rangle\rangle$ satisfies the complex orientation formula. Namely, $ \langle1\langle1^-\rangle\rangle$. It was realized in Figure 18.

Degree 5. By Harnack's inequality the number of components is at most 7. We know (see 1.4) that only real schemes $ \langle J\rangle$, $ \langle J\amalg 1\rangle$, $ \langle J\amalg 2\rangle$, $ \langle J\amalg1\langle1\rangle\rangle$, $ \langle J\amalg 3\rangle$, $ \langle J\amalg 4\rangle$, $ \langle J\amalg 5\rangle$, $ \langle J\amalg 6\rangle$ are realized by nonsingular algebraic curves of degree 5. From Klein's congruence 2.6.C it follows that the schemes $ \langle J\amalg 1\rangle$, $ \langle J\amalg 3\rangle$, $ \langle J\amalg 5\rangle$ are of type II. By 2.7.F $ \langle J\rangle$ and $ \langle J\amalg 2\rangle$ are of type II.

By 2.6.B $ \langle J\amalg 6\rangle$ is of type I. The complex orientation formula gives the value of $ \Lambda _-$ (cf. Proof of 2.7.F): $ \Lambda _-=\frac12k(k+1)=3$. This determines the complex scheme. It is $ \langle J\amalg3^-\amalg3^+\rangle_I^5$.

By 2.6.D $ \langle J\amalg1\langle1\rangle\rangle$ is of type I. The complex orientation formula allows only the semiorientation with $ \Lambda _-=2$. Cf. Figure 19.

The real scheme $ \langle J\amalg 4\rangle$ is of indefinite type, as follows from the construction shown in Figure 19. In the case of type I only one semiorientation is allowed by the the complex orientation formula. It is $ \langle J\amalg3^-\amalg1^+\rangle_I^5$.


next up previous
Next: Exercises Up: 2 A Real Algebraic Previous: 2.7 Rokhlin's Complex Orientation
Oleg Viro 2000-12-30